无刷电机设计基础知识三

合集下载

单相无刷电机的控制系统设计

单相无刷电机的控制系统设计

单相无刷电机的控制系统设计单相无刷电机是一种广泛应用于家电、工业设备和汽车等领域的电机类型,它具有体积小、效率高、转速稳定等优点,因此在各种领域中得到了广泛应用。

单相无刷电机的控制系统设计是非常重要的,它直接影响到电机的性能和稳定性。

本文将从电机的工作原理、控制系统的要求、控制算法的选择等方面进行分析和探讨,以期为单相无刷电机的控制系统设计提供一些参考。

一、单相无刷电机的工作原理单相无刷电机是一种采用电子换相技术来完成电机转子位置检测和换向控制的电机。

其工作原理如下:在电机固定部分安装一个霍尔传感器,用来检测电机转子的位置,然后通过控制器来控制电机的相序和相电流以实现电机的正常转动。

由于无刷电机不需要通过碳刷来实现换向,因此可以避免了碳刷磨损和火花,使得其具有更高的可靠性和使用寿命。

二、单相无刷电机控制系统的要求1. 速度控制:单相无刷电机通常需要实现精确的速度控制,因此控制系统需要具备较高的控制精度和响应速度。

2. 转矩控制:在一些应用场景中,需要对电机的输出转矩进行精确控制,因此控制系统需要具备良好的转矩控制能力。

3. 响应速度:控制系统需要能够快速响应外部控制信号,实现快速启动和停止。

4. 鲁棒性:控制系统需要具备一定的鲁棒性,能够在各种工作环境下稳定可靠地工作。

三、单相无刷电机控制系统的设计1. 控制器选择:针对单相无刷电机的控制系统,通常可以选择使用专门的电机控制器,也可以选择使用通用的运动控制芯片。

控制器需要具备相序控制功能、驱动电流控制功能以及霍尔传感器信号处理功能。

2. 控制算法选择:常用的单相无刷电机控制算法有霍尔传感器反馈算法、电压模式控制算法和磁场定向控制算法等。

具体选择哪种算法需要考虑电机的具体应用场景和性能要求。

3. 驱动电路设计:单相无刷电机的控制系统需要配合相应的功率放大电路来驱动电机,通常采用MOSFET功率放大电路来实现对电机的准确控制。

4. 信号处理:控制系统需要对霍尔传感器采集到的信号进行精确的处理,以获取准确的转子位置信息,并将其用于相序控制和换向算法的实现。

无感无刷电机控制电路知识点

无感无刷电机控制电路知识点

无感无刷电机控制电路知识点
无感无刷电机控制电路是一种常见的电机控制方案,其特点是具有高效、低噪音和可靠性强等优点。

下面将从控制原理、电路设计和应用场景三个方面进行介绍。

一、控制原理
无感无刷电机控制电路的核心是通过传感器检测电机转子位置,然后按照一定的算法控制电流进行驱动。

与传统的有刷电机相比,无感无刷电机不需要刷子与转子直接接触,大大减少了摩擦和磨损,提高了电机的寿命和稳定性。

二、电路设计
无感无刷电机控制电路通常由功率电路和控制电路两部分组成。

功率电路主要包括电机驱动芯片、功率管和滤波电路等,用于将控制信号转化为电机驱动所需的高电流和高电压。

控制电路主要由微控制器或数字信号处理器组成,负责接收传感器反馈信号、计算电机的转子位置和速度,并实时调整电流输出,控制电机的运行状态。

三、应用场景
无感无刷电机控制电路在众多领域有着广泛的应用。

在家电领域,它常用于空调、洗衣机和冰箱等产品中,可实现高效、节能的运行。

在工业自动化领域,无感无刷电机控制电路广泛应用于机器人、传送带和自动化生产线等设备中,提高了生产效率和精度。

此外,无感无刷电机控制电路还被应用于电动车、无人机等交通工具中,以
提供高效、稳定的动力输出。

总结:无感无刷电机控制电路是一种高效、低噪音、可靠性强的电机控制方案。

通过传感器检测电机转子位置,控制电路实时调整电流输出,实现对电机的精确控制。

该技术在家电、工业自动化和交通工具等领域具有广泛的应用前景。

无刷电机基础知识

无刷电机基础知识

一、无刷直流电机基本概念无刷直流电机是随着半导体电子技术发展而出现的新型机电一体化电机,它是现代电子技术(包括电子电力、微电子技术)、控制理论和电机技术相结合的产物。

和普通的有刷直流电机利用电枢绕组旋转换向不同,无刷电机是利用电子换向并磁钢旋转的电机。

普通的直流电机是利用碳刷进行换向的,碳刷换向存在很大的缺点,主要包括1、机械换向产生的火花引起换向器和电刷摩擦、电磁干扰、噪声大、寿命短。

2、结构复杂、可靠性差、故障多,需要经常维护。

3、由于换向器存在,限制了转子惯量的进一步下降,影响了动态性能。

而无刷直流电机的命名就说明了电机的特性:在电机性能上和直流电机性能相近,同时电机没有碳刷。

无刷电机是通过电子换向达到电机连续运转目的的。

无刷电机的换向模式分为方波和正弦波驱动,就其位置传感器和控制电路来说,方波驱动相对简单、价廉而得到广泛利用。

目前,绝大多数无刷电机采用方波驱动,目前市场上的模型电机全部是方波驱动。

二、无刷电机的技术优势及劣势无刷电机的技术优势:1、良好的可控性、宽调速范围。

2、较高的可靠性、工作寿命长、无需经常维护。

3、功率因数高、工作效率高、功率密度大。

同样的,无刷直流电机也存在一定的技术劣势1、需要电子控制器才能工作,增加了技术复杂性和成本、降低了可靠性。

2、转子永磁材料限制了电机使用环境,不适用于高温环境。

3、有明显的转矩波动,限制了电机在高性能伺服系统、低速度纹波系统的应用。

三、无刷电机基本参数命名:外转子电机的命名原则,各个厂家有所不同,有以电机定子的直径高度来命名,也有以电机的直径高度来命名,我司的电机都是以电机定子的直径与高度来命名。

例如2212电机,指的是该电机定子直径22MM,高度12MM。

定子直径:硅钢片定子的直径定子高度(厚度):硅钢片定子的高度铁芯极数(槽数):定子硅钢片的槽数量磁钢极数(极数):转子上磁钢的数量匝数(T):电机定子槽上面所绕漆包线的圈数,注意,常规匝数指的是相邻2个槽所绕线圈数量的和,即一个槽绕8圈,另外一个也是8圈,就是16T。

直流无刷电机工作原理详解无刷电机中的专业知识点

直流无刷电机工作原理详解无刷电机中的专业知识点

直流⽆刷电机⼯作原理详解⽆刷电机中的专业知识点⽆刷电机⼯作原理电磁学基本知识⾸先给⼤家复习⼏个基础定则:左⼿定则、右⼿定则、右⼿螺旋定则。

左⼿定则这个是电机转动受⼒分析的基础,简单说就是磁场中的载流导体,会受到⼒的作⽤。

⽤于判断导线在磁场中受⼒的⽅向:伸开左⼿,使拇指与其他四指垂直且在⼀个平⾯内,让磁感线从⼿⼼流⼊,四指指向电流⽅向,⼤拇指指向的就是安培⼒⽅向(即导体受⼒⽅向)。

右⼿定则这是产⽣感⽣电动势的基础,跟左⼿定则的相反,磁场中的导体因受到⼒的牵引切割磁感线产⽣电动势。

⽤于判断在磁场中运动的导体产⽣的电流⽅向:伸开右⼿,使⼤拇指跟其余四个⼿指垂直并且都跟⼿掌在⼀个平⾯内,把右⼿放⼊磁场中,让磁感线垂直穿⼊⼿⼼,⼤拇指指向导体运动⽅向,则其余四指指向感⽣电动势的⽅向。

也就是切割磁感线的导体会产⽣反电动势,实际上通过反电动势定位转⼦位置也是普通⽆感电调⼯作的基础原理之⼀。

右⼿螺旋定则(安培定则)⽤于判断通电线圈的磁场极性:⽤右⼿握螺线管,让四指弯向螺线管中电流⽅向,⼤拇指所指的那端就是螺线管的N极。

直线电流的磁场的话,⼤拇指指向电流⽅向,另外四指弯曲指的⽅向为磁感线的⽅向。

为什么要讲感⽣电动势呢?不知道⼤家有没有类似的经历,把电机的三相线合在⼀起,⽤⼿去转动电机会发现阻⼒⾮常⼤,这就是因为在转动电机过程中产⽣了感⽣电动势,从⽽产⽣电流,磁场中电流流过导体⼜会产⽣和转动⽅向相反的⼒,⼤家就会感觉转动有很⼤的阻⼒。

不信可以试试。

三相线分开,电机可以轻松转动三相线合并,电机转动阻⼒⾮常⼤看完了三⼤定则,我们接下来先看看电机转动的基本原理。

第⼀部分:直流电机模型我们找到⼀个中学物理学过的直流电机的模型,通过磁回路分析法来进⾏⼀个简单的分析。

状态1当两头的线圈通上电流时,根据右⼿螺旋定则,会产⽣⽅向指向右的外加磁感应强度B(如粗箭头⽅向所⽰),⽽中间的转⼦会尽量使⾃⼰内部的磁感线⽅向与外磁感线⽅向保持⼀致,以形成⼀个最短闭合磁⼒线回路,这样内转⼦就会按顺时针⽅向旋转了。

永磁无刷直流电机控制系统设计

永磁无刷直流电机控制系统设计

永磁无刷直流电机控制系统设计1.电机模型的建立:建立电机的数学模型是进行控制系统设计的第一步。

永磁无刷直流电机可以使用动态数学模型来描述其动态特性,常用的模型包括简化的转子动态模型和电动机状态空间模型。

简化的转子动态模型以电机的电磁转矩方程为基础,通过建立电机的电流-转速模型来描述电机的动态响应。

这个模型通常用于低频控制和电机启动阶段的设计。

电动机状态空间模型则是通过将电机的状态变量表示为电流和转速变量,用微分方程的形式描述电机的动态特性。

这个模型适用于高频控制和电机稳态响应分析。

2.控制器设计:经典的控制方法包括比例积分控制器(PI)和比例积分微分控制器(PID)。

比例积分控制器是最简单的控制器,通过调节电流的比例增益和积分时间来控制电机的速度。

这种控制器适用于低精度控制和对动态响应要求不高的应用。

比例积分微分控制器在比例积分控制器的基础上增加了微分项,通过调节微分时间来控制系统的阻尼比,提高系统的稳定性和动态响应。

3.参数调节:在控制器设计中,参数调节和整定是非常重要的环节,主要包括根据系统的要求选择合适的控制器参数,并进行优化。

参数调节可以通过试探法、经验法和优化算法等方法进行。

其中,试探法和经验法是相对简单的方法,通过调整控制器的参数值来达到稳定运行或者较好的控制性能。

优化算法可以通过数学模型和计算机仿真的方式进行,通过优化目标函数和约束条件,得到最合适的控制器参数。

总结起来,永磁无刷直流电机控制系统设计主要包括电机模型的建立、控制器设计和参数调节。

在设计过程中,需要根据系统的要求选择合适的控制器,通过参数调节和优化算法来提高系统的稳定性和动态性能。

无刷直流电机设计与性能分析

无刷直流电机设计与性能分析

无刷直流电机设计与性能分析随着电动汽车的普及和工业自动化的发展,无刷直流电机作为一种高效、精准、可控性强的电机,越来越受到工程师和研究人员的关注。

本文将探讨无刷直流电机的设计原理、性能分析以及相关应用。

一、无刷直流电机的设计原理无刷直流电机是一种利用反电动势将电能转化为机械能的装置。

与传统的直流电机相比,无刷直流电机不需要传统的碳刷和电刷组,可以减少能耗和机械磨损。

其主要部件包括定子、转子和电子调速器。

定子是无刷直流电机的固定部分,由若干个电磁铁组成。

转子则由磁铁和导电线圈构成。

电子调速器是控制整个电机的核心部件,负责接收和处理信号,并驱动转子旋转。

在无刷直流电机的工作过程中,电流通过定子的电磁铁,产生磁场。

电子调速器根据传感器返回的信号,控制定子电磁铁的通电状态,从而产生电磁力。

这个电磁力作用在转子的磁铁上,使转子旋转。

转子的旋转又会产生反电动势,通过电子调速器的处理,控制整个系统的转速和转向。

二、无刷直流电机的性能分析无刷直流电机的性能主要包括转速、转矩和效率。

1. 转速:无刷直流电机的转速取决于电子调速器的驱动信号和负载情况。

通常情况下,当负载较小时,转速较高。

而随着负载的增加,转速会逐渐降低。

2. 转矩:转矩是电机转动时产生的力矩。

无刷直流电机的输出转矩与电流成正比。

当电流增大时,输出转矩也会随之增大。

同时,转矩还受到电机的结构设计和磁铁材料的影响。

3. 效率:无刷直流电机的效率通常指电机的转动效率,即将输入的电能转化为机械功的比例。

高效率的无刷直流电机可以减少能源消耗和热量产生。

三、无刷直流电机的应用无刷直流电机在许多领域具有广泛的应用。

以下是几个典型的应用案例:1. 电动汽车:无刷直流电机作为电动汽车的动力源,具有高效率、低噪音和快速响应的特点。

它可以驱动汽车前进、制动和转向,成为电动汽车领域的关键技术。

2. 工业自动化:无刷直流电机作为工业自动化装置的驱动装置,广泛应用于机器人、传送带、工业机床等设备中。

电机设计知识点

电机设计知识点

电机设计知识点在现代工业和生活中,电机被广泛应用于各个领域,如汽车、家电、工业制造等。

电机设计是电机工程师必备的基本技能之一,它涉及到电机的结构、原理及设计参数等方面。

本文将介绍一些电机设计的基础知识点。

一、电机分类电机按照不同的工作原理和应用领域可以分为多个类型,常见的电机包括直流电机、交流电机和步进电机等。

每种电机都有其特点和适用范围。

1. 直流电机直流电机是最简单的一种电动机,它的转子和定子由磁铁组成。

直流电机具有转速可调、启动扭矩大的特点,因此常用于需要精确控制转速和扭矩的场合,如电动汽车。

2. 交流电机交流电机是最常见的电动机之一,其转子和定子都由电磁铁绕组组成。

根据不同的转子结构,交流电机又可分为异步电机和同步电机。

异步电机广泛应用于家电、工业生产线等场所,同步电机通常用于电网同步发电。

3. 步进电机步进电机是一种数字式电机,它按照指令进行一小步或多小步旋转。

步进电机具有精确定位、高转矩、无刷等特点,广泛应用于数控机床、机械手等需要准确位置控制的场合。

二、电机设计要点电机设计涉及到多个方面的知识和技术,下面介绍几个重要的设计要点。

1. 磁电路设计电机的磁电路设计是电机设计的基础,它决定了电机的磁场分布和工作性能。

磁电路设计需要考虑磁路的磁阻、磁通量和磁场分布等因素,以满足电机的输出功率、效率和工作温度等要求。

2. 绕组设计绕组是电机中的重要部分,它是转子和定子之间实现能量转换的关键。

绕组的设计需要考虑导线材质、截面积、绝缘性能等因素,并根据工作电压和电流确定合适的绕组方式,以满足电机的工作要求。

3. 散热设计高功率电机在工作过程中会产生大量热量,因此散热设计对于电机的可靠运行非常重要。

散热设计需要考虑散热表面积、散热方式和散热材料等因素,并通过热传导和对流等方式将热量有效地散发出去。

4. 控制系统设计在某些场合,电机需要与其他设备或系统进行配合工作,因此电机的控制系统设计也是电机设计的关键一环。

无刷直流电动机的设计

无刷直流电动机的设计

无刷直流电动机的设计无刷直流电动机(BLDC)是一种基于电子换向器和磁传感器的新型电机,具有高效率、高功率密度、高可靠性、无摩擦等优点,广泛应用于工业、农业、家电和汽车等领域。

本文将介绍无刷直流电动机的设计原理、设计流程和一些关键技术。

一、设计原理无刷直流电动机的工作原理是利用永磁体和电流产生的磁场相互作用,从而产生转矩。

它的转子由一个或多个永磁体组成,通过电流换向器控制电流的方向,从而实现转子的旋转。

无刷直流电动机通常采用三相设计,每相之间的换向角为120度。

二、设计流程1.确定电机的额定功率和转速。

根据设计要求,确定电机的额定功率和转速。

这些参数将决定电机的尺寸、材料和冷却方式等。

2.选择永磁材料和磁路设计。

根据电机的运行环境和功率需求,选择合适的永磁材料。

同时,设计磁路以确保磁通密度的均匀分布和最小的磁路损耗。

3.设计定子绕组和绝缘系统。

根据电机的功率和电压要求,设计定子绕组。

同时,设计合适的绝缘系统以确保电机的安全性和可靠性。

4.确定电流换向器的拓扑和控制策略。

选择合适的电流换向器拓扑(如半桥、全桥等)以及控制策略(如PWM控制、电流环控制等),以实现电机的换向操作。

5.进行磁场分析和电磁设计。

通过磁场分析软件,进行电磁设计。

通过磁场分析,可以得到电机的特性曲线、转矩和功率密度等指标。

6.进行结构设计和热分析。

根据电机的尺寸和电机的工作环境,进行结构设计和热分析。

结构设计要考虑机械强度、制造成本等因素,热分析要考虑散热方式和绝缘系统。

7.制造和测试。

根据设计图纸进行电机的制造。

制造完成后,进行测试,通过测试结果对电机的设计进行修正和优化。

三、关键技术1.电磁设计技术。

电磁设计是无刷直流电动机设计的核心技术,它涉及到永磁体选材、磁路参数计算、磁场分析等方面。

2.电流换向器设计技术。

电流换向器是控制无刷直流电动机运行的关键部件,它的设计直接影响到电机的性能。

目前常用的换向器有半桥、全桥等拓扑,选择合适的拓扑和控制策略对电机的效率和稳定性有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 无刷直流电动机的电磁设计3.1 基本要求和主要指标3.1.1基本要求(1) 运行方式直流无刷电动机的运行方式有连续、短时和断续三种(2) 防护形式一般直流电动机的防护型式主要有防护式和封闭式两种。

(3) 温升一般交流电机包括同步电机和感应电机,转子不计算铁耗,然而该类电机正常稳态运行时,定子绕组产生的2个旋转磁场转速与转子本体转速存在较大的转差,转子铁芯损耗不容忽视。

不仅电磁设计时,其电磁负荷的选择应与常规电机有所区别,而且对通风冷却结构设计应予足够的重视。

(4) 效率(5) 电动机的转速变化率明确电机转速运行的最大区间,并应指明电机的常用转速区间,以便选择合适的电机数据,获得良好的力能指标。

3.1.2主要指标①额定功率P N = 100W②额定电压U N = 270V③额定转速n N = 1000 r/min④定子相数m = 3⑤极对数p = 4⑥定子槽数Z = 183.2 主要尺寸的确定3.2.1 定子铁心内径D a的选择我国目前制造的直流电机,其D a 与输出功率P N 的关系曲线如下,它可以作为选定D a 的初步依据。

由于P N /n N =0.0001,从张琛的《直流无刷电动机原理及应用》中图3.1定子内径D a 与单位转速输出功率P N /n N 的关系曲线查得:cm D a 5.5~0.4=,则取cm D a 5=3.2.2 电磁负荷的选择电负荷A 与磁负荷B 的选择与电动机的主要尺寸直接相关。

同时,A ,B 的选择与电动机的运行性能和使用寿命也密切相关,因此必须全面考虑各种因素,才正确选择A,B 的值。

(1) 线负荷A 高,磁负荷B 不变① 电机体积减小,节约材料② B 一定时,由于铁心重量减小,铁耗减小 ③ 绕组用铜量增加④ 增大电枢单位表面上铜耗,绕组温升增高 ⑤ 影响电机参数和电机特性: q a =ρAJ (2) 磁负荷B 高,线负荷A 不变① 电机体积减小,节约材料 ② 基本铁耗增大 ③ 磁路饱和程度增大 ④ 影响电机参数和电机特性电负荷A 与磁负荷B 与定子的内径D a 有关,根据已生产的电动机的经验数据绘制成曲线。

由于D a =5cm ,由张琛的《直流无刷电动机原理及应用》中图3.2电负荷A 与定子内径D 的关系得电负荷A=75~150A/cm ,取A =90。

由于D a =5cm ,由张琛的《直流无刷电动机原理及应用》中图3.3磁负荷B 与定子内径D 的关系得磁负荷B=0.50~0.65T ,取B=0.55T3.2.3 转子磁钢计算长度L a 的确定先确定极弧系数δα,由经验数据得确定9.0=δα。

转子磁钢计算长度:n pk AD B L D a a ⋅⋅⨯=ηαδδ27101.6 ,则cm La0.7=3.2.4 转子长度L a 与直径D a 的比值λaaD L =λ的大小对电动机的性能指标和经济指标是有影响的。

一般对于无刷电动机来说,由于采用了电子换向且转子由永磁材料组成,转子本身不存在发热问题,而定子的散热可以借助于外壳,λ可取得大一些。

因此,4.1==aaD L λ,由张琛的《直流无刷电动机原理及应用》中图3.4λ与转子外径D a 的关系知符合要求。

3.2.5 定子外径D 、转子内径d 和气隙长度δ的确定根据同规格的无刷电动机的尺寸,则定子外径D =8cm , 转子内径d =2cm . 由经验公式:δδB AD a⨯⨯≥-7106.3, 即mm 5.0≥δ, 取mm 75.0=δ 3.2.6 定子槽形的设计定子槽形采用梨形槽,且齿部平行。

极距τ=pD a2π,则m 0285.0=τ定子齿距 ZD t aπ=,则m t 0122.0=槽口尺参考类似产品,取b 0=1.11mm,h 0=0.23mm,b 1=2.26mm,r 1=1.5mm,h 1+h 2=4.46mm,h s =6.19mm . 令T B t 77.0=,则齿宽: m B k tB b tFe t 00675.0==δ. 初步设定T B j 25.0=,定子轭部估计高度: m B k B h jFe j 021.02==δδτα齿宽计算如下:m r Zh h h D b a t 007364.02)222(1210=-+++=πm b Zh h D b a t 00668.0)22(110=-++=π齿部基本平行,齿宽:m b t 00702.0=(平均值)。

绘制的定子槽形如下:图3.5定子槽形3.2.7 转子永磁体设计对于退磁曲线可近似线性化处理的永磁材料,气隙磁通密度B δ可给出为:m m r r h l B B /(σμδ=) (3-1)式中 δB ——永磁体剩磁密度r μ——相对回复磁导率m l ——气隙总长度 m h ——磁体厚度σ——漏磁系数,定义为总磁通与气隙主磁通之比在磁极内外径确定以后,关键的问题是如何选用永磁体厚度。

分析表明,H m B m 最大时,永磁体的利用最经济。

进一步可知B m =B r /2。

对于钕铁硼永磁材料可近似有μr μ0≈μ0,而忽略漏磁时有B δ≈B m ,则根据式(1),可得理想情况下,当l δ=h m 时,永磁体可得以最经济利用。

但设计中,综合考虑,通常经验选取l δ<h m 。

因此,取h m =2δ=1.5mm .3.3 磁路计算3.3.1 永磁体工作点的确定磁路设计,首先要据磁路选取合适的磁体,并确定其工作点B m 、H m 。

为满足磁通稳定性的要求,磁体工作点应选在磁体最大磁能积点的上方。

由于磁体工作点与磁性能和磁体尺寸有关,故选定所使用的磁体后,便是要选择合适的磁体尺寸,以得到合理的工作点。

在电机中,我选用的是XG 160/120型号的稀土钴永磁材料。

其剩余磁感应强度B r =0.84T,H c =600kA/m .根据永磁体的尺寸计算对应的磁动势和磁通,即Wb Wb B A k m m Fe 00111.0102.133392.088.06=⨯⨯⨯==Φ-γ, A h H F c c c 960==.先用程序设计的方法绘出电动机的磁化曲线。

再画出永磁体的退磁曲线,即把退磁曲线画成以r Φ(0,0.00111)和F c (960,0)连成的直线。

此时,退磁曲线与电动机的磁化曲线的交点(m Φ,F m ),即为永磁体工作点。

经过程序设计图解法,采用试探法,得m Φ=0.000726Wb .程序设计画图求值相关内容见(3.6 程序设计,详细程序见附录1)。

如下图所示:图3.6永磁体工作点的确定3.3.2 各部分磁动势的计算注:σ为漏磁系数,这里统一取σ=1.11。

(1) 定子齿部的磁动势每极定子齿部截面积:A t = k Fe L a b t Z 1= 0.92⨯0.07⨯0.00702⨯49F m F cFΦγΦΦ=1017.2610-⨯m 2.定子齿部的磁场密度tt A B δσαΦ== 6-101017.29.011.1000726.0⨯⨯⨯ = 0.62T查表D 22硅钢片磁化曲线:H t =186A/m. 定子齿部的磁路长度 L t =(h 1+h 2)+31r =0.00496m 定子齿部的磁动势 F t = H t L t=186×0.00496 =0.923A .(2) 定子轭部的磁动势定子轭部计算高度:h j1=321rh D D s a +-- =(35.119.625080+--)310-⨯m =9.31310-⨯m .则定子轭部导磁面积:A j1= k Fe L a h j1=0.92⨯0.07⨯0.00931=599610-⨯m 2. 定子轭部的磁场密度 B j1=12j A δσαΦ=6-109959.011.12000726.0⨯⨯⨯⨯ = 0.67T查表D 22硅钢片磁化曲线:H j1=200A/cm . 定子轭部磁路长度 L j1=212)(1⨯-ph D j π=0.01388m定子轭部的磁动势 F j1=H j1L j1 =200×0.01388=2.78A(3) 转子轭部的磁动势 转子轭部计算高度:h j2=δδ22---dDa =10310-⨯m 转子轭部导磁截面积:A j2= k Fe L a h j2=0.92⨯0.07⨯0.01=644610-⨯m 2. 转子轭部的磁场密度 B j2=22j A δσαΦ=6-106449.011.12000726.0⨯⨯⨯⨯= 0.63T查表D 22硅钢片磁化曲线:H j2=189A/cm . 转子轭部磁路长度 L j2=212)(2⨯+ph d j π=0.00589m转子轭部的磁动势 F j2=H j2L j2 =189×0.00589 =1.112A(4) 气隙的磁动势每极下空气隙截面积:A δ=τLa=0.0196⨯0.07 =1372⨯10-6m 2.气隙的磁场密度 B δ=δδσαA Φ=6-1013729.011.1000726.0⨯⨯⨯ = 0.53T气隙的磁动势 F δ= 0μδδδB k=6104.000075.053.0025.1-⨯⨯⨯⨯π= 324.23A 其中,气隙系数δk = 200)75.04.4()75.04.4(b b t b t -++δδ =1.025因此,每极下的总磁动势 F = F t +F j1+F j2+F δ= 0.923+2.78+1.112+324.23 =329.045A3.4 绕组设计(1) 绕组的结构定子绕组分布式绕组。

分数槽绕组的无刷直流电动机,电枢槽数不仅可以不是极数的整数倍,而且槽数可以少于磁极数,只要满足绕组对称条件就能保证各相产生的转矩对称。

常见的分数槽绕组q 为一个假分数dcb q += 式中,b 为整数,c/d 为一不可约的真分数,该种绕组的对称条件及排列方法已介绍。

当z <2p ,q 为真分数,是否能够组成对称绕组,对称条件又是如何?仔细分析交流绕组的对称条件对q 为真分数时依然适用。

可以简洁表述为dcmp z q ==2 式中:d 与c 为无公约数,当d 不是m 或m 的倍数,如果各相绕组彼此位移2c (d 为奇数)或c 个槽距(d 为偶数),则该绕组必定是对称的。

(2) 绕组的连接三相及多相无刷直流电动机电枢绕组连接方法主要有星形和多边形连接。

下图表示由桥形电路供电三相永磁无刷电机电枢绕组连接图。

其中:S A ……S c 及S A ……S C 表示由晶体管组组成开关电路,W A ……W c 表示电枢绕组。

图中实线表示星形联接,三相绕组有一个星形中点0。

三相绕组按虚线联接则构成多边形联接。

图3.7三相永磁无刷电机电枢绕组连接图三相绕组联接成星形有一个中点。

不同的联接方式,同一种联接方式中点数目不同或联接次序不同,采用适当的通电方式,对电机主要性能没有太大影响,但影响电子开关线路的参数,影响电枢磁势中谐波含量,影响转矩脉动。

相关文档
最新文档