典型例题
典型例题(22套)典型例题20

典型例题(22套)典型例题20
把一个装满水的酒瓶倒立在装着水的盘子里,使瓶颈浸没在盘内水面下,如下图,就做成了一个简便自动家禽喂水器.试讲明它的工作原理.
选题目的:通过此题扩展学生知识,提高分析能力.
解答:这一简便自动家禽喂水器是利用大气压强工作的.由于瓶内水柱产生的压强远小于外界大气压强,当瓶口浸入水中时,瓶口外水受大气压强作用,使瓶内外的压强相等,水可不能流出.当家禽饮水使盘子里的水面下降而瓶口刚露出水面时,空气能够从瓶口进人瓶内,使瓶内压强大于不处大气压强,瓶内的水就会流出来,升高盘里的水位.使瓶口重新没入水中.瓶中的水连续流出,使瓶中气体体积增大,压强减小,直至瓶口内外压强相等时,水就停止流出.因此只要瓶内有水,盘里的水就能不断得到补充.实现家禽自动喂水.。
动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。
2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。
3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。
答案为1.95m。
4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。
答案为0.98m。
5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。
求刹车前汽车的行驶速度。
答案为10.95m/s。
6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离为L×m/(M+m)。
模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。
已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。
答案为3.46m/s和6.71m/s。
典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。
典型例题

(一)典型例题1、综合法证明三角形全等1.如图所示,点、在直线上,,过点、分别作,,且.(1)如图(1),若与相交于点,试问与相等吗?试说明理由.(2)如图(2),若将的边沿方向移动至图中所示位置时,其余条件不变,(1)中的结论是否仍然成立?请说明理由.解:(1).证明:,,即,又于点,于点,在和中,≌(HL),,在和中,≌(AAS),.(2)当的边移动后,仍然有.证明:,,即,以下证明过程同(1),故仍然有.2、添加辅助线,构造三角形全等.(1)【连接两点】2.如图,,.求证:.分析:本题的已知条件是四边形中两条线段AD、BC之间的位置关系和数量关系,而结论是关于两个角的数量关系,可以连接A、C两点,将四边形的问题转化为三角形全等的问题进行证明.证明:连接A、C.,.在和中,≌(SAS)..小结:连接两点的时候一般不破坏已知元素(如两角)或求证的元素.(2)【截长补短】3.如图,在△ABC中,∠B=2∠C,∠BAC的平分线交BC于D,求证:AB+BD=AC.方法一:截长法分析:因为∠B=2∠C,所以AC>AB,可以在AC上取一点E,使得AB=AE,构造△ABD≌△AED,把AB边转移到AE上,BD转移到DE上,要证AB+BD=AC.即可转化为证AE+BD=AE+EC,即证明BD=EC.证明:在AC上取一点E,使得AB=AE,连结DE.在△ABD和△AED中,AB=AE,∠BAD=∠DAE,AD=AD,∴△ABD≌△AED(SAS).∴BD=DE,∠B=∠AED.又∠AED=∠EDC+∠C=∠B=2∠C,∴∠EDC=∠C.∴ED=EC.∴AB+BD=AC.方法二:补短法分析:因为∠B=2∠C,所以AB<AC,可以在AB的延长线上取一点E,使得AE=AC,构造△AED≌△ACD,把AC边转移到AE上,DC转移到DE上,要证AB+BD=AC.即可转化为证AB+BD=AB+BE,即证明BD=BE.证明:在AB的延长线上取一点E,使得AC=AE,连结DE.在△AED和△ACD中,AE=AC,∠BAD=∠DAC,AD=AD,∴△AED≌△ACD(SAS).∴∠C=∠E.又∠ABC=∠E+∠BDE=2∠C=2∠E,∴∠E=∠BDE.∴BE=BD.∴AB+BD=AE=AC.方法三:补短法分析:若延长DB到点E,使得BE =AB,则有AB+BD=ED,只要证出ED=AC即可.证明:延长DB到点E,使得BE =AB,连结AE,则有∠EAB=∠E,∠ABC=∠E+∠EAB=2∠E.又∠ABC=2∠C,∴∠E=∠C.∴AE=AC.又又∠EAD=∠EAB+∠BAD=∠E+∠DAC=∠C+ ∠DAC=∠ADE,∴AE=DE.∴AB+BD=EB+BD=ED=AE=AC.小结:线段的和差问题常常借助于全等三角形的对应边相等,将不在一条直线的两条(或几条)线段转化到同一直线上.上述前两种方法实际上是通过翻折构造全等三角形,目的是为了将转移的边、角和已知条件中的边、角有机的结合在一起.证明一条线段等于另两条线段之和(差)常见的方法是:在其中一条短线段的延长线上截取另一条短线段,再证明它们与长线段相等,这种方法叫“补短法”.在长线段上截取一条线段等于短线段,再证明余下的线段等于另一条短线段,这种方法叫“截长法”.这两种方法是证明两条线段的和(差)等于另一条线段的常用方法.4.已知:如图,,、分别为、的平分线,点在上.求证:.例4图(1)图(2)分析:利用三角形全等,可以根据需要把线段“搬家”.因此在解决有关线段的问题时,如果不能直接解决,可考虑利用三角形全等的知识,通过转换,在寻找解决的方法.解法1:(截长法)如图(1),因要证明,首先在线段上截取,然后再证明,为此先证明≌,可得.用及角互补,可得,从而可证明≌,于是得.也可在上截取,然后证明.解法2:(补短法)如图(2),延长交的延长线于,先由≌,可得.再证明≌,得到,于是.(3)【倍长中线】5.如图,为中线.求证:.分析:要想证明,可以构造一个以AB、AC和2AD的长为边的三角形.根据已知为中线,可以将AD延长一倍至E,构造出与全等的三角形,将AC转移至BE处,从而实现推理证明.证明:延长AD至E,使.则有≌(SAS).所以.在中,.即.6.我们规定:有两条边相等的三角形叫做等腰三角形.我们可以证明:这两条边所对的角是相等的;反之也成立.如图,在中,是的中点,过点D作射线交AB于E,交CA的延长线于F.若要的结论成立,请写出必须满足的条件,并加以证明.分析:本题可以采取和例5类似的方法.虽然图形中没有中线,但是可以将过中点D 的线段FD延长一倍,构造出和全等,进一步进行推理:延长FD至G,使.则有≌(SAS).所以,.若要,只需,即.只需.因此要满足(或).。
函数的图像经典例题

函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。
例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。
5种典型数学例题

【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
【例1】买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
【例2】3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
【例3】5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
典型例题

接下页
)
例8:
典型例题解析之七
如果MUl/P1>MU2/P2,为了实现效用最大化,消 费者应如何调整商品1和商品2的购买量;
解: 在商品1和商品2价格既定的情况下,
MUl/P1>MU2/P2表明:
继续增加商品1的消费能增大消费者的总效用
所以该消费者应增加商品1的消费,减少商品 2的消费,直到MUl/P1=MU2/P2,消费者总 效用最大化。
设坏车价值 解: 100 元为固定成本,即: FC 100 元
则,修好后的净值必须大于FC
当修好后的价值为1000元时,净值为:1000-500=500
(元),大于FC=100(元),值得修理。
当修好后的价值为5500元时,净值为:550-500=50
(元),小于FC=100(元),不值得修理
接下页
6 .5 %
Q / Q 15 %
可见,明年该商品的价格将可能上升至6.5-10.7%
例1:
典型例题解析
某商品的需求函数为Q 40 0 . 5 P(商品单位为万件,货币单位为 千元)(1)公司打算在某地每年销售10万件,其定价应为多少? (2)若该公司希望将价格定在8千元,年产量最多只能是多少?
10
5
0
5
10
15 Q
接下页
例5:
典型例题解析之四
假定在无差异曲线上的斜率dY/dZ=-200/Z2时,消费者达到 消费者均衡。如果消费者收入为60元,PZ=6元,PY=3元那么 Z和Y的均衡需求量为多少?
解:
由题中条件可知:
MRS
ZY
200 / Z
ZY
2
而消费者均衡时:
MRS
典型例题

典型例题画旋转后的图形,根据旋转特征求点的坐标例1仔细观察图23-1-1中的六个图形.可以通过旋转相互重合的是()分析:依据旋转定义,注意不要漏掉c和e,c和e也可通过旋转相互重合,旋转角是180°,b和d通过平移相互重合.答案:a和f,c和e.例2如图23-1-2,已知△ABC为等边三角形,O为其内部一点.且∠OAC=∠DAB,AO =AD,连接OD、DB,已知AO=3 cm,BO=5 cm.CO=4 cm,求△ODB的周长.分析:先观察图形,并从中找出旋转关系,可以发现△ADB是由△AOC旋转得来的,可以以此为线索寻找边角之间的关系;另外此题也可根据已知条件,得出△AOC≌△ADB后再寻找边角之间的关系.答案:解法一:∵△ABC是等边三角形,∴AC=AB,∠CAB=60°.∴AC边以点A为旋转中心逆时针旋转60°与边AB重合.又∵∠OAC=∠DAB.∴∠OAD=∠OAB+∠DAB=∠OAB+∠OAC=∠CAB=60°.又∵AO=AD,∴AO边以点A为旋转中心,逆时针旋转60°后与边AD重合.∴△ADB是由△AOC绕点A逆时针旋转60°得到的.由旋转特征得DB=OC.又∵AO=AD,∠DAO=60°,∴△AOD为正三角形.∴OD=AO.∴△ODB的周长=OD+DB+BO=AO+OC+BO=3+4+5=12(cm).解法二:∵△ABC是等边三角形,∴AC=AB.又∵∠OAC=∠DAB.AO=AD.∴△AOC≌△ADB(S A S).∴OC=BD.(以下的证明步骤同解法一)例3如图23-1-3,画出四边形ABCD绕点O顺时针旋转90°后的四边形.分析:画出四边形ABCD沿顺时针旋转90°的图形,只要画点A、B、C、D绕O点顺时针旋转90°后的对应点即可,可先连DO,再把线段DO绕O点旋转90°后得OD′,同样画出A、B、C的对应点.在有网格的图形中,画旋转后的图形时一般不用量角器和带刻度的直尺,在网格中判断角的角度以45°和90°为主.答案:如图23-1-3.例4如图23-1-4,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)求A,A1,B1三点的坐标.分析:旋转中心O在△AOB上,直角坐标系中x轴、y轴互相垂直,故B的对应点B1应在x轴上,A的对应点A1应在y轴上,根据旋转特征:OA=OA1,BO=B1O,所以A1的坐标为(0,1),B1的坐标为(2,0),注意旋转方向是顺时针.答案:解(1)如图23-1-4,△A1OB1即为所求作的三角形.(2)由题意知A,A1,B1三点的坐标分别为(-1,0),(0,1),(2,0).易错点悟旋转是由旋转中心,旋转角度和旋转方向决定,尤其是旋转方向一定要弄清顺时针还是逆时针.跟踪巧练1如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M 对称,定点M叫做对称中心,此时,M是线段PQ的中点,如图23-1-5,在直角坐标系中,△ABO的顶点A、B、O的坐标分别(1,0)、(0,1)、(0,0).点列P1、P2、P3…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7,关于点O对称,…对称中心分别是A、B、O、A、B、O…,且这些对称中心依次循环,已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.跟踪巧练答案:1.P2(1,-1),P7(1,1),P100(1,-3).旋转与四边形知识结合例5(05年山西省中考)如图23-1-6,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.(1)观察猜想BE与DG之间的大小关系,并证明你的结论.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在请说明理由.分析:线段之间的大小关系,一般猜想其线段相等,而根据旋转特征,旋转能重合的三角形必然全等,综合本题的两个问题都需要证明△BCE与△DCG全等.注意这两个三角形的两条直角边分别是正方形ABCD和正方形ECGF的边长.答案:(1)BE=DG.证明:在△BCE和△DCG中,∵四边形ABCD和四边形ECGF都是正方形,∴BC=DC,EC=GC,且∠BCE=∠DCG=90°,∴△BCE≌△DCG,∴BE=DG.(2)由(1)证明过程知,存在.Rt△BCE和Rt△DCG通过旋转能够相互重合:将Rt△BCE 绕点C顺时针旋转90°,可与Rt△DCG完全重合(或将Rt△DCG绕点C逆时针旋转90°,可与Rt△BCE完全重合).评注本题应大胆猜想,充分利用正方形知识得到线段相等、角相等,描述旋转过程时要说出旋转中心、旋转方向及旋转角度.跟踪巧练2如图23-1-7,点C是线段AB上任意一点.分别以AC、BC为边在同侧作等边△ACD和等边△BCE,连接BD、AE,试找出图中能够通过旋转完全重合的图形.它是绕哪一点旋转?旋转了多少度?跟踪巧练答案:2.△ACE和△DCB通过旋转能够完全重合.绕点C旋转,旋转了60°(相互顺时针或逆时针旋转都可以).提示:一个图形绕某一点旋转某个角度后能与另一个图形重合,即对应边应该相等,对应角应该也相等.从图中可以看出:AC=DC,EC=BC,∠ACE=∠DCB=120°.。
高中数学经典例题100道

例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集. 解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥, ∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD =I ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D =I 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,ο90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC , ∴BC SA ⊥.∵ο90=∠B ,即BC AB ⊥,A SA BA =I , ∴⊥BC 平面SAB . ∵⊂AN 平面SAB . ∴AN BC ⊥.又∵SB AN ⊥,B BC SB =I , ∴⊥AN 平面SBC . ∵⊂SC 平面SBC , ∴SC AN ⊥,又∵SC AM ⊥,A AN AM =I ,∴⊥SC 平面AMN . ∵⊂MN 平面AMN . ∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC . ∴MN 为AM 在平面SBC 内的射影. ∵SC AM ⊥, ∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=. 分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD . ∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH=θcos ① 在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BABD=βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点. ∵EF BD //,⊄BD 平面GFE , ∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离. ∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC =I ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH , ∴OK EF ⊥.又∵GH OK ⊥,H EF GH =I , ∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直. 证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥. 取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线). (2)∵BC BA =,∴AC BD ⊥. 又∵SD ⊥面ABC ,∴BD SD ⊥. ∵D AC SD =I ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n . ∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥. 由作图知m 、n 为α内两条相交直线. ∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面αI 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βαI ,∴EF AB ⊥,EF AC ⊥.又A AC AB =I ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系(3)这个图形中有多少个直角三角形(4)这个图形中有多少对相互垂直的直线分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM =I ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM =I ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b I ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβI .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβI .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b =I ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A =I ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βαI ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A =I ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B =I ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC =I ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题
江都区大桥镇中学 丁鑫昆
1在 “国庆黄金周”,小华全家乘火车到上海游玩。
因旅途劳顿,在火车上,小华经常要喝
水。
他把茶杯放在列车内的一个水平桌面上,突然,他发现杯内的水面发生了如图所示的变
化,则列车的运动状态可能发生的变化是( )
① 列车突然向右启动
② 列车突然向左启动
③ 列车向右运动时突然减速刹车
④ 列车向左运动时突然减速刹车
A ①或②
B ①或③
C ②或③
D ②或④
2.如图所示是小车做变速直线运动时,车内悬挂的小球和杯中
水面在某一瞬间的情况,其中符合物理规律的是
( )
A B C D
3.如图所示,一重为G 的物体A ,随传送带一起沿水平方向向右做匀速运动,不计空气阻
力,请画出物体A 受力情况的示意图.
4如图2甲所示,完全相同的木块A 和B 叠放在水平桌面上,在12N 的水平拉力F 1作用下,
A 、
B 一起作匀速直线运动,此时木块B 所受的摩擦力为______N ;若将A 、B 紧靠着放
在水平桌面上,用水平力F 2推A 使它们一起匀速运动(如图乙所示),则推力F 2=
_______N .
5.用如图所示装置粗略测量大气压的值.把吸盘用力压在玻璃上排出吸盘内的空气,吸盘
压在玻璃上的面积为4×10-4m 2.轻轻向挂在吸盘下的小桶内加沙子.吸盘刚好脱落时,测出
吸盘、小桶和沙子的总质量为3.2kg .则大气对吸盘的压力为 N (g 取10N/kg ),大
气压的测量值为 Pa .若吸盘内的空气不能完全排出,则大气压的测量值比实际值
偏 .
6.如图所示,在瓶的a 、b 两处各扎一个小孔并将孔封住.在瓶中注满水,打开a 、b 两孔
后观察到图示的情况,这说明:水对容器的 有压强;液体压强随 ________的增加而增大.如果将瓶口盖上瓶盖后用手指堵住其中一小孔,另一小孔 (会/不会)有水流出来。
因为 。
7如图所示,甲、乙两个实心圆柱体放在水平地面上。
它们对地面压强相等,则下列正确的是( )
A .甲的密度大,甲受到的重力大
B .甲的密度小,甲受到的重力小
C .甲的密度小,甲受到的重力大
D .甲的密度大,甲受到的重力小
8所示置于桌面上的甲、乙两容器质量相等、底面积相等,注入等
质量的同种液体,则液体对甲容器底部的压力F 甲 F 乙,液体
对容器底部的压强P 甲 P 乙,容器对桌面的
压强P 甲` P 乙`,容器对桌面的压力F 甲` F 乙`。
9将如图所示杯子装入适量水(未满),倒置后.问(填变大,变小或不变):
(1)水对容器底压强 (2)水对容器底压力
(3)杯对桌面压强 (4)杯对桌面压力
10.如图所示,有三个完全相同的瓶子,里面分别装有质量相等的酱油、水和
豆油,则它们对瓶底的压强__________ (填“相等”、“不相等”).
11.一个装满水后瓶盖密封的硬塑料瓶, 放在水平桌面上,水对瓶底的压强为p 1,瓶底对桌面的压强为p 1′;将瓶倒置后,水对瓶盖的压强为p 2,瓶盖对桌面的压强为p 2′,则( ).
A .p 1>p 2 p 1′>p 2′
B .p 1=p 2 p 1′<p 2′
C .p 1<p 2 p 1′<p 2′
D .p 1=p 2 p 1′=p 2′
12.如图所示,底面积相同的两个容器,放在水平桌面上,分别装有水和酒
精.已知水和酒精对容器底的压力相等,水中A 点和酒精中B 点到各自容
器底面的距离也相等,该两点处液体的压强分别用p A 、p B 表示,则p A 、p B
的大小关系为( ).
A .p A >p
B B .p A = p B
C .p A <p B
D .p A 可能大于p B
13.一竖直悬挂的磁性黑板上吸着一块磁铁,磁铁静止不动,则下列四对力中,属于平衡力的是( )
A.黑板对磁铁的吸引力与磁铁对黑板的吸引力
B.黑板对磁铁的吸引力与黑板对磁铁的摩擦力
C.磁铁对黑板的吸引力与磁铁的重力
D.磁铁的重力与黑板对磁铁的摩擦力。
14.一只口径24厘米的高压锅,其限压出气口直径3.5毫米,限压阀质量为100克,(g 取 10牛/千克),当正常使用时,求:(l )高压锅内外的压强差;(2)高压锅锅盖接口处承受的最大压力F 。
图。