相交线与平行线测试题
相交线与平行线单元测试题(含答案)

相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。
人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。
七年级下册地理相交线和平行线测试题

七年级下册地理相交线和平行线测试题一、选择题1. 在地理上,经线是指连接 __A__。
A. 两极的虚线B. 东西两极的实线C. 东西之间的实线D. 东北、东南、西北、西南之间的实线2. 下列哪些线是地图上的纵线 __C__。
A. 赤道线B. 天空线C. 经线D. 纬线3. 世界由多少个纬线构成 __B__。
A. 1个B. 180个C. 360个D. 720个4. 经线和纬线在地球上形成了一种 __D__。
A. 直线关系B. 弧线关系C. 分叉关系D. 网格关系5. 在地理上,纬线是指连接 __C__。
A. 北极的实线B. 南极的虚线C. 东西两极的实线D. 东西之间的实线二、判断题1. 世界地图上的纬线和经线是相交的。
__X__2. 纬线是指连接东西两极的线。
__X__3. 地图上的经线比纬线多。
__X__三、填空题1. 地理上经线的最大称号是 __经线的圈__2. 纬线的最大称号是 __纬线的圈__四、简答题1. 解释纬线和经线的作用。
答:纬线和经线在地理上主要用来确定地球的位置和导航。
纬线垂直于经线,横跨地球表面,并表示地球表面的纬度。
纬线以赤道为基准,南北分布,帮助人们确定地球上不同地区的纬度。
而经线则是连接地球两极的线,纵向分布,辅助人们确定地球上不同地点的经度。
2. 世界地图上的纬线和经线为什么被称为相交线和平行线?答:纬线和经线在地球上形成了网格状的关系。
纬线相互平行,以赤道为基准,平行地包围着地球。
而经线则从一个极点穿过另一个极点,在地球上形成相交的关系。
这种相交和平行的关系使纬线和经线分别被称为相交线和平行线。
平行线与相交线测试题(经典试题)

平行线与相交线测试题(经典试题)一.认真选一选,你一定能行!(每题3分,共30分) 1.如图,∠1=∠2,则下列结论一定成立的是( ) A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠3=∠4 2.同一平面内的三条直线最多可把平面分成( )部分。
A .4 B .5 C .6 D .73.在如图所示的长方体中,和平面ABCD 垂直的棱有( )A . 2条B . 4条C . 6条D . 8条4. 一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是( )A.第一次向左拐40°,第二次向右拐40° B.第一次向右拐40°,第二次向左拐140° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐140°5. 不相邻的两个直角,如果它们有一条公共边,那么另一条边相互( ) A.平行B.垂直 C.平行或垂直D.或平行或垂直或在同一条直线上6. 下列语句:⑴过两条平行线A B ,C D 外一点P 作一条直线M N ,使M N A B ∥,则M N C D ∥.⑵过两条平行线A B ,C D 外一点P 作直线M N ,使M N A B ∥,A B C D ∵∥,M N C D ∴∥. ⑶过两条平行线A B ,C D 外一点P 作一条直线M N ,使M N A B ⊥,则M N C D ⊥.⑷过两条平行线A B ,C D 外一点P 作一条直线M N ,使MN A B ⊥,A B C D ⊥∵,M N C D ⊥∴.其中正确的是 ( ) A.⑴ ⑶B.⑵ ⑷C.⑴ ⑵ ⑶D.全对7. 在下列条件中,不能判定AB D F ∥的是 ( ) A.2180A ∠+∠=︒ B.3A ∠=∠C.14∠=∠D.1A ∠=∠8.下列说法正确的个数是( )①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2; ③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°。
(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。
相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。
人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
相交线与平行线测试题

相交线与平行线测试题一、选择题1. 以下哪一条不是相交线的特征?A. 相交线在平面内相交于一点B. 相交线可以是曲线C. 相交线相交后形成4个角D. 相交线相交后,对角线相等2. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点但不是直线C. 相交于两点的直线D. 永远不会相交的曲线3. 以下哪个条件不能保证两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两条直线相交4. 如果两条直线相交,它们可以形成多少个角?A. 1个B. 2个C. 4个D. 无数个5. 平行线的性质中,以下哪一项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 平行线可以是曲线D. 平行线相交于无穷远处二、填空题6. 两条直线相交所形成的角中,如果两个角是内错角,那么这两个角的关系是________。
7. 如果两条直线相交,其中一个角是锐角,那么它的对角是________。
8. 平行线的性质之一是,如果两条平行线被一条横截线所截,那么同位角相等,内错角相等,同旁内角的和为________。
9. 两条平行线之间的距离是指________。
10. 如果两条直线是平行的,那么它们之间的夹角是________。
三、简答题11. 解释“内错角”和“同旁内角”的定义,并给出它们在平行线中的性质。
12. 描述如何使用“同位角”来证明两条直线是平行的。
13. 如果两条直线相交,它们形成的角有哪些可能的组合?请列举所有情况。
四、计算题14. 在平面直角坐标系中,直线L1的方程为 y = 2x + 3,直线L2的方程为 y = -x + 5。
求这两条直线的交点坐标。
15. 如果两条平行线在y轴上的距离为5,且一条直线的方程为 y =3x + 7,求另一条平行线的方程。
五、证明题16. 给定两条直线AB和CD,已知AB平行于CD,且AB与CD之间的距离为10。
如果AB上的点E到CD的距离为8,求点E到与AB平行且与CD相交的直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全章测试(一)
一、选择题
1.在同一平面内,如果两条直线不重合,那么它们( ).
(A)平行 (B)相交 (C)相交、垂直 (D)平行或相交
2.如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线( ).
(A)垂直 (B)相交 (C)平行 (D)不能确定
3.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).
(A)30° (B)60° (C)150° (D)30°或150°
4.如图,已知∠1=∠2=∠3=55°,则∠4的度数是( ).
(A)110° (B)115°
(C)120° (D)125°
5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:
(1)∠1=∠2;
(2)∠3=∠4;
(3)∠2+∠4=90°;
(4)∠4+∠5=180°
其中正确的个数是
(A)1 (B)2
(C)3 (D)4
6.下列说法中,正确的是( ).
(A)不相交的两条直线是平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.
(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
7.∠1和∠2是两条直线l 1,l 2被第三条直线l 3所截的同旁内角,如果l 1∥l 2,那么必有
( ).
(A)∠1=∠2 (B)∠1+∠2=90° (C)o 90221121=∠+∠ (D)∠1是钝角,∠2是锐角
8.如下图,AB ∥DE ,那么∠BCD =( ).
(A)∠2-∠1 (B)∠1+∠2
(C)180°+∠1-∠2 (D)180°+∠2-2∠1
9.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有( ).
(A)3个(B)2个
(C)1个(D)0个
10.在5×5的方格纸中,将图1中的图形N平移后的位置如图2中所示,那么正确的平移方法是( )
图1图2
(A)先向下移动1格,再向左移动1格
(B)先向下移动1格,再向左移动2格
(C)先向下移动2格,再向左移动1格
(D)先向下移动2格,再向左移动2格
二、填空题
11.如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=______°,∠3=______°,∠4=______°.
12.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为______.
13.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.
14.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.
15.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______度.
16.如图,在平面内,两条直线上l1、l2相交于点O,对于平面内任意一点M,若p、q 分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规
定,“距离坐标”是(2,1)的点共有______个,在图中画出这些点的位置的示意图.
17.把“同角的补角相等”改写成“如果……,那么……”的形式:
______________________________________________________________________.
三、解答题:
18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB ∥CD.
19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.
20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.四、作图题:
21.已知:∠AOB.
求作:①画出∠AOB的平分线.
②在OC上截取OP=4cm.
③过点P作PE⊥OA于点E,PF⊥OB于点F.
④用刻度尺量得PE=______cm,PF=______cm.(精确到1cm).
⑤请问你发现了什么?
五、(选做题)问题探究:
22.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB、AC交于点E、F.
(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;
(2)若∠ABC=α,∠ACB=β ,用α、β 的代数式表示∠BOC的度数.
(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其它条件
不变,请画出相应图形,并用α、β 的代数式表示∠BOC的度数.
全章测试(二)
一、选择题
1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).
(A)144° (B)135°
(C)126° (D)108°
2.如图,AB ∥CD ,EF ⊥CD ,若∠1=50°,则∠2的度数是( ).
(A)50° (B)40°
(C)60° (D)30°
3.如图,直线l 1、l 2被l 3所截得的同旁内角为α、β ,要使l 1∥l 2,只要使( ).
(A)α +β =90° (B)α =β
(C)0°<α ≤90°,90°≤β<180° (D) 603131=+βα 4.下列命题中,结论不成立的是( ).
(A)一个角的补角可能是锐角
(B)两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离
(C)平面内,过一点有且只有一条直线与已知直线垂直
(D)平面内,过一点有且只有一条直线与已知直线平行
5.如图,AB ∥CD ,∠1=∠2,∠3=130°,则∠2等于( ).
(A)25° (B)30° (C)35° (D)40°
6.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α ,则∠EFG 等于( ).
(A)180°-α (B)90°+α
(C)180°+α (D)270°-α
7.以下五个条件中,能得到互相垂直关系的有( ).
①对顶角的平分线
②邻补角的平分线
③平行线截得的一组同位角的平分线
④平行线截得的一组内错角的平分线
⑤平行线截得的一组同旁内角的平分线
(A)1个(B)2个(C)3个(4)4个
8.在下列四个图中,∠1与∠2是同位角的图是( ).
图①图②图③图④
(A)①、②(B)①、③(C)②、③(D)③、④
9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM 互余的角有( ).
(A)6个(B)5个(C)4个(D)3个
10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°
(A)1个(B)2个(C)3个(D)4个
二、填空题
11.如图,AB与CD相交于O点,若∠AOC=47°,则∠BOD的余角=______.
(第11题)
12.如图,AB ∥CD ,BC ∥ED ,则∠B +∠D =______.
(第12题)
13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有__________________.
(第13题)
14.如图,BA ⊥FC 于A 点,过A 点作DE ∥BC ,若∠EAF =125°,则∠B =______.
(第14题)
15.若角α 与β 互补,且,203
1o =-βα则较小角的余角为______度.
三、作图
16.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你
画出示意图.
四、解答题
17.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD.
证明:
18.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
19.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
20.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
21.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
22.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
23.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.
五、探究题:夹在平行线间的折线问题
24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.
图1图2
(1)判断∠M,∠A,∠B的关系;
(2)请你尝试改变问题中的某些条件,探索相应的结论。
建议:①折线中折线段数量增加到n条(n=3,4……)
②可如图1,图2,或M点在平行线外侧.。