高二数学上学期暑假检测(9月月考)试题
2023-2024学年达州市外国语高二数学上学期9月考试卷附答案解析

2023-2024学年达州市外国语高二数学上学期9月考试卷考试时间:120分钟;满分:150分第Ⅰ卷(选择题)一、单选题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.在空间直角坐标系O xyz -中,已知点M 是点()3,4,5N 在坐标平面Oxy 内的射影,则点M 的坐标是()A .()3,0,5B .()0,4,5C .()3,4,0D .()0,0,52.一几何体的直观图和主视图如图所示,下列给出的四个俯视图中正确的是()A .B .C .D .3.如图所示,梯形A B C D ''''是平面图形ABCD 用斜二测画法得到的直观图,22,1A D B C A B ''''''===,则平面图形ABCD 的面积为()A .2B .C .3D .4.如图,G ,H ,M ,N 均是正三棱柱的顶点或所在棱的中点,则表示GH ,MN 是异面直线的图形的序号为()A .①②B .③④C .①③D .②④5.下列说法正确的是()A .如果直线l 不平行于平面α,那么平面α内不存在与l 平行的直线B .如果直线l //平面α,平面α//平面β,那么直线l //平面βC .如果直线l 与平面α相交,平面α//平面β,那么直线l 与平面β也相交D .如果平面α⊥平面γ,平面β⊥平面γ,那么平面α//平面β6.已知正三棱台的上、下底面的棱长分别为3和6,侧棱长为2,则该正三棱台的体积为()A .B .2132C .1934D .7.如图,球面上有A 、B 、C 三点,90ABC ∠=,3BA BC ==,球心O 到平面ABC 的距离是,则球O 的体积是()A .72πB .36πC .18πD .8π8.如图正方体的棱长为1,线段11B D 上有两个动点,E F 且EF =,则下列结论错误的是()A .AC 与BE 所成角为45︒B .三棱锥A BEF -的体积为定值C .//EF 平面ABCDD .二面角A EF B --是定值二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.以下各角中可能为钝角的有()A .异面直线所成角B .直线和平面所成角C .二面角的平面角D .两个向量形成的角10.《蝶恋花·春景》是北宋大文豪苏轼所写的一首词作.其下阙为:“墙里秋千墙外道,墙外行人,墙里佳人笑,笑渐不闻声渐悄,多情却被无情恼”.如图所示,假如将墙看做一个平面,墙外的道路、秋千绳、秋千板简单看做是直线.那么道路和墙面线面平行,秋千静止时,秋千板与墙面线面垂直,秋千绳与墙面线面平行.那么当佳人在荡秋千的过程中()A .秋千绳与墙面始终平行B .秋千绳与道路始终垂直C .秋千板与墙面始终垂直D .秋千板与道路始终垂直11.如图,已知,G H 分别是,BC CD 的中点,,E F 分别在,AD AB 上,13AE AF AD AB ==,二面角A BD C --的大小为π3,且AC ⊥平面BCD ,则以下说法正确的是()A .,,,E F G H 四点共面B .//FG 平面ADCC .若直线,FG HE 交于点P ,则,,P A C 三点共线D .若ABD △的面积为6,则BCD △的面积为312.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑-P ABC 中,PA ⊥平面ABC ,AB BC ⊥,且2AB =.若鳖臑-P ABC 外接球的体积为36π,则当该鳖臑的体积最大时,下列说法正确的是()A .4PA =B .4BC =C .该鳖臑体积的最大值为83D .该鳖臑的表面积为885+第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共20分,答案填在答题卡对应题号后的横线上).13.已知向量()2,1,3a →=-,()1,1,b x =-,若a →与b →垂直,则2a b →→+=.14.如图,在直三棱柱111ABC A B C -中,1AC BC CC ==,AC BC ⊥点D 是AB 的中点,则直线1B B和平面1CDB 所成角的正切值为.15.如图三棱柱111ABC A B C -中,侧面11BB C C 是边长为2菱形,∠160CBB =︒,1BC 交1B C 于点O ,AO ⊥侧面11BB C C ,且1AB C V 为等腰直角三角形,如图建立空间直角坐标系O xyz -,则点1A 的坐标为.16.在边长为6的菱形ABCD 中,3A π∠=,现将ABD △沿BD 折起,当三棱锥A BCD -的体积最大时,三棱锥A BCD -的外接球的表面积为.四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.18.如图所示,已知圆柱的侧面展开图的面积为6π,底面直径2BD =,C 为底面上异于B ,D 的点,且30BDC ∠= .求:(1)二面角A CD B --的余弦值;(2)点B 到平面ACD 的距离.19.如图所示,底面为正方形的四棱锥P ABCD -中,2AB =,4PA =,5PB PD ==AC 与BD 相交于点O ,E 为PD 中点.(1)求证:EO ∥平面PBC ;(2)PA 上是否存在点F ,使平面OEF ∥平面PBC .若存在,请指出并给予证明;若不存在,请说明理由.20.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,5QD QA ==3QC =.(1)求证:平面QAD ⊥平面ABCD ;(2)求异面直线QC 与AD 所成角的余弦值.21.如图,在直三棱柱111ABC A B C -中,12,AB BC CC AB BC ===⊥.(1)求证:11AC B C⊥;(2)求1B C与平面11AA C C所成的角的大小.22.已知在梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB =BC =2AD =4,E ,F 分别是AB ,CD 上的点,EF ∥BC ,AE =2,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图).(1)证明:EF ⊥平面ABE ;(2)求二面角D ﹣BF ﹣E 的余弦值.1.C【分析】点在平面Oxy 内的射影是,x y 坐标不变,z 坐标为0的点.【详解】点()3,4,5N 在坐标平面Oxy 内的射影为()3,4,0,故点M 的坐标是()3,4,0故选:C 2.B【分析】通过几何体结合三视图的画图方法,判断选项即可.【详解】几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以C 、D 不正确,几何体的上部的棱与正视图方向垂直,所以A 不正确故选:B.3.C【分析】根据斜二测画法还原四边形ABCD ,由梯形面积公式求解.【详解】如图,作平面直角坐标系xOy ,使A 与O 重合,AD 在x 轴上,且2AD =,AB 在y 轴上,且2AB =,过B 作//BC AD ,且1BC =,连接CD ,则直角梯形ABCD 为原平面图形,其面积为()112232S =⨯+⨯=.故选:C 4.D【分析】根据异面直线的定义即可结合图形关系求解.【详解】在题图②④中,直线GH ,MN 是异面直线;在题图①中,由G ,M 均为所在棱的中点,易得GH MN ∥;在题图③中,连接GM ,由G ,M 均为所在棱的中点,所以GM //NH ,且12GM NH =,易得四边形GMNH为梯形,则GH 与MN相交.故选:D .5.C【分析】根据直线与平面的关系判断A ,根据线面平行、面面平行的性质判断B ,由直线与平面相交即平面平行的性质判断C ,根据平面垂直的性质判断D.【详解】如果直线l 不平行于平面α,例如l ⊂α,则平面α内存在与l 平行的直线,故A 错误;如果直线l //平面α,平面α//平面β,那么直线l //平面β或l β⊂,故B 错误;如果直线l 与平面α相交,平面α//平面β,直线l 与平面β也相交,故C 正确;如果平面α⊥平面γ,平面β⊥平面γ,那么平面α//平面β或α与β相交,故D 错误.故选:C 6.D【分析】先利用勾股定理求出三棱台的高,再根据棱台的体积公式即可求解.【详解】如图画出正三棱台,连接上下底面中心1OO ,1OO 即为三棱台的高,过B 作1BC AO ⊥,垂足为C ,则1OO BC h ==,111AC AO CO AO BO =-=-,又上下底面外接圆半径分别132sin 3OB π=⨯,1162sin 3O A π=⨯=,侧棱长为2AB =,所以正三棱台的高为11OO BC ==,因为正三棱台的上、下底面的边长分别为3,6,所以上下底面面积分别为2132S '=,213622S =⨯=,所以其体积为(11133V h S S '=+=⨯⨯=⎝.故选:D.7.B【分析】求出ABC 外接圆的半径,结合已知条件可求得球O 的半径,再利用球体体积公式可求得球O 的体积.【详解】在ABC 中,90ABC ∠=,3BA BC ==,则ABC外接圆的直径为2r AC ====2r =,因此,球心O 到平面ABC 的距离为322,所以,球O的半径为3R =,因此,球O 的体积为3344ππ336π33V R ==⨯=.故选:B.8.A【分析】利用线面平行和线面垂直的判定定理和棱锥的体积公式以及二面角的定义对选项进行逐个判断即可得到答案.【详解】选项A ,AC ⊥BD ,AC ⊥BB1,且BD 1,BB B ⋂=可得AC ⊥面DD1B1B ,即得AC ⊥BE ,此命题错误;选项B,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故三棱锥A ﹣BEF 的体积为定值,此命题正确;选项C ,由正方体ABCD ﹣A1B1C1D1的两个底面平行,EF 在其一面上且EF 与平面ABCD 无公共点,故EF ∥平面ABCD ,此命题正确;选项D ,由于E 、F 为线段B1D1上有两个动点,故二面角A ﹣EF ﹣B 的平面角大小始终是二面角A ﹣B1D1﹣B 的平面角大小,为定值,故正确;故选A.【点睛】本题考查线面平行和线面垂直的判定定理的应用,考查棱锥体积公式以及二面角定义的应用,属于基础题.9.CD【分析】根据各类角的范围直接判断可得.【详解】异面直线所成角的范围为(0,]2π,A 错误;直线和平面所成角的范围为[0,2π,B 错误;二面角的平面角的范围为[0,]π,C 正确;两个向量形成的角的范围为[0,]π,C 正确.故选:CD 10.ACD【分析】根据图中秋千绳,墙面,道路的位置关系以及相关的线面,线线垂直的判定定理、性质定理等即可判断.【详解】显然,在荡秋千的过程中,秋千绳与墙面始终平行,但与道路所成的角在变化.而秋千板始终与墙面垂直,故也与道路始终垂直.故选:ACD.11.ACD【分析】由题意证出EF GH ∥即可判断A 项;假设B 项正确,然后利用直线与平面平行的性质得出FG AC ,从而推出与已知条件矛盾的结论,可判断B 项;利用基本事实3可判断C 项;通过作出二面角的平面角,从而找到ABD △与BCD △的公共边BD 上的高之间的关系,从而求出结果,可判断D 项.【详解】由13AE AF AD AB ==知EF 平行且等于13BD ,又,G H 分别是,BC CD 的中点,所以GH 平行且等于12BD,∴EF GH ∥,因此E ,F ,G ,H 四点共面,A 项正确;假设//FG 平面ADC 成立,因为FG ⊂平面ABC ,平面ABC ⋂平面DAC AC =,所以FG AC ,又G 是BC 的中点,所以F 是AB 的中点,与13AF AB =矛盾,B 项不正确;因为直线,FG HE 交于点P ,所以P FG ∈,P HE ∈,因为FG ⊂平面ABC ,P FG ∈,所以P ∈平面ABC ,同理P ∈平面ADC ,因为平面ABC ⋂平面ADC AC =,所以P AC ∈,所以P ,A ,C 三点共线,因此C 正确;在平面BCD 内作CO BD ⊥,垂足为O ,连接AO ,因为AC ⊥平面BCD ,BD ⊂平面BCD ,所以AC BD ⊥,又因为,,AC CO C AC CO =⊂ 平面ACO ,所以BD ⊥平面ACO ,又AO ⊂平面ACO ,所以BD AO ⊥,则AOC ∠为二面角A BD C --的平面角,即π3AOC ∠=,因为AC ⊥平面BCD ,CO ⊂平面BCD ,所以AC CO ⊥,所以1cos 2CO AO AOC AO =∠=,所以111116322222BCD ABD S CO BD AO BD S ==⨯==⨯= ,D 正确.故选:ACD.12.ABD【分析】根据鳖臑的几何特征,分别根据外接球半径求出边长判断A,B 选项,根据体积及表面积公式计算判断C,D 选项即可.【详解】在鳖臑-P ABC 中,四个面都为直角三角形,可知PC 的中点O 到四个顶点的距离都相等,所以点O 是鳖臑外接球的球心,由外接球的体积为36π,得外接球半径3R =,所以6PC =.设PA a=,BC b=,则2222PA AB BC PC++=,得2232a b +=,所以221111162323323P ABCa b V b a ab -+=⨯⨯⨯=≤⨯=,当且仅当4a b ==时,P ABC V-取得最大值163,A,B 选项正确,C 错误;此时PB AC ===所以鳖臑的表面积1122424822S =⨯⨯⨯+⨯⨯⨯=+D 选项正确.故选:ABD.13【分析】根据a →与b →垂直,可知0a b →→⋅=,根据空间向量的数量积运算可求出x 的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解: a →与b →垂直,∴0a b →→⋅=,则()()211130a b x ⋅=⨯-+-⨯+=,解得:1x =,∴()1,1,1b →=-,则()()()22,1,32,2,20,1,5a b +=-+-= ,∴222201526a b +=++= .故答案为:26.14.22【分析】作出直线1B B 和平面1CDB 所成角,由此求得所成角的正切值.【详解】,AC BC D =是AB 的中点,所以CD AB ⊥,在直三棱柱中,1BB CD ⊥,由于1AB BB BÇ=,所以CD ⊥平面11ABB A .过B 作1BE B D ⊥,垂足为E ,则CD BE ⊥,由于1CD B D D ⋂=,所以BD ⊥平面1CDB ,所以1BB E ∠是直线1B B 和平面1CDB 所成角,111122tan 2AB BD BB E BB BB ∠===.所以直线1B B 和平面1CDB 所成角的正切值为22.故答案为:2215.()3,1,1【分析】过点1A 作1A E ⊥平面11BCC B ,连接11,B E C E ,则11111//,//,//B E OC C E OB A E AO ,由此可求得点1A 的坐标.【详解】三棱柱111ABC A B C -中,侧面11BB C C 是边长为2菱形,∠160CBB =︒,1BC 交1B C 于点O ,AO ⊥侧面11BB C C ,且1AB C V 为等腰直角三角形,如图建立空间直角坐标系O xyz -,过1A 作1A E ⊥平面11BCC B ,垂足是E ,连接1B E ,1C E ,则11111//,//,//B E OC C E OB A E AO,∴点1A 的坐标为().故答案为:().16.60π【分析】当三棱锥A BCD -的体积最大时平面ABD ⊥平面BCD ,据此可求外接球的半径,从而可求表面积.【详解】当三棱锥A BCD -的体积最大时平面ABD ⊥平面BCD ,如图,取BD 的中点为H ,连接,AH CH ,则AH BD ⊥,设12,O O 分别为,ABD BCD 外接圆的圆心,O 为三棱锥A BCD -的外接球的球心,则1O 在AH 上,2O 在CH 上,且11223AO O H AH ==⨯=,且2O H BD ⊥,1OO ⊥平面ABD ,2OO ⊥平面BCD ,因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AH ⊂平面ABD ,故AH ⊥平面BCD ,故2//AH O O ,同理,1//CH OO ,故四边形12O OO H 为平行四边形,因为AH ⊥平面BCD ,2O H ⊂平面BCD ,故2AH O H ⊥,故四边形12O OO H 矩形,故213OO O H ==,而22362332CO =⨯⨯=,故外接球半径222231215R OO CO =+=+=,故外接球的表面积为41560ππ⨯=,故答案为:60π.【点睛】思路点睛:求几何体的外接球的半径,关键是确定球心的位置,一般通过过不同面的外接圆的圆心且垂直于该面的直线的交点来确定.17.(1)256;(2)240.【解析】(1)按照公式求出长方体和四棱锥的体积,求和即可;(2)先找到四棱锥侧面的高,然后可求出四棱锥的侧面积,继而求长方体的表面积,求和即可.【详解】连接11A C ,11B D 交于点O ,取11B C 的中点E ,连接PO ,OE ,PE(1)883192V =⨯⨯=长方体11111883643P A B C D V -=⨯⨯⨯=∴19264256V =+=总(2)∵3PO =,4OE =∴225PE PO OE =+=1485802S =⨯⨯⨯=四棱椎侧48388160S =⨯⨯+⨯=长方体80160240S =+=总【点睛】易错点睛:求棱锥的表面积时要注意高为面的高,而不是棱锥的高.18.(1)1010(2)31010【分析】(1)依题意可得AB CD ⊥,证明CD ⊥平面ABC ,即可得到CD AC ⊥,则ACB ∠为二面角A CD B --的平面角,再由锐角三角函数计算可得;(2)在平面ABC 中,作BE AC ⊥于E ,即可证明BE ⊥平面ACD ,即BE 为点B 到平面ACD 的距离,在Rt ABC △中,利用等面积法求出BE ,即可得解.【详解】(1)BD Q 是底面的直径,C 为底面上异于B ,D 的点,CD BC ∴⊥,又AB ⊥Q 平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥,又BC AB B =I ,BC ,AB ⊂平面ABC ,CD \^平面ABC ,AC ⊂ 平面ABC ,CD AC ∴⊥,ACB ∴∠为二面角A CD B --的平面角.因为圆柱的侧面展开图的面积为6π,底面直径2BD =,所以2π6πAB ⨯=,3AB =,在Rt BDC 中,30BDC ∠=︒,所以112BC BD ==,在Rt ABC △中,AC =,所以cos BC ACB AC ∠=,所以二面角A CD B --的余弦值为10;(2)在平面ABC 中,作BE AC ⊥于E ,由(1)知,CD ⊥平面ABC ,又BE ⊂平面ABC ,则CD BE ⊥,CD AC C ⋂= ,CD ,AC ⊂平面ACD ,所以BE ⊥平面ACD ,即BE 为点B 到平面ACD 的距离,在Rt ABC △中,AB BC BE AC ⨯=,即点B 到平面ACD 的距离为10.19.(1)证明见解析(2)存在点F ,证明见解析【分析】(1)利用线面平行的判断定理,判断//EO PB ,即可证明线面平行;(2)根据面面平行的判断定理,转化为判断线线平行,即可确定点F 的位置,即可证明.【详解】(1)因为,O E 分别是,BD PD 的中点,所以//EO PB ,且EO ⊄平面PBC ,PB ⊂平面PBC ,所以//EO 平面PBC ;(2)存在,点F 是PA 的中点,此时,连结,EF OF因为,O F 分别是,AC AP 的中点,所以//OF PC ,OF ⊄平面PBC ,PC ⊂平面PBC ,所以//OF 平面PBC ,由(1)可知,//EO 平面PBC ,且OF EO O = ,且,OF EO ⊂平面OEF ,所以平面//OEF 平面PBC ,所以PA 上存在中点F ,使平面//OEF 平面PBC .20.(1)证明见解析(2)13【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到平面QAD ⊥平面ABCD .(2)连接BO ,由//AD BC 可得BC 与QC 所成的角为异面直线QC 与AD 所成角,再求得3QB =,从而可得2cos BCBCQ QC ∠=,即可得到答案.【详解】(1)取AD 的中点为O ,连接,QO CO .因为QA QD =,OA OD =,则QO ⊥AD ,而2,5AD QA ==512QO =-=.在正方形ABCD 中,因为2AD =,故1DO =,故5CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥,因为OC AD O = ,,OC AD ⊂平面ABCD ,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)因为//AD BC ,连接BO ,则BC 与QC 所成的角为异面直线QC 与AD 所成角,所以BCQ ∠或它的补角为所求的角,由题意可得BO =3QB ==,所以QC QB =,所以12cos 3BC BCQ QC ∠==,即异面直线QC 与AD 所成角的余弦值为13.21.(1)证明见解析(2)30【分析】(1)根据直三棱柱111ABC A B C -的性质和各棱长可知,连接1BC ,利用线面垂直的判定定理可得AB ⊥平面11BB C C ,易知四边形11BCC B 为菱形,可得1B C ⊥平面1ABC ,由线面垂直的性质即可得11AC B C ⊥;(2)取11A C 的中点E ,连接1,B E CE ,可证明1ECB ∠是1CB 与平面11AA C C 所成角的平面角,在1Rt CEB 中,易知111,2B E CB ==,11sin 2ECB ∠=,即1CB 与平面11AA C C 所成的角的大小为30 .【详解】(1)连接1BC 与1B C 相交于点D,如下图所示在直棱柱111ABC A B C -中,1BB ⊥平面,ABC AB Ì平面ABC ,1B B AB ∴⊥,又1,AB BC BC BB B ⊥⋂=,1,BC BB ⊂平面11BB C C ,所以,AB ⊥平面11BB C C ,又1B C ⊂ 平面11BB C C ,1AB B C ∴⊥1BC CC = ,∴四边形11BCC B 为菱形,即11B C BC ⊥又1AB BC D ⋂= ,且1,AB BC ⊂平面1ABC ,1B C ∴⊥平面1ABC ,又1AC ⊂Q 平面1ABC ,11B C AC ∴⊥.(2)取11A C 的中点E ,连接1,B E CE .如下图所示;111111,A B B C A E EC == ,111B E AC∴⊥又1CC ⊥ 平面1111,A B C B E ⊂平面111A B C ,11,CC B E ∴⊥又1111A C CC C =Q I ,且111,A C CC ⊂平面11AA C C ,1B E ∴⊥平面11AA C C ,CE ∴是1CB 在面11AA C C 内的射影,1ECB ∠是1CB 与平面11AA C C 所成角的平面角.在1Rt CEB 中,易知111,2B E CB ==,1111sin 2B E ECB CB ∠∴==,130ECB ∠∴= 即1CB 与平面11AA C C 所成的角的大小为30.22.(1)证明见解析(2)【分析】(1)根据题意,利用线面垂直的判定定理即可求证;(2)在平面AEFD 中,过D 作DG ⊥EF 交EF 于G ,在平面DBF 中,过D 作DH ⊥BF 交BF 于H ,连接GH ,可得二面角D ﹣BF ﹣E 的平面角∠DHG ,计算∠DHG 的余弦值即可.【详解】(1)证明:在直角梯形ABCD 中,因为2ABC BAD π∠=∠=,故DA ⊥AB ,BC ⊥AB ,因为EF ∥BC ,故EF ⊥AB .所以在折叠后的几何体中,有EF ⊥AE ,EF ⊥BE ,而AE∩BE =E ,故EF ⊥平面ABE .(2)解:如图,在平面AEFD 中,过D 作DG ⊥EF 交EF 于G.在平面DBF 中,过D 作DH ⊥BF 交BF 于H ,连接GH .因为平面AEFD ⊥平面EBCF ,平面AEFD∩平面EBCF =EF ,DG ⊂平面AEFD ,故DG ⊥平面EBCF ,因为BF ⊂平面EBCF ,故DG ⊥BF ,而DG∩DH =D ,故BF ⊥平面DGH ,又GH ⊂平面DGH ,故GH ⊥BF ,所以∠DHG 为二面角D ﹣BF ﹣E 的平面角,在平面AEFD 中,因为AE ⊥EF ,DG ⊥EF ,故AE ∥DG ,又在直角梯形ABCD 中,EF ∥BC 且EF =12(BC+AD )=3,故EF ∥AD ,故四边形AEGD 为平行四边形,故DG =AE =2,GF =1,在Rt △BEF 中,2tan 3BFE ∠=,因为∠BFE 为三角形的内角,故sin BFE ∠1sin GH BFE =⨯∠=故2tan 2DHG ∠==,因为∠DHG 为三角形的内角,故14cos 14DHG ∠=.所以二面角D ﹣BF ﹣E 的平面角的余弦值为1414.。
2022-2023学年河南省洛阳市新安县第一高级中学高二上学期9月月考数学试题(解析版)

2022-2023学年河南省洛阳市新安县第一高级中学高二上学期9月月考数学试题一、单选题1.直线tan120x =︒的倾斜角是( ) A .60° B .90°C .120°D .不存在【答案】B【分析】根据直线的方程,利用斜率和倾斜角的关系求解.【详解】解:因为直线tan120x =︒= 所以直线的倾斜角是90°, 故选:B2.平面α的斜线l 与它在这个平面上射影l'的方向向量分别为()1,0,1a =,()0,1,1b =,则斜线l 与平面α所成的角为( ) A .30° B .45°C .60°D .90°【答案】C【分析】由题意结合线面角的概念可得a 与b 所成的角(或其补角)即为l 与α所成的角,由cos ,||||a ba b a b ⋅<>=⋅即可得解. 【详解】由题意a 与b 所成的角(或其补角)即为l 与α所成的角, 因为11cos ,,,[0,]2||||2a b a b a b a b π⋅<>===<>∈⋅⨯, 所以,60a b <>=,所以斜线l 与平面α所成的角为60°. 故选:C.【点睛】本题考查了利用空间向量求线面角,考查了运算求解能力,属于基础题. 3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-【答案】B【分析】利用空间向量的基本定理求解.【详解】因为12()23MN ON OM OB OC OA =-=+-,211322a b c =-++,所以23x =-,12y =,12z =.故选:B.4.下列条件使M 与A 、B 、C 一定共面的是( ) A .2OM OA OB OC =-+ B .0OM OA OB OC +++= C .121532OM OA OB OC =++D .0MA MB MC ++=【答案】D【分析】利用共面向量定理判断.【详解】A 选项:MA MB MC OA OM OB OM OC OM ++=-+-+-,30OA OB OC OM =++-≠,∴M ,A ,B ,C 四点不共面;B 选项:由0OM OA OB OC +++=,得()OM OA OB OC =-++,系数和不为1, ∴M ,A ,B ,C 四点不共面;C 选项:1211532++≠,∴M ,A ,B ,C 四点不共面;D 选项:0MA MB MC OA OM OB OM OC OM ++=-+-+-=, 即()13OM OA OB OC =++, 所以能使M 与A 、B 、C 一定共面.故选:D.5.直线l 1与l 2为两条不重合的直线,则下列命题: ①若l 1∥l 2,则斜率k 1=k 2; ②若斜率k 1=k 2,则l 1∥l 2; ③若倾斜角12αα=,则l 1∥l 2; ④若l 1∥l 2,则倾斜角α1=α2. 其中正确命题的个数是( ) A .1 B .2C .3D .4【答案】C【分析】①若l 1∥l 2,则分当斜率存在时、当斜率不存在时两种情况,判断命题①错误;②若斜率k 1=k 2,则l 1∥l 2,判断命题②正确;③若倾斜角12αα=,则l 1∥l 2,判断命题③正确;④若l 1∥l 2,则倾斜角12αα=,判断命题④正确即可得到答案.【详解】解:直线l 1与l 2为两条不重合的直线:①若l 1∥l 2,当斜率存在时,则斜率k 1=k 2,当斜率不存在时,两条直线都垂直与x 轴,所以命题①错误;②若斜率k 1=k 2,则l 1∥l 2,所以命题②正确; ③若倾斜角12αα=,则l 1∥l 2,所以命题③正确;④若l 1∥l 2,则倾斜角12αα=,所以命题④正确,所以正确的命题个数共3个. 故选:C.【点睛】本题考查两条直线的位置关系,是基础题.6.经过点()3,0B ,且与直线250x y +-=垂直的直线方程为( ) A .230x y -+= B .260x y +-= C .230x y --= D .230x y +-=【答案】C【分析】由于所求直线与直线250x y +-=垂直,从而可求出所求直线的斜率,再利用点斜式可求出直线方程【详解】因为直线250x y +-=的斜率为2-, 所以与直线250x y +-=垂直的直线的斜率为12,因为所求直线经过点()3,0B ,所以所求直线方程为1(3)2y x =-,即230x y --=,故选:C7.“1a =-”是“直线240x ay ++=与直线(1)20a x y -++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【分析】根据两直线平行可知:12120A B B A +=求出a ,代入验证,再由充分条件、必要条件的定义即可求解.【详解】解:当两直线平行,∴12(1)0a a ⨯--=,解得2a =或1a =-, 当2a =,两直线重合,舍去; 当1a =-时,两直线平行.所以“1a =-”是“直线240x ay ++=与直线(1)20a x y -++=平行”的充要条件. 故选:C8.下列说法正确的是( )A .斜率和倾斜角具有一一对应的关系B .直线的截距式方程适合于不过原点的所有直线C .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=D .()()()()121121y y x x x x y y --=--表示经过()11,P x y ,()22,Q x y 的直线方程 【答案】D【分析】根据倾斜角和斜率的定义,以及两点式和截距式的定义,逐个选项进行判断即可. 【详解】对于A ,倾斜角为90时,没有对应斜率,故A 错误;对于B ,直线的截距式方程适合于不过原点,不垂直于x 轴,不垂直于y 轴的所有直线,故B 错误; 对于C ,经过点()1,1且在x 轴和y 轴上截距都相等的直线,还包括y x =这条直线,故C 错误; 对于D ,根据两点式的定义,选项D 明显正确; 故选:D9.若直线l :20(0,0)ax by a b -+=>>过点(1,2)-,当21a b+取最小值时直线l 的斜率为A .2B .12C D .【答案】A【分析】将点带入直线可得212a b+=,利用均值不等式“1”的活用即可求解. 【详解】因为直线l 过点()1,2-,所以220a b --+=,即212a b+=,所以21212141()(4)(44222a b b a a b a b a b ++=+=++≥+= 当且仅当4b aa b=,即2a b =时取等号 所以斜率2ab=,故选 A 【点睛】本题考查均值不等式的应用,考查计算化简的能力,属基础题.10.已知{},,a b c 是空间的一个单位正交基底,向量23p a b c =++,{},,a b a b c +-是空间的另一个基底,向量p 在基底{},,a b a b c +-下的坐标为( ) A .31,,322⎛⎫- ⎪⎝⎭B .31,,322⎛⎫- ⎪⎝⎭C .13,,322⎛⎫- ⎪⎝⎭D .13,,322⎛⎫- ⎪⎝⎭【答案】A【分析】设()()p x a b y a b zc =++-+,根据空间向量基本定理建立关于,,x y z 的方程,解之即可得解.【详解】解:设()()p x a b y a b zc =++-+()()23c a b y a x c x y b z =++-+=++,所以123x y x y z +=⎧⎪-=⎨⎪=⎩,解得32123x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以向量p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选:A.11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论不正确的是( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是,42ππ⎡⎤⎢⎥⎣⎦D .直线1C P 与平面11AC D 所成角的正弦值的最大值为63【答案】C【分析】对于A ,根据线面垂直的判定定理,结合正方体的性质以及线面垂直的性质定理,可得答案;对于B ,根据三棱锥的体积公式,证明底面11AC D 上的高为定值,利用线面平行判定以及性质定理,可得答案;对于C ,根据异面直线夹角的定义,作图,结合等边三角形的性质,可得答案;对于D ,由题意,建立空间直角坐标系,求得直线的方向向量以及平面的法向量,根据公式,结合二次函数的性质,可得答案. 【详解】对于A ,连接11B D ,记1111AC B D E =,如下图:在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,111BB AC ∴⊥,在正方形1111D C B A 中,1111AC B D ⊥,1111BB B D B ⋂=,111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D ,111AC BD ∴⊥,同理可得:11DC BD ⊥,1111AC DC C ⋂=,111,A C DC ⊂平面11AC D ,1BD ∴⊥平面11AC D ,故A 正确;对于B ,在正方体1111ABCD A B C D -中,11//CB DA ,1DA ⊂平面11AC D ,1CB ⊄平面11AC D ,1//CB ∴平面11AC D ,则1P CB ∀∈,P 到平面11AC D 的距离相同,即三棱锥11P AC D -中底面11AC D 上的高为一个定值,故B 正确; 对于C ,连接1AB ,AC ,AP ,作图如下:在正方体1111ABCD A B C D -中,易知1ACB 为等边三角形,则1π3APC AB C ∠≥∠=, 11//DA CB ,APC ∴∠为异面直线1DA 与AP 所成角或者补角,则异面直线1DA 与AP 所成角的取值范围ππ,32⎡⎤⎢⎥⎣⎦,故C 错误; 对于D ,在正方体1111ABCD A B C D -中,以D 为原点,分别以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,如下图:设该正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,2,0B ,()0,2,0C ,()12,2,2B ,()10,2,2C ,设()1,01CP CB λλ=≤≤,且(),,P x y z ,则()12,0,2CB =,(),2,CP x y z =-,即2202x y z λλλ=⎧⎪-=⋅⎨⎪=⎩,可得()2,2,2P λλ,则()12,0,22C P λλ=-,由A 可知1BD ⊥平面11AC D ,则平面11AC D 的一个法向量为()12,2,2BD =--, 设直线CP 与平面11AC D 所成角为θ,则12221404444sin 88412432211143222BD CP BD CPλλθλλλλλ⋅-++-====⋅-+⋅⋅-+⎛⎫⋅-+⎪⎝⎭, 由[]0,1λ∈,则当12λ=时,sin θ取得最大值为63,故D 正确. 故选:C.12.如图,在三棱锥-P ABC 中,5AB AC PB PC ====,4PA =,6BC =,点M 在平面PBC 内,且15AM =,设异面直线AM 与BC 所成的角为α,则cos α的最大值为( )A 2B 3C .25D 5【答案】D【分析】设线段BC 的中点为D ,连接AD ,过点P 在平面PAD 内作PO AD ⊥,垂足为点O ,证明出PO ⊥平面ABC ,然后以点O 为坐标原点,CB 、AD 、OP 分别为x 、y 、z 轴的正方向建立空间直角坐标系,设BM mBP nBC =+,其中0m ≥,0n ≥且1m n +≤,求出363m n +-的最大值,利用空间向量法可求得cos α的最大值.【详解】设线段BC 的中点为D ,连接AD ,5AB AC ==,D 为BC 的中点,则AD BC ⊥,6BC =,则3BD CD ==,224AD AB BD ∴=-=,同理可得4PD =,PD BC ⊥,PDAD D =,BC ∴⊥平面PAD ,过点P 在平面PAD 内作PO AD ⊥,垂足为点O ,因为4PA PD AD ===,所以,PAD 为等边三角形,故O 为AD 的中点,BC ⊥平面PAD ,PO ⊂平面PAD ,则BC PO ⊥,PO AD ⊥,AD BC D =,PO ∴⊥平面ABC ,以点O 为坐标原点,CB 、AD 、OP 分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系O xyz -,因为PAD 是边长为4的等边三角形,O 为AD 的中点,则sin 6023OP PA == 则()0,2,0A -、()3,2,0B 、()3,2,0C -、(0,0,23P , 由于点M 在平面PBC 内,可设(()()3,2,236,0,036,2,23BM mBP nBC m n m n m m =+=--+-=---, 其中0m ≥,0n ≥且1m n +≤,从而()()()3,4,036,2,23336,42,23AM AB BM m n m m m n m m =+=+---=---, 因为15AM =()()222336421215m n m m --+-+=, 所以,()()22233616161423m n m m m --=-+-=--+, 故当12m =时,216161m m -+-有最大值3,即()23633m n +-≤, 故33633m n -+-363m n +-3 所以,()6336635cos cos ,615615AM BC m n AM BC AM BCα⋅--=<>==≤=⋅. 故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.二、填空题13.若()1,1,0a =,()1,0,2b =-,则与a b +反方向的单位向量是______.【答案】0,⎛ ⎝⎭【分析】由与a b +反方向的单位向量为||a ba b +-+代入可得结果. 【详解】∵(1,1,0)a =,(1,0,2)b =-∴(0,1,2)a b +=,2||01a b +=+=∴a b +反方向的单位向量为(0,1,2)(0,||a b a b +-=-=+故答案为:(0,. 14.有一光线从点()3,5A -射到x 轴以后,再反射到点()2,15B ,则这条光线的入射光线所在直线的方程为______. 【答案】4+70x y +=【分析】根据对称性可知:点()2,15B 关于x 轴对称的点在入射光线所在的直线上,求出点()2,15B 关于x 轴对称的点的坐标即可求解.【详解】因为点()2,15B 关于x 轴对称的点的坐标为()2,15B '-,由直线的对称性可知:这条光线的入射光线经过点()3,5A -和()2,15B '-, 所以条光线的入射光线所在直线的方程为51515(2)32y x ++=---, 也即4+70x y +=, 故答案为:4+70x y +=.15.若直线10ax y +-=与连接()()2,3,3,2A B -的线段总有公共点,则a 的取值范围是______.【答案】(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】画出图形,由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤,从而可求得答案【详解】得直线10ax y +-=的斜率为a -,且过定点()0,1P ,则由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤, 11,3PA PB k k ==-,1a -≥或13a -≤-,1a ∴≤-或13a ≥. 故答案为:(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭16.点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则1PA PC ⋅的取值范围是__.【答案】[﹣12,0]【分析】建立空间直角坐标系,设出点P 的坐标为(x ,y ,z ),则由题意可得0≤x ≤1,0≤y ≤1,z =1,计算PA •1PC =x 2﹣x ,利用二次函数的性质求得它的值域即可.【详解】解:以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以DD 1所在的直线为z 轴,建立空间直角坐标系,如图所示; 则点A (1,0,0),C 1(0,1,1),设点P 的坐标为(x ,y ,z ),由题意可得 0≤x ≤1,0≤y ≤1,z =1; ∴PA =(1﹣x ,﹣y ,﹣1),1PC =(﹣x ,1﹣y ,0),∴PA •1PC =-x (1﹣x )﹣y (1﹣y )+0=x 2﹣x +y 2﹣y 22111222x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭,由二次函数的性质可得,当x =y 12=时,PA •1PC 取得最小值为12-;当x =0或1,且y =0或1时,PA •1PC 取得最大值为0, 则PA •1PC 的取值范围是[12-,0].故答案为:[12-,0].【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目.三、解答题17.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用,,a b c 表示向量BM ; (2)求BM 的长.【答案】(1)111222b ac -+6【分析】利用空间向量基本定理用基底表示BM ;(2)在第一问的基础上运用空间向量数量积运算法则进行运算.【详解】(1)()1122BM BC CM AD CP AD CB BA AP =+=+=+++111111222222AD AD AB AP b a c =--+=-+ (2)22222111111111222444222BM b a c b a c a b c b a c ⎛⎫=-+=++-⋅+⋅-⋅ ⎪⎝⎭11111131021214422222=++-+⨯⨯⨯-⨯⨯⨯=,所以62BM =BM18.已知ABC 的三个顶点(,)A m n 、(2,1)B 、(2,3)C -. (1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,BC 边上高线AE 过原点,求点A 的坐标. 【答案】(1)240x y +-=(2)3,32A ⎛⎫ ⎪⎝⎭【分析】(1)利用两点式求得BC 边所在直线方程;(2)由题意可得2360-+=m n ,求出BC 边上高线AE 的方程,将点(,)A m n 代入AE 的方程,解关于,m n 的方程组即可求解.【详解】(1)由()2,1B 、()2,3C -可得311222BC k -==---, 所以BC 边所在直线方程为()1122y x -=--,即240x y +-=. (2)因为BC 边上中线AD 的方程为2360x y -+=, 所以点(,)A m n 在直线2360x y -+=上,可得2360-+=m n , 因为12BC k =-,所以BC 边上高线AE 的斜率2AE k =,因为BC 边上高线AE 过原点,所以AE 的方程为2y x =,可得2n m =, 由23602m n n m -+=⎧⎨=⎩可得:323m n ⎧=⎪⎨⎪=⎩,所以点A 的坐标为3,32⎛⎫⎪⎝⎭.19.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足AD ∥BC ,且12AB AD AA BD DC =====,(Ⅰ)求证:AB ⊥平面11ADD A ;(Ⅱ)求直线AB 与平面11B CD 所成角的正弦值. 【答案】(Ⅰ) 证明见解析;(Ⅱ)66【解析】(Ⅰ)证明1AA AB ⊥,根据222AB AD BD +=得到AB AD ⊥,得到证明.(Ⅱ) 如图所示,分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,平面11B CD 的法向量()1,1,2n =,()2,0,0AB =,计算向量夹角得到答案.【详解】(Ⅰ) 1AA ⊥平面ABCD ,AB ⊂平面ABCD ,故1AA AB ⊥.2AB AD ==,22BD =,故222AB AD BD +=,故AB AD ⊥.1AD AA A ⋂=,故AB ⊥平面11ADD A .(Ⅱ)如图所示:分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()12,0,2B ,()2,4,0C ,()10,2,2D .设平面11B CD 的法向量(),,n x y z =,则11100n B C n B D ⎧⋅=⎪⎨⋅=⎪⎩,即420220y z x y -=⎧⎨-+=⎩,取1x =得到()1,1,2n =,()2,0,0AB =,设直线AB 与平面11B CD 所成角为θ 故26sin cos ,626n AB n AB n ABθ⋅====⋅. 【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力. 20.已知直线l :5530ax y a --+=.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)若直线l 的横截距和纵截距绝对值相等,求a 的值. 【答案】(1)证明见解析 (2)1a =±或3【分析】(1)将直线l 的方程化为点斜式,求出直线所过定点,即可证明结论成立;(2)直线l 的横截距和纵截距绝对值相等,分三种情况讨论:①横截距和纵截距为0,②横截距和纵截距相反,③横截距和纵截距相等,分别求出此时a 的值即可. 【详解】(1)解:直线l 的方程可整理为:3155y a x ⎛⎫-=- ⎪⎝⎭, 则l 的斜率为a ,且过定点13,55A ⎛⎫⎪⎝⎭,∵13,55A ⎛⎫⎪⎝⎭在第一象限,所以不论a 取何值,直线l 总经过第一象限. (2)解:由(1)知,直线过定点1355A ⎛⎫⎪⎝⎭,,当直线过原点时,此时,3a =;当直线截距相反且不过原点时,1k =,此时1a =; 当直线截距相等且不过原点时,1k =-,此时1a =-; 综上所述,1a =±或3.21.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求点B 到平面P AM 的距离. 【答案】(1)2 (2)77【分析】(1)建立空间直角坐标系,设2BC a =,写出各点坐标,利用0PB AM ⋅=列出方程,求出22a =,从而得到BC 的长; (2)求出平面P AM 的法向量,利用点到平面的距离公式进行求解.【详解】(1)∵PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,∵PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a = 故22BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x =,可得()2,1,2m =,()0,1,0AB =,∴点B 到平面P AM 的距离177AB m d m⋅===22.如图①,在等腰梯形ABCD 中,//AB CD ,222AB AD CD ===.将ADC △沿AC 折起,使得AD BC ⊥,如图②.(1)求证:平面ADC ⊥平面ABC .(2)在线段BD 上是否存在点E ,使得二面角E AC D --的平面角的大小为π4?若存在,指出点E的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 在线段BD 上靠近点D 的三等分点处.【分析】(1)先证明AC BC ⊥,再由线面垂直的判定定理证明BC ⊥平面ADC ,由面面垂直的判定定理即可证明;(2)以C 为原点,以CA ,CB 所在的直线分别为x 轴、y 轴,建立空间直角坐标系,写出相关点的坐标,然后用坐标法求解即可【详解】(1)在等腰梯形ABCD 中,//AB CD ,222AB AD CD ===, ∴由平面几何知识易得π3ABC ∠=, ∴在ACB △中,222π21221cos 33AC =+-⨯⨯⨯=. 又222AC BC AB +=,∴AC BC ⊥. 在题图②中,∵AD BC ⊥,ADAC A =,∴BC ⊥平面ADC .又BC ⊂平面ABC ,∴平面ADC ⊥平面ABC .(2)在线段BD 上存在点E ,使得二面角E AC D --的平面角的大小为π4. 以C 为原点,以CA ,CB 所在的直线分别为x 轴、y 轴,建立空间直角坐标系,如图.由平面ADC ⊥平面ABC ,ADC △是顶角为2π3的等腰三角形,知z 轴与ADC △底边上的中线平行,又由(1)易得3AC =∴()0,0,0C ,()3,0,0A,()0,1,0B ,312D ⎫⎪⎪⎝⎭,∴()3,0,0CA =,112,23BD ⎛⎫⎪ ⎪⎝=⎭-. 令()01BE tBD t =≤≤,则,,12t E t ⎫⎝-⎪⎪⎭, ∴3,1,22t CE t =-⎛⎫⎪ ⎪⎝⎭. 设平面ACE 的一个法向量为(),,m x y z =,则00CA m CE m ⎧⋅=⎨⋅=⎩,即()0102t t y z =+-+=, ∴()0210x t y tz =⎧⎨-+=⎩,令y t =,则()21z t =-,∴()()0,,21m t t =-. 由(1)知,平面ADC 的一个法向量为()0,1,0n =.要使二面角E AC D --的平面角的大小为π4,则2πcos 4m n m n t ⋅=== 解得23t =或2t =(舍去). ∴在线段BD 上存在点E ,使得二面角E AC D --的平面角的大小为π4,此时点E 在线段BD 上靠近点D 的三等分点处.。
上海市2022高二数学上学期9月月考试题(含解析)

(2)若 ,求 与 .(用反三角函数表示)
【答案】(1) , ;(2) , .
【解析】
【分析】
(1)根据受力平衡可知三个力的和为零向量,根据 及力的夹角,即可求得 、 的大小。
(2)根据边长的比值,可知由三个力的大小构成的三角形为直角三角形。根据三角函数,即可表示出 与 的值。
【详解】因为关于 的方程 在区间 上有三个解,且函数 的最小正周期为 ,再由三角函数的对称性可知:方程 在区间 上的解的最小值与最大值分别为 和 ;
又它们的和为 ,所以中间的解为 ,
所以有 ,即 ,故 ,
又 ,所以 或 .
故答案为 或
【点睛】本题主要考查三角函数的图像与性质,熟记正弦型函数的性质即可,属于常考题型.
由 , , 三点共线可得
即 ,所以
又因为
所以
即
当 时, ,此时
当 与 (或 )点重合时,此时 ,此时
所以
由基本不等式 ,可得
当 或 时,
当x=1且y=1时,x+y=2,xy=1,则
即
【点睛】本题考查了平面向量基本定理、向量共线基本定理的综合应用,注意向量线性运算的转化,属于中档题。
二、选择题
13.已知函数 的图象是由函数 的图象经过如下变换得到:先将 的图象向右平移 个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数 的图象的一条对称轴方程为()
综上, 实数 的取值范围为 .
【点睛】本题考查了分段函数的图像与性质的简单应用,注意端点处的值是否可以取到,属于中档题.
11.设 ,若关于 的方程 在区间 上有三个解,且它们的和为 ,则 ________
【答案】 或
高二数学9月月考试卷

高二数学9月月考试卷一、填空题(本大题满分36分,每小题3分)1、2332122lim =++∞→nn an n 则a= . 2、循环小数..134.0化成分数为__________. 3、线性方程组⎪⎩⎪⎨⎧=-++=-+-=-++015225072306z y x z y x z y x 的增广矩阵是 .4、非零向量()()1122,,,a x y b x y ==,则“1122x y x y =”是“a ∥b ”的 条件. 5、已知:A (2,5)B (3,0),P 是直线AB 上的一点,且AP = 23-AB ,则点P 的坐标为 6、若(1,2)a =-,(3,1)b =-,0c 是与b a -平行的单位向量,则0c = .7、已知(3,2),(1,0)a b =-=-,向量a b λ+与2a b -垂直,则实数的值为 .8、1131lim 33n n n n n a a ++→∞+=+如果,则实数a 的取值范围是_____ 9、对任意的实数y x ,,矩阵运算⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛x y y x d c b a 都成立,则=⎪⎪⎭⎫ ⎝⎛d c b a . 10、无穷等比数列{}n a 中,公比为q 且所有项的和为4,则1a 的范围是_________11、数列{a n }的通项公式为(35)n n a x =-,若lim n n a →∞存在,则x 的取值范围是 12、有一边长为1的正方形ABCD ,设c AC b BC a AB ===,,,则=++||c b a二、选择题(本大题满分12分,每小题3分)13、等边ABC ∆中,向量,AB BC 的夹角为 ( )A .6π B .3π C .2π D .23π 14、∞→n lim a n =A, ∞→n lim b n =B 是∞→n lim (a n +b n )=A+B 的 ( ) (A)充分必要条件 (B)充分且不必要条件(C)必要且不充分条件 (D)既不充分又不必要要件λ15、设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 平行向量,则k 的值是 ( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数16、给出下列命题中正确的命题个数为 ( )(1)若0||=a ,则0=a ; (2)若0a b ⋅=,则0a =或0b = ;(3)若a b ka kb k c d kc kd ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭; (4)若a b ⊥,则a b a b +=-;(5)矩阵A ,B 满足AB=BA 。
山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题

山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题一、单选题1.以下事件是随机事件的是( )A .标准大气压下,水加热到100C ︒,必会沸腾B .走到十字路口,遇到红灯C .长和宽分别为,a b 的矩形,其面积为abD .实系数一元一次方程必有一实根2.抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 A .至多两件次品 B .至多一件次品 C .至多两件正品D .至少两件正品3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )A .12B .14C .13D .164.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为( )A .13B .12C .23D .565.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===u u u r u u u r u u u u r r r r ,则1A B =u u u r( )A .a b c +-r r rB .a b c -+r r rC .a b c -++r r rD .a b c -+-r r r6.已知空间向量0a b c ++=r r r r,2a =r ,3b =r ,4c =r ,则cos ,a b =r r ( ) A .12B .13C .12-D .147.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( ) A .5960B .35C .12D .1608.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为( ) A .4.33%B .3.33%C .3.44%D .4.44%二、多选题9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为( ) A .(2,1,3) B .(2,1,3)-- C .(4,2,6)-D .(4,2,6)-10.下列各组事件中,是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C .播种100粒菜籽,发芽90粒与发芽80粒D .检验某种产品,合格率高于70%与合格率低于70%11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-u u u ru u ur u u u ru u u r(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n = C .12m =-,1n =- D .32m =,1n =三、填空题12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=.14.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA u u u r ,DC u u ur ,1DD u u u u r 方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =u u u u r,若点P 为线段AB 的中点,则P 到平面11A BC 距离为.四、解答题15.(1)已知2,3a b ==r r ,且a b ⊥r r求2a b a b +⋅r r r r ()(-) (2)已知a b a b +=-r r r r ,求a b ⋅r r16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局. (1)求再赛2局结束这次比赛的概率; (2)求甲获得这次比赛胜利的概率.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB AF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.。
山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

济宁市高二年级第一学期九月模块测试数学试题(答案在最后)注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码. 2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下事件是随机事件的是()A.标准大气压下,水加热到100C ,必会沸腾B.走到十字路口,遇到红灯C.长和宽分别为,a b的矩形,其面积为abD.实系数一元一次方程必有一实根【答案】B【解析】【分析】根据随机事件的概念判断即可【详解】解:A.标准大气压下,水加热到100℃必会沸腾,是必然事件;故本选项不符合题意;B.走到十字路口,遇到红灯,是随机事件;故本选项符合题意;C.长和宽分别为,a b的矩形,其面积为ab是必然事件;故本选项不符合题意;D.实系数一元一次方程必有一实根,是必然事件.故本选项不符合题意.故选:B.2.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品【答案】B【解析】【详解】试题分析:事件A 不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A 的对立事件为至多一件次品.故B 正确.考点:对立事件.3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.12B.14C.13D.16【答案】B 【解析】【分析】列举出所有的可能事件,结合古典概型概率计算公式,计算出所求概率.【详解】两名同学分3本不同的书,记为,,a b c ,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.故选:B4.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为()A.13B.12C.23D.56【答案】C 【解析】【分析】由互斥事件的概率可知(()(1())P A B P A P B +=+-,从而得解.【详解】由已知得:1()3P A =,2()3P B =,事件B 表示“小于5的点数出现”,则事件B 表示“出现5点或6点”故事件A 与事件B 互斥,122()()(1())(1)333P A B P A P B ∴+=+-=+-=故选:C5.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===,则1A B = ()A.a b c+-r r r B.a b c-+r r r C.a b c -++D.a b c-+- 【答案】D 【解析】【分析】由空间向量线性运算法则即可求解.【详解】()11111A A B B a b B A B c CC C CB =+=-+=-+--+.故选:D .6.已知空间向量0a b c ++=,2a = ,3b = ,4c = ,则cos ,a b = ()A.12B.13C.12-D.14【答案】D 【解析】【分析】设,,AB a BC b CA c ===,在ABC V 中由余弦定理求解.【详解】空间向量0a b c ++= ,2a = ,3b = ,4c =,则,,a b c三向量可能构成三角形的三边.如图,设,,AB a BC b CA c === 2a = ,则ABC V 中,||2,||3,||4AB BC CA === 2a =,222||||cos ,cos 2AB BC CA a b ABC AB BC+-∴=-∠=-⨯⨯ 491612234+-=-=⨯⨯.故选:D7.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为()A.5960 B.35 C.12 D.160【答案】B【解析】【分析】这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,由此能求出这段时间内至少1人回老家过节的概率.【详解】端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,∴这段时间内至少1人回老家过节的概率为:1113 11113455 p⎛⎫⎛⎫⎛⎫=----=⎪⎪⎪⎝⎭⎝⎭⎝⎭.故选:B.8.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为()A.4.33%B.3.33%C.3.44%D.4.44%【答案】B【解析】【分析】推理出回答第一个问题的150人中大约有一半人,即75人回答了“是”,故回答服用过兴奋剂的人有5人,从而得到答案.【详解】因为抛硬币出现正面朝上的概率为12,大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,共有80个“是”的回答,故回答服用过兴奋剂的人有5人,因此我们估计这群人中,服用过兴奋剂的百分率大约为5150≈3.33%.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为()A.(2,1,3)B.(2,1,3)--C.(4,2,6)-D.(4,2,6)-【答案】BC 【解析】【分析】由已知可得//AB C D '',所以它们的方向向量共线,利用向量共线的坐标关系,即可判断各个选项.【详解】由已知可得//AB C D '',故它们的方向向量共线,对于B 选项,(2,1,3)(2,1,3)--=--,满足题意;对于C 选项,(4,2,6)2(2,1,3)-=-,满足题意;由于A 、D 选项不满足题意.故选:BC.10.下列各组事件中,是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%【答案】ACD 【解析】【分析】根据互斥事件的定义,两个事件不会同时发生,命中环数大于8与命中环数小于6,发芽90粒与发芽80粒,合格率高于0070与合格率为0070均为互斥事件,而平均分数不低于90分与平均分数不高于90分,当平均分为90分时可同时发生,即得解.【详解】根据互斥事件的定义,两个事件不会同时发生,对于A ,一个射手进行一次射击,命中环数大于8与命中环数小于6,为互斥事件;对于B ,统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分当平均分为90分时可同时发生,不为互斥事件;对于C ,播种菜籽100粒,发芽90粒与发芽80粒,为互斥事件;对于D ,检查某种产品,合格率高于0070与合格率为0070,为互斥事件;故选:ACD.11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为()A.1m =,12n =- B.12m =,1n = C.12m =-,1n =- D.32m =,1n =【答案】CD 【解析】【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++ ,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=,而12OP OA mOB nOC =+- ,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能;当32m =,1n =时,12m n -=,所以选项D 可能,故选:CD第Ⅱ卷(非选择题)三.填空题:本题共3小题,每小题5分,共15分.12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【答案】34【解析】【详解】从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P =34.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=______.【答案】0.9##910【解析】【分析】由互斥事件与对立事件的相关公式求解【详解】由题意得()1()0.4P B P B =-=,则()()()()0.9P A P P A B C B P C ⋃⋃=++=.故答案为:0.914.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA ,DC ,1DD方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =______,若点P 为线段AB 的中点,则P 到平面11A BC 距离为______.【答案】①.(1,2,2)-②.6【解析】【分析】第一空,根据向量的坐标运算可得答案;第二空,求出平面11A BC 的法向量,利用向量法求点到平面的距离即可得解.【详解】如图,建立空间直角坐标系,因为122AB AA AD ===,则(1,0,0)A ,1(0,2,2)C ,1(1,0,2)A ,(1,2,0)B ,(1,1,0)P ,所以1(1,2,2)AC =- ,11(1,2,0)A C =- ,1(0,2,2)A B =- ,(0,1,0)PB =,设平面11A BC 的法向量为(,,)n x y z = ,则11100A B n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x y -=⎧⎨-+=⎩,令1y =,则2,1x z ==,故(2,1,1)n =,则P 到平面11A BC距离为66n PB d n⋅== .故答案为:(1,2,2)-;66.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)已知2,3a b == ,且a b ⊥ 求2a b a b +⋅()(-)(2)已知a b a b +=- ,求a b⋅ 【答案】(1)1-(2)0【解析】【分析】(1)由已知,利用向量数量积运算,结合向量垂直的向量表示即可求解;(2)由a b a b +=-,两边平方,展开运算即可.【详解】(1)因为2,3a b == ,且a b ⊥ ,所以22222222031a b a b a a b b +⋅+⋅-=⨯+-=- ()(-)=.(2)因为a b a b +=- ,则22a b a b +=- ,所以222222a a b b a a b b +⋅+=-⋅+ ,化简得22a b a b ⋅=-⋅ ,所以0a b ⋅=.16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)3,2,2(2)(i)见解析(ii)5 21【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=5 21.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=5 21.点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【答案】(1)0.52(2)0.648【解析】【分析】(1)再赛2局结束这次比赛分“第三、四局甲胜”与“第三、四局乙胜”两类情况,根据根据互斥事件的概率和及独立事件同时发生的概率求解可得;(2)由题意,甲获得这次比赛胜利只需后续比赛中甲先胜两局即可,根据互斥事件的概率和及独立事件同时发生的概率求解即可.【小问1详解】用i A 表示事件“第i 局甲胜”,j B 表示事件“第j 局乙胜”(,3,4,5i j =),设“再赛2局结束这次比赛”为事件A ,则3434A A A B B =+,由于各局比赛结果相互独立,且事件34A A 与事件34B B 互斥.所以()()()()()()()()343434343434P A P A A B B P A A P B B P A P A P B P B =+=+=+0.60.60.40.40.52=⨯+⨯=.故再赛2局结束这次比赛的概率为0.52.【小问2详解】记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜一局,故甲成为胜方当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =++,由于各局比赛结果相互独立,且事件34A A ,345B A A ,345A B A 两两互斥,所以()0.60.60.40.60.60.60.40.60.648P B =⨯+⨯⨯+⨯⨯=.故甲获得这次比赛胜利的概率为0.648.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,ABAF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.【答案】(1)见解析(2)见解析【解析】【详解】(1)建立如图所示的空间直角坐标系,设AC∩BD =N ,连结NE.则N 22,,022⎛⎫ ⎪ ⎪⎝⎭,E(0,0,1),220),M 22,,122⎛⎫ ⎪ ⎪⎝⎭.∴NE =22,,122⎛⎫-- ⎪ ⎪⎝⎭,AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭.∴NE =AM 且NE 与AM 不共线.∴NE ∥AM.∵NE ⊂平面BDE ,AM ⊄平面BDE ,∴AM ∥平面BDE.(2)由(1)知AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭,∵2,0,0),22,1),∴DF =(02,1),∴AM ·DF=0,∴AM ⊥DF.同理AM ⊥BF.又DF∩BF =F ,∴AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.【答案】(1)0(2)存在,12AP =【解析】【分析】(1)建立空间直角坐标系,设AB a =,写出点的坐标,求出110B E AD ⋅= ,得到异面直线夹角余弦值为0;(2)设()00,0,P z ,求出平面1B AE 的一个法向量1,,2a n a ⎛⎫=-- ⎪⎝⎭,根据0DP n ⋅= 得到方程,求出12z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.【小问1详解】以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z轴,建立空间直角坐标系,设AB a =,则()()()11,0,1,,1,0,0,0,0,0,1,12a B a E A D ⎛⎫ ⎪⎝⎭,故()()()()11,1,0,0,1,1,1,0,1,10,0,00,1,122a a B E a AD ⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎝⎭⎝⎭ ,则()11,1,10,1,11102a B E AD ⎛⎫⋅=--⋅=-= ⎪⎝⎭,故直线1B E 与直线1AD 所成的角的余弦值为0;【小问2详解】存在满足要求的点P ,理由如下:设棱1AA 上存在点()00,0,P z ,使得//DP 平面1B AE ,0,1,0,则()00,1,DP z =- ,设平面1B AE 的一个法向量为(),,n x y z =,则()()()1,,,0,10,,,1,0022n AB x y z a ax z a a n AE x y z x y ⎧⋅=⋅=+=⎪⎨⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎩,取1x =得,2a y z a =-=-,故1,,2a n a ⎛⎫=-- ⎪⎝⎭,要使//DP 平面1B AE ,则n DP ⊥,即()00,1,1,,02a DP n z a ⎛⎫⋅=-⋅--= ⎪⎝⎭ ,所以002a az -=,解得012z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.。
吉林省四校联考2024-2025学年高二上学期9月月考数学试卷(含解析)

2024~2025(上)高二年级第一次月考数 学全卷满分150分,考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B .C .D .2.若与是两条不同的直线,则“”是“”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件3.已知直线l 的一个方向向量,且直线l 经过和两点,则( )A .B .C .1D .24.已知空间向量,,则在上的投影向量为( )A .B .C .D .5.下列关于空间向量的说法中错误的是( )A .平行于同一个平面的向量叫做共面向量B .空间任意三个向量都可以构成空间的一个基底C .直线可以由其上一点和它的方向向量确定D .任意两个空间向量都可以通过平移转化为同一平面内的向量6.在平行六面体中,点P 是线段BD 上的一点,且,设,,,则( )A .B .C .D .7.如图,直线交x 轴于点A ,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰好落在直线上.若点N 在第二象限内,则的值为( )20x +-=π6π4π35π61:10l x my --=2:(2)310l m x y --+=1m =-12//l l (3,2,1)m =-(,2,1)A a -(2,3,)B b -a b +=2-1-(2,3,1)a =(1,2,2)b =-- a b 2b 2b - 23b 23b- 1111ABCD A B C D -3PD PB =1A A a =11A B b = 11A D c = 1PC =1324a b c++ 113444a b c-+1344a b c-++ 131444a b c-+ 334y x =+334y x =+tan AON ∠A.B .C .D .8.在棱长为2的正方体中,EF 是正方体外接球的直径,点P 是正方体表面上的一点,则的取值范围是( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.给出下列命题,其中正确的命题是()A .若空间向量,满足,则B .空间任意两个单位向量必相等C .在正方体中,必有D .空间向量10.已知两条平行直线和,则实数m 的值可能为( )A .0B .1C .2D .11.如图,在棱长为2的正方体中,E 为的中点,F 为的中点,如图所示建立空间直角坐标系,则下列说法正确的有()A .171615181111ABCD A B C D -1111ABCD A B C D -1111ABCD A B C D -PE PF ⋅[2,0]-[1,0]-[0,1][0,2]a b a b =a b= 1111ABCD A B C D -11BD B D =(1,1,0)a =1:10l x y -+=2:0l x y m -+=1-1111ABCD A B C D -1BB 11A D 1DB =B .向量与C .平面AEF 的一个法向量是D .点D 到平面AEF三、填空题:本题共3小题,每小题5分,共15分.12.直线,的斜率,是关于k 的方程的两根,若,则实数__________.13.在通用技术课程上,老师教大家利用现有工具研究动态问题.如图,老师事先给学生准备了一张坐标纸及一个三角板,三角板的三个顶点记为A 、B 、C ,,,.现移动边AC ,使得点A 、C 分别在x 轴、y 轴的正半轴上运动,则(点O 为坐标原点)的最大值为__________.14.已知空间向量,,则最大值为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知直线,,.(1)若这三条直线交于一点,求实数m 的值;(2)若三条直线能构成三角形,求实数m 满足的条件.16.(本小题满分15分)如图,在直三棱柱中,,,,,点d 是棱AB 的中点AE 1AC (4,1,2)-1l 2l 1k 2k 2280k k n ++=12l l ⊥n =||2AC =||AB =||4BC =OB (1,1,1)a =(0,,1)(01)b y y =≤≤ cos ,a b 1:10l x my ++=2:240l x y --=3:310l x y +-=111ABC A B C -AC BC ⊥1AC =2BC =13CC =(1)证明:平面;(2)求直线与平面所成角的正弦值.17.(本小题满分15分)已知直线.(1)m 为何值时,点到直线l 的距离最大,并求出最大值;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,求(O 为坐标原点)面积的最小值及此时直线l 的方程.18.(本小题满分17分)如图,在棱长为3的正方体中,点E 是棱上的一点,且,点F 是棱上的一点,且.(1)求异面直线与CF 所成角的余弦值;(2)求直线BD 到平面CEF 的距离.19.(本小题满分17分)如图,在四棱锥中,四边形ABCD 是边长为3的正方形,平面ABCD ,,点E 是棱PB 的中点,点F 是棱PC 上的一点,且.(1)证明:平面平面PBC ;(2)求平面AEF 和平面AFC夹角的大小.1//AC 1B CD 1A B 1B CD :(21)(3)70l m x m y m +-++-=(3,4)Q AOB △1111ABCD A B C D -11A B 112A E EB =11A D 112A F FD =1AD P ABCD -PA⊥PC =2PF FC =AEC ⊥第一次月考·数学参考答案、提示及评分细则1.D ,其倾斜角为.故选D .2.C 若,则,解得或,则“”是“”的充分不必要条件,故选C .3.A 因为,所以,解得,,所以,故选A .4.D ,故在上的投影向量为.故选D .5.B 平行于平面的向量,可平移至一个平行于的平面,故为共面向量,A 正确;空间任意三个向量都共面时,则不能构成空间的基底,B 错误;直线的方向向量是直线任取一点,向其两个方向的任意方向作出一个向量即可得,故直线上一点和方向向量确定直线,C 正确;由向量的位置的任意性,将空间两个向量某一端点移至重合位置,它们即可构成一个平面,即可为同一平面的向量,D 正确.故选B .6.C .故选C .7.A 设直线与y 轴的交点为B ,过O 作于C ,过N 作于D .因为N 在直线上且在第二象限内,设,则,.又,,即,,所以.在中,由三角形的面积公式得,,所以.y x = ∴5π612//l l 1(3)(2)()m m ⨯-=--1m =-3m =1m =-12//l l (2,1,1)AB a b =--+ 211321a b --+==-12a =-32b =-2a b +=-2222(2,3,1)(1,2,2)26221(2)(2)93a b b⋅⋅----===-+-+-a b ()223a b b b b⋅⋅=-αα11111111111111111114PC A C A P A B A D A B BP A B A D A B A A B D =-=+--=+---()11111111111111111311344444A B A D A B A A A D A B A D A B A A a b c =+----=+-=-++OC AB ⊥ND OA ⊥334y x =+3,34N x x ⎛⎫+ ⎪⎝⎭3||34DN x =+||OD x =-(4,0)A -(0,3)B ||4OA =||3OB =||5AB =AOB △11||||||||22OB OA AB OC =12||5OC =在中,,,所以,即.在中,,即,解得,.因为点N 在第二象限内,所以,所以,,所以,故选A .8.A 记正方体的外接球的球心为O ,易得,且,所以,故选A .9.CD两个向量相等需要方向相同,模长相等,所以不能得到,A 错误;空间任意两个单位向量的模长均为1,但是方向不一定相同,故B 错误,正方体中,,的方向相同,长度相等,故,故C 正确;空间向量,故D 正确.故选CD .10.AC 直线和平行,则,解得且,故0和2符合要求.故选AC .11.BCD 对于A ,正方体中,,故A 错误;对于B ,,,故向量夹角余弦值为B 正确;Rt NOM △||||OM ON =45MNO ∠=︒12||5sin 45||||OC ON ON ︒==||ON =Rt NDO △222||||||ND DO ON +=22233()4x x ⎛⎫++-= ⎪⎝⎭18425x =-21225x =8425x =-12||25ND =84||25OD =||1tan ||7ND AON OD ∠==1111ABCD A B C D -OE ==PO ⎡∈⎣()()()()2223[2,0]PE PF PO OE PO OF PO OE PO OE PO OE PO ⋅=+⋅+=+⋅-=-=-∈- a b =a b = 1111ABCD A B C D -BD 11B D11BD B D = (1,1,0)a ==1:10l x y -+=2:0l x y m -+=1m ≠<13m -<<1m ≠1DB =(0,2,1)AE = 1(2,2,2)AC =- 11cos AE AC AE AC θ⋅==对于C ,,,,.故是平面AEF 的一个法向量,故C 正确;对于D ,,则点D 到平面AEF 的距离为D 正确.故选BCD .12. 因为,而且斜率存在,所以,又,是关于k 的方程的两根,,解得.13.由已知,,.如图,取AC 的中点E .因为为直角三角形,故.由于为直角三角形,故,显然,当且仅当O 、B 、E三点共线时等号成立,故的最大值为.14,当时,,由,所以,当且仅当,即时等号成立,故,(0,2,1)AE = (1,0,2)AF =-(0,2,1)(4,1,2)0⋅-=(1,0,2)(4,1,2)0-⋅-=(4,1,2)-(2,0,0)DA = DA n d n ⋅=== 2-12l l ⊥121k k ⋅=-1k 2k 2280k k n ++=1212nk k ⋅==-2n =-||2AC =||AB =||4BC =OAC △1||||12OE AC ==ABC △||BE ==||||||OB OE BE ≤+OB 1cos ,b a b a a b ⋅== 10y ≥>cos ,a b a b a b ⋅=====0y >12y y +≥1y y=1y =cos ,a b =≤=当时,,故的最大值为.15.解:(1)由解得代入的方程,得.(2)当三条直线相交于一点或其中两直线平行时,三条直线不能构成三角形.①联立解得代入,得;②当与平行时,,当与平行时,.综上所述,当且且时,三条直线能构成三角形.(且写成或扣1分).16.解:如图,以C 为坐标原点,CA ,CB ,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,,,,所以,,,设平面的一个法向量为,则即令,解得,,所以平面的一个法向量为.(1)证明:,因为,0y =cos ,a b =cos ,a b 240,310,x y x y --=⎧⎨+-=⎩1,2,x y =⎧⎨=-⎩1l 1m =240,310,x y x y --=⎧⎨+-=⎩1,2,x y =⎧⎨=-⎩10x my ++=1m =1:10l x my ++=2:240l x y --=12m =-1:10l x my ++=3:310l x y +-=13m =1m ≠13m ≠12m ≠-1CC (1,0,0)A (0,2,0)B (0,0,0)C 1(0,0,3)C 1(0,2,3)B 1(1,0,3)A 1,1,02D ⎛⎫ ⎪⎝⎭1,1,02CD ⎛⎫= ⎪⎝⎭1(0,2,3)CB =1B CD (,,)n x y z = 10,0,n CD n CB ⎧⋅=⎪⎨⋅=⎪⎩ 10,2230,x y y z ⎧+=⎪⎨⎪+=⎩1x =12y =-13z =1B CD 111,,23n ⎛⎫=- ⎪⎝⎭ 1(1,0,3)AC =- 10AC n ⋅=平面,所以平面;(2)解:因为,所以,所以直线与平面.17.解:(1)已知直线,整理得,由故直线l 过定点,点到直线l 的距离最大,可知点Q 与定点的连线的距离就是所求最大值,,的斜率为,可得,解得;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,则可设直线l 的方程为,,则,,.(当且仅当时,取“=”),故面积的最小值为12,此时直线l 的方程为.18.解:(1)如图所示,以D 为坐标原点,DA ,DC ,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,,所以,,所以,所以异面直线与CF1AC ⊂/1B CD 1//AC 1B CD 1(1,2,3)A B =-- 111cos ,A B n A B n A B n⋅==1A B 1B CD :(21)(3)70l m x m y m +-++-=(21)370x y m x y -++--=210,2,3703,x y x x y y ⎧-+==-⎧⇒⎨⎨--==-⎩⎩(2,3)--(3,4)Q (2,3)P --=437325PQ k +==+ (21)(3)70m x m y m ∴+-++-=57-52173m m +-=+2219m =-3(2)y k x +=+0k <32,0A k ⎛⎫-⎪⎝⎭(0,23)B k -13131912|23|2(32)12(4)(1212)122222AOB S k k k kk k ⎡⎤⎛⎫⎛⎫=-⋅-=--=+-+-≥⨯+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△32k =-AOB △32120x y ++=1DD (3,0,0)A 1(0,0,3)D (1,0,3)F (0,3,0)C 1(3,0,3)AD =- (1,3,3)CF =-111cos ,AD CF AD CF AD CF⋅===1AD(2)因为,,,所以,,所以,所以,又平面CEF ,平面CEF ,所以平面CEF ,所以点D 到平面CEF 的距离即为直线BD 到平面CEF 的距离.设平面CEF 的一个法向量为,则即令,解得,,所以平面CEF 的一个法向量为.因为,所以点D 到平面CEF 的距离,即直线BD 到平面CEF 的距离为19.(1)证明:如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,设,则,解得,即.则,,,设平面AEC 的一个法向量为,则即令,解得,,所以平面AEC 的一个法向量为.因为,,设平面PBC 的一个法向量为,(0,0,0)D (3,2,3)E (3,3,0)B (2,2,0)FE = (3,3,0)DB =23FE DB =//FE DB DB ⊂/EF ⊂//DB (,,)n x y z = 0,0,n FE n CF ⎧⋅=⎪⎨⋅=⎪⎩220,330,x y x y z +=⎧⎨-+=⎩1x =1y =-43z =-41,1,3n ⎛⎫=-- ⎪⎝⎭ (0,3,0)DC =DC n d n ⋅==(0,0,0)A (3,0,0)B (3,3,0)C (0,0,)(0)P t t >PC ==3t =(0,0,3)P 33,0,22E ⎛⎫ ⎪⎝⎭33,0,22AE ⎛⎫= ⎪⎝⎭(3,3,0)AC = (,,)n x y z = 0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩ 330,22330,x z x y ⎧+=⎪⎨⎪+=⎩1x =1y =-1z =-(1,1,1)n =--(0,3,0)BC = (3,0,3)BP =- ()111,,m x y z =所以即令,解得,,所以平面PBC 的一个法向量为,又,所以平面平面PBC ;(2)解:,所以.设平面EAF 的一个法向量为,所以即令,解得,,所以平面EAF 的一个法向量为.设平面CAF 的一个法向量为,则即令,解得,,所以平面CAF 的一个法向量为.因为,所以平面AEF 和平面AFC夹角的大小为.0,0,m BC m BP ⎧⋅=⎪⎨⋅=⎪⎩ 11130,330,y x z =⎧⎨-+=⎩11x =10y =11z =(1,0,1)m = 0m n ⋅=AEC ⊥11(3,3,3)(1,1,1)33CF CP ==⨯--=-- (2,2,1)AF AC CF =+= ()1222,,n x y z = 110,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ 22222330,22220,x z x y z ⎧+=⎪⎨⎪++=⎩21x =212y =-21z =-111,,12n ⎛⎫=-- ⎪⎝⎭()2333,,n x y z =220,0,n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩ 33333330,220,x y x y z +=⎧⎨++=⎩31x =31y =-30z =2(1,1,0)n =-121212cos ,n n n n n n ⋅=== π4。
北京市首都师范大学附属中学2024-2025学年高二上学期9月月考数学试题

北京市首都师范大学附属中学2024-2025学年高二上学期9月月考数学试题一、单选题1.已知i 1i z=-,则z = ( )A .0B .1C D .22.如图,在平行六面体1111ABCD A B C D -中,1AB AD AA --=u u u r u u u r u u u r( )A .1AC uuu rB .1AC u u u rC .1D B u u u u rD .1DB u u u u r3.已知()2,3,1A --,()6,5,3B -,则AB u u u r的坐标为( ) A .()8,8,4--B .()8,8,4-C .()8,8,4-D .()8,8,4--4.如图,已知正方体ABCD A B C D -''''的棱长为1,AA DB ''⋅=u u u r u u u u r( )A.1B C D .1-5.设1n u r ,2n u u r分别是平面α,β的法向量,其中()11,,2n y =-u r ,()2,2,1n x =-u u r ,若αβ∥,则x y +=( )A .92-B .72- C .3 D .726.已知直线1l 的方向向量为()0,0,1u =r,直线2l 的方向向量为()1v =-r ,则直线1l 与2l 所成角的度数为( )A .30︒B .60︒C .120︒D .150︒7.已知n r 为平面α的一个法向量,a r 为直线l 的一个方向向量,则“a n ⊥r r”是“//l α”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知点,,,O A B C 为空间不共面的四点,且向量a OA OB OC =++r u u u r u u u r u u u r ,向量b OA OB OC =+-r u u u r u u u r u u u r,则与,a b r r不能构成空间基底的向量是( )A .OA u u u rB .OB u u u rC .OC u u u rD .OA u u u r 或OB u u u r9.在空间直角坐标系Oxyz 中,点()2,1,1A 在坐标平面Oxz 内的射影为点B ,且关于y 轴的对称点为点C ,则B ,C 两点间的距离为( )AB .C .D 10.在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则AM 和CN 夹角的余弦值为( )A .23B C .13D .23-二、填空题11.已知向量()2,3,1a =-r ,则与a r共线的单位向量为.12.已知向量()2,0,1a =-r ,(),2,1b m =-r 且a b ⊥r r,则m =,a b +=r r .13.已知直线l 经过()1,0,1A ,()2,0,0B 两点,则点()2,1,4P 到直线l 的距离为.14.在空间直角坐标系Oxyz 中,已知()2,0,0AB =u u u r ,()0,2,0AC =u u u r ,()0,0,2AD =u u u r .则CD u u u r 与CB u u ur 的夹角的余弦值为;CD u u u r 在CB u u u r 的投影向量a =r . 15.以下关于空间向量的说法:①若非零向量a r ,b r ,c r满足//a b r r ,//b c r r ,则//a c r r②任意向量a r ,b r ,c r满足()()a b c a b c ⋅⋅=⋅⋅r r r r r r③若{},,OA OB OC u u u r u u u r u u u r 为空间向量的一组基底,且221333OD OA OB OC =+-u u u r u u u r u u u r u u u r,则A ,B ,C ,D四点共面④已知向量()1,1,a x =r ,()3,,9b x =-r ,若310x <,则,a b r r 为钝角其中正确命题的序号是.三、解答题16.如图,在正方体1111ABCD A B C D -中,2AB =,E 为线段11B C 的中点.(1)求证:11AA D E ⊥; (2)求平面1D BE 的法向量; (3)求点1A 到平面1D BE 的距离.17.如图,正三棱柱111ABC A B C -的底面边长为2,高为4,D 为1CC 的中点,E 为11A B 的中点.(1)求证:1//C E 平面1A BD ;(2)求直线BC 与平面1A BD 所成角的正弦值.18.如图,在平行六面体1111ABCD A B C D -中,4AB =,2AD =,1AA =60BAD ∠=︒,1145BAA DAA ∠=∠=︒,AC 与BD 相交于点O ,设AB a u u u r r=,AD b =u u u r r ,1AA c =u u u r r .(1)试用基底{},,a b c r r r表示向量1OA u u u r ;(2)求1OA 的长;(3)求直线1OA 与直线BC 所成角.19.如图,四棱锥S --ABCD P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面ACD 的夹角大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静海一中2016-2017学年高二年级数学暑假检测试卷
考试时间:120分钟 总分:120分
1. 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的
学生中应抽取的人数为 ( ) A.6 B.8 C.10 D.12
2.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,如图是测试成绩频率分布直方图。
成绩小于17秒的学生人数为 ( ) A.45 B.35 C.17 D.5
0.18 0.06 0.04 0.02
0 13 14 15 16 17 18 19
3. △ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c 成等差数列,∠B=30°,△ABC 的面积为
2
3
,那么b=( ) A. B.
C.
D.
4. 设变量x,y 满足约束条件0121x y x y x y -≥⎧⎪
+≤⎨⎪+≥⎩
,则目标函数23z x y =+的最大值为( ) A.2
B.3
C. 52
D.5
3
5.如果{}{}2|540,|010P x x x Q x x =-+≤=<<,那么( )
(第2题图) (秒)
频率/组距
0.36
0.34
A.P Q ⋂=∅
B.P Q P ⋂=
C. P Q P ⋃=
D. P Q R ⋃= 6. {}281411143100,-=n a a a a a a ++=在等差数列中,则2( ) A .20 B. 18 C. 16 D.8 7.二进制101110转化为八进制数是( ) A.45 B. 56 C. 57 D. 78
8.取一段长为5米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率是( )
A. 1
5 B. 25 C. 35 D. 2
1
9.已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域 . 10.已知a>0,b>0,
b
a 1
11++=1,求a+b 的最小值 . 11.在等比数列{}n a 中,已知1291010,90,a a a a +=+=,则 56a a +=
12.盒子中装有大小相同的2个红球和3个白球,从中摸出一个球然后放回袋中再摸出一个球,则两次摸出的球颜色相同的概率是 131
4
7
10
310()22222(),n f n n N +*=++++
+∈则)(n f 的项数为 .
14.设0,0,8a b a b ab >>++=,则a+b 的最小值为 15.设设ABC ∆的三个内角A B C 、、对边分别是a b c 、、,已知7a =
,
2220b c a bc +-+=
(1)求ABC ∆外接圆半径; (2)若ABC ∆的面积为2
3
3,求c b +的值.
16.某班级参加学校三个社团的人员分布如下表:
社团 围棋 戏剧 足球 人数
10
m
n
已知从这些同学中任取一人,得到是参加围棋社团的同学的概率为
5 13
.
(1)求从中任抽一人,抽出的是参加戏剧社团或足球社团的同学的概率;
(2)若从中任抽一人,抽出的是参加围棋社团或足球社团的同学的概率为11
13
,求m和n
的值.
17.已知函数1
)
(2-
-
=mx
mx
x
f
(1)若0
)
(<
x
f的解集为(-1,2),求m的值;
(2)若对于x∈R,0
)
(<
x
f恒成立,求实数m的取值范围;
(3)若对于x∈[1,3],m
x
f-
<5
)
(恒成立,求实数m的取值范围.
18.随机抽取某高中甲、乙两个班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.
甲班乙班
2181
99101703689
883216258
8159
(1)甲班和乙班同学身高数据的中位数各是多少?
(2)计算甲班的样本方差;
现从乙班这10名同学中随机抽取两名身高不低于175cm的同学,求身高为176cm的同学被抽中的概率.
19.已知等差数列{}n a 的前n 项和为n S ( *n N ∈),318S =,42a =. (1)求数列{}n a 的通项公式; (2)设1
(12)
n n b n a =
-,求12n n T b b b =++⋅⋅⋅+;
(3)若数列{}n c 满足2248
n n n c T n
+=,求n c 的最小值及此时n 的值.
静海一中2016-2017学年暑假数学检测试卷
学生学业能力调研试卷答题纸 一、选择题:(每空4分,共32分) 题号 1
2
3
4
5
6
7
8
答案
二、填空题(每空5分,共30分)
9.__________ 10._________ 11. __________
12.__________ 13._________ 14.__________ 三、解答题(共58分) 15.(10分)
16.(10分)
17.(12分)
18.(12分)
19.(14分)
答案:
1.B
2.A
3.D
4.C
5.B
6.A
7.B
8.C
9.[
]
33
- 10.122+ 11.30 12.
25
13
13.4+n 14.4 15.
2
1
2222-=-+bc a c b A=
120
32122sin ==R A a ,3
21=R (2)
2
1
22)(22-=--+bc bc a c b 13=+c b 16.(1)m=
2
1
(2)当m=0时,f (x )=-1<0恒成立, 当m ≠0时,若f (x )<0恒成立, m <0 △=m2+4m <0
解得-4<m <0
综上所述m 的取值范围为(-4,0]----------------(4分) (3)要x ∈[1,3],f (x )<-m+5恒成立, m<)(5x f - m<7
6 17.(1)
13
8 (2)m=4,n=12
18.(1)甲:(170+168)/2=169(厘米) 乙:(170+173)/2=171.5(厘米)
(1)由平均数的计算公式先计算10名同学的平均身高,再由方差
的计算公式
可得甲班的样本方差s 2
=
[(158
-170)2
+(162-170)2
+(163-170)2
+(168-170)2
+(168-170)2
+(170-170)2
+(171-170)2
+(179-170)2
+(179-170)2
+(182-170)2
]=57.2;(2)由茎叶图可知抽取两名身高身高不低于173cm 的同学有10种抽法,其中身高为176cm 的同学被抽中的事件有4个,因
此所求概率.
试题解析:(1)==170.
甲班的样本方差s 2
=
[(158-170)2+(162-170)2+(163-170)2+(168-170)2
+(168-
170)2
+(170-170)2
+(171-170)2
+(179-170)2
+(179-170)2
+(182-170)2
]=57.2. (2)设“身高为176cm 的同学被抽中”为事件A.
从乙班10名同学中抽取两名身高不低于173cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有4个基本事件:(181,176),(179,176),(178,176),
(176,173).所以P(A)==.
19.(1)设等差数列{an}的公差为d ,S3=18,a4=a1+3d=2,
a1=8,d=-2,an=8-2(n-1)=-2n+10; (2)bn=
)22(1+n n =)1
1
1(21+-
n n )
1(2+=
n n
T n
(3)1
25
1+++=n n c n -2≥8,当且仅当n=4时等号成立,此时n c 的最小值为8.。