第三章《动量和角动量》习题

合集下载

06动量与角动量二解答

06动量与角动量二解答
4i + 4 j = M aC a = 2 m/s
F ex = ∑ maC = M aC ∑
(
2
)
4 θ = arctan = 45 4
4N l C
θ
y
O
x
l
4N
动量与角动量二
第三章 动量守Байду номын сангаас和能量守恒
质量为0.05kg的小块物体,置于一光滑水平桌面 的小块物体, △2.质量为 质量为 的小块物体 有一绳一端连接此物, 上.有一绳一端连接此物,另一端穿过桌面中心的小孔 如图所示).该物体原以3rad/s的角速度在距孔 ).该物体原以 的角速度在距孔0.2m (如图所示).该物体原以 的角速度在距孔 的圆周上转动.今将绳从小孔缓慢往下拉, 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之 转动半径减为0.1m.则物体的角速度ω=___. 转动半径减为 . . 物体在有心力作用下,对力心的角动量守恒 物体在有心力作用下 对力心的角动量守恒: 对力心的角动量守恒
T 2
(2mυ ) + (mgπR υ )
2
2
0
m
I=
∫ Fdt
0
y
I G = m g T 2 = mg j πR υ
动量与角动量二
第三章 动量守恒和能量守恒
4.一质量为M的斜面原来静止于水平光滑平面上,将 .一质量为 的斜面原来静止于水平光滑平面上 的斜面原来静止于水平光滑平面上, 一质量为m的木块轻轻放于斜面上 如图. 的木块轻轻放于斜面上, 一质量为 的木块轻轻放于斜面上,如图.如果此后 木块能静止于斜面上, 木块能静止于斜面上,则斜面将 (A) 保持静止. 保持静止. (B) 向右加速运动. 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 向右匀速运动. 向左加速运动. 对于木块-斜面系统 水平方向不受外力作用 动量守恒 对于木块 斜面系统,水平方向不受外力作用 动量守恒: 斜面系统 水平方向不受外力作用,动量守恒

第一册第三章动量与角动量

第一册第三章动量与角动量

时 ∑ F ix = 0时 ,
m 1 v 1 x + m 2 v 2 x + L + m n v nx = 常 数
时 ∑ Fiy = 0时 ,
时 ∑ F iz = 0时 ,
m 1 v 1 y + m 2 v 2 y + L + m n v ny = 常 数
m 1 v 1 z + m 2 v 2 z + L + m n v nz = 常 数
M L
解:(1)链条在运动过程中,各部分的速度、 )链条在运动过程中,各部分的速度、 加速度都相同。 加速度都相同。
o
x
v F
研究对象:整条链条 研究对象: 建立坐标: 建立坐标:如图 M v v (= xg ) 受力分析: 受力分析: F 运动方程: 运动方程:
M L xg dv = M dt
2
L
一段时间内,质点所受的合外力的冲量 冲量等 在t1到t2一段时间内,质点所受的合外力的冲量等 动量的增量。 于在这段时间内质点动量的增量 于在这段时间内质点动量的增量。 几点说明: 几点说明: (1)冲量的方向: (1)冲量的方向: 冲量的方向 v v 的方向, 冲量 I 的方向一般不是某一瞬时力 Fi 的方向,而是所
例子:见书 例子:见书P137例3.3
12
方向, 例1. 力 F = 3 − 2t ,沿z方向,计算 =0至t =1s 方向 计算t 至 内,力对物体的冲量。 力对物体的冲量。
解: Fz = F = 3 − 2t
I z = ∫ Fz dt = ∫ (3 − 2t )dt = 2( N ⋅ s ) t
I y = ∫ Fy dt
t1
t2
I z = ∫ Fz dt

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。

(B) 其动量一定守恒,角动量不一定为零。

(C) 其动量不一定守恒,角动量一定为零。

(D) 其动量不一定守恒,角动量不一定为零。

答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。

本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。

故(B)是正确答案。

[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。

[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。

第三章-练习题

第三章-练习题

第三章 练习题一、填空题3-1 一根长度为L 的轻杆AB (其质量可忽略),两端分别固定质量为m 1和m 2的两个小球,此系统绕通过其中心O 并垂直AB 连线的轴转动时,其转动惯量为 。

3-2 一质量为M ,半径为R 的转台,以角速度ω1转动,转动摩擦不计,有一质量为m 的蜘蛛垂直落在转台边缘(转台的转动惯量221MR J =)。

此时转台的角速度ω2为___ _____;若蜘蛛慢慢爬向转台中心,至离转台中心的距离为r 时,转台的角速度ω3为___ ______。

3-3 一转速为1200r/min 的飞轮,因制动而均匀的减速,经10s 停止转动,则飞轮的角加速度为 ,从开始制动到停止转动飞轮转过的圈数为___ __ _;开始制动后5s 时飞轮的角速度为___ ______。

设飞轮转动惯量为J ,其制动力矩为__ _______。

3-4 自由刚体共有6个自由度,其中3个 自由度,3个 自由度。

3-5 一均匀细杆AB ,长为l ,质量为m 。

A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动。

杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小B V = 。

3-6 一质量为M ,长为L 的均匀细棒绕通过中心与棒垂直的转轴转动,其转动惯量等于 ;若细棒绕通过一个端点与棒垂直的转轴转动,其转动惯量等于 。

3-7 一飞轮的转动惯量为20.125kg m ⋅,其角动量在1.5s 内从213.0kg m s -⋅⋅减到212.0kg m s -⋅⋅ 在此期间作用于飞轮上的平均力矩M = ,飞轮作功为A = 。

3-8 一质量为m 的小球固定在一质量不计、长为l 的轻杆一端,并绕通过杆另一端的水平固定轴在竖直平面内旋转。

若小球恰好能通过最高点而作圆周运动,则在该圆周的最高点处小球的速度=v ;如果将轻杆换成等长的轻绳,则为使小球能恰好在竖直平面内作圆周运动,小球在圆周最高点处的速度=v 。

3-9 长为L 质量为m 的均匀细棒可绕通过其一端并与棒垂直的光滑水平轴O 转动.设棒从水平静止位置开始释放,则它摆到竖直位置时的角加速度为 ;角速度为 。

第三章 动量与角动量

第三章 动量与角动量

在光滑桌面上运动,速度分别为
v1

10i ,
v2

3.0i
5.0
j
(SI制)碰撞后合为一体,求碰撞后的速度?
解:方法一,根据动量守恒定律
m1v1 m2v2 (m1 m2 )v
解得:
v
7i
25
j
7
方法二,利用动量守恒分量式:
(m1 m2 )vx m1v1x m2v2x vx 7m / s
例 题 12
12、一子弹在枪筒里前进时所受的合力大小为 F 400 4105 t
3
(SI),子弹从枪口射出时的速率为300m/s。假设子弹离
开枪口时合力刚好为零,则
(1)子弹走完枪筒全长所用的时间;
(2)子弹在枪筒中所受力的冲量; (3)子弹的质量 m ;
解:(1)根据题意,子弹离开枪口时合力为零,
f mg
f t(N)
30N L L L 0 t 4 30 ft 70 10tL 4 t 7
0
Ft ft f
t(s) 47
当 t 4s 时 Ftt mv4 mv0 v4 8m / s
(2)当 t 6s 时
6
4 Ftdt mv6 mv4 v6 v4 8m / s
人造卫星的角动量守恒。
A1 : L1 mv1(R l1)
l2
l1 m
A2 : L2 mv2 (R l2 )
A2
A1
mv1(R l1) mv2 (R l2 )
v2 6.30km/s
v2

v1
R l1 R l2
o
B

《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)
答:(a)正确。与轴平行的力,对该轴都不产生力矩。(b)正确。比如当两个力垂直于轴,且力的 作用线通过轴时,每个力对该轴的力矩都为零;当两个力作用线不通过该轴时,这两个力的力矩之和 可以不为零。(c)错误。大小相等、方向相反的两个力作用于刚体上不同位置处,如下图所示,两个 力合力为零,但对 O 点的合力矩不为零。(d)错误,如下图所示情况,两个力对 O 点的合力矩为零, 但合力不为零。
为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动

L

r

mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。

m
解:(1) J

J1

J2

ml 2

1 ml 2 3

4 ml 2 3
(2)根据转动定理: M

J
d dt

J
d d
d dt

J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。

第3章动量角动量

第3章动量角动量
(3)动量守恒定律只适用于惯性系, 使用时所有速度必须相 对于同一惯性系。
(4)动量守恒定律是物理学中最普遍、最基本的定律之一。 在微观高速范围同样适用。
例3-3 如图,在光滑的水平面上,有一质量为M、长为l 的小车, 车上一端站有质量为m的人,起初m、M均静止,若人从车 的一端走到另一端,则人和车相对地面走过的距离为多少?
为ω,杆长均为l 。(2)如系统作加速转
动,系统的动量和角动量变化吗?
三、质点的角动量(动量矩)定理
Lrp

dL

d (r
p)
dr
p
r
dp
F
dt
dt
M
dL
dt
dt
dt
质点的角动量定理(微分形式)
质点所受合力对点O 的力矩, 等于质点对点O的角 动量的时间变化率。
M
dL
dt
改写
Mdt dL
t2 t1
F dt
p2
p1
(1)定理中的冲量指的是质点所受合力的冲量,或者质点所
受冲量的矢量和。
I
t2 t1
F合
dt
= =
t2 t1
(
F1+F2++Fn
)
d
t
t2 t1
F1dt
t2 t1
F2dt+

t2 t1
Fndt =
i 1
Ii
(2)冲量是过程量,动量是状态量,冲量的方向可用动量变化的
由动量定理 I p2 得 p1
(3) 2.7 m/s
(2)3s末质点的加速度
a(3) F (3) 1.5 m/s2 m
3.1.2 质点系的动量定理 动量守恒定律

角动量复习题

角动量复习题

角动量复习题角动量复习题角动量是物体运动的一个重要物理量,它描述了物体围绕某一轴心旋转的性质。

在物理学中,角动量的计算涉及到物体的质量、速度以及旋转半径等因素。

下面将介绍一些与角动量相关的复习题,帮助大家巩固对角动量的理解。

1. 一个半径为2米的旋转木马上,有一个质量为100kg的小孩坐在边缘处。

如果旋转木马以每秒2π弧度的角速度旋转,求小孩的角动量。

解析:角动量的计算公式为L = Iω,其中L为角动量,I为转动惯量,ω为角速度。

在此题中,旋转木马上的小孩可以视为一个质点,其转动惯量可以近似为mR^2,其中m为小孩的质量,R为旋转木马的半径。

代入数值计算可得L = 100kg × (2m)^2 × 2π rad/s = 800π kg·m^2/s。

2. 一个质量为2kg的物体以每秒4π弧度的角速度绕着一个半径为1米的圆周运动,求其角动量。

解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。

在此题中,物体可以视为一个质点,转动惯量I = mR^2,其中m为物体质量,R为圆周半径。

代入数值计算可得L = 2kg × (1m)^2 × 4π rad/s = 8π kg·m^2/s。

3. 一个半径为3米的风车叶片以每秒3π弧度的角速度旋转,其转动惯量为10kg·m^2,求其角动量。

解析:根据角动量的计算公式L = Iω,其中L为角动量,I为转动惯量,ω为角速度。

代入数值计算可得L = 10kg·m^2 × 3π rad/s = 30π kg·m^2/s。

4. 一个质量为1kg的小球以每秒2π弧度的角速度绕着一个半径为2米的圆周运动,求其角动量。

解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。

在此题中,小球可以视为一个质点,转动惯量I = mR^2,其中m为小球质量,R为圆周半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《动量和角动量》习题
动量守恒和角动量守恒是物理学中各种运动所遵循的普遍规律,本章的主要内容有质点和质点系的动量定理、角动量定理,及动量守恒定律和角动量守恒定律。

基本要求:
掌握动量定理和动量守恒定律,并能分析、解决简单的力学问题。

掌握运用守恒定律分析问题的思想和方法,能分析简单系统在平面内运动的力学问题。

理解质心的概念和质心运动定律。

作业题:
1 质量为m 的铁锤竖直从高度h 处自由下落,打在桩上而静止,设打击时间为t ∆,则铁锤所受的平均冲力大小为( )
(A )mg (B )t gh m ∆2 (C )
mg t gh
m +∆2 (D )mg t gh m -∆2 2 一个质量为m 的物体以初速为
0v 、抛射角为o 30=θ从地面斜上抛出。

若不计空气阻力,当物体落地时,
其动量增量的大小和方向为( ) (A )增量为零,动量保持不变 (B )增量大小等于
0mv ,方向竖直向上 (C )增量大小等于0mv ,方向竖直向下 (D )增量大小等于03mv ,方向竖直向下
3 停在空中的气球的质量为m ,另有一质量m 的人站在一竖直挂在气球的绳梯上,若不计绳梯的质量,人沿梯向上爬高1m ,则气球将( )
(A )向上移动1m (B )向下移动1m
(C )向上移动0.5m (D )向下移动0.5m
4 有两个同样的木块,从同高度自由下落,在下落中,其中一木块被水平飞来的子弹击中,并使子弹陷于其中,子弹的质量不能忽略,不计空气阻力,则( )
(A )两木块同时到达地面 (B )被击木块先到达地面
(C )被击木块后到达地面 (D )条件不足,无法确定
5 用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为( )
(A )前者遇到的阻力大,后者遇到的阻力小 (B )前者动量守恒,后者动量不守恒
(C )后者动量变化大,给钉的作用力就大 (D )后者动量变化率大,给钉的作
用冲力就大
6 质量为20×10-3kg 的子弹以4001
s m -⋅的速率沿图示方向击入一原来静止的质量为980×10-3
kg 的摆球中,摆线长为1. 0m ,不可伸缩,则子弹击入后摆球的速度大小为( ) (A )41s m -⋅ (B )81s m -⋅ (C )21s m -⋅ (D )8π1s m -⋅
7 一船浮于静水中,船长5m ,质量为m ,一个质量亦为m 的人从船尾走到船头,不计水和空气的阻力,则在此过程中船将( )
(A )静止不动 B )后退5m (C )后退2. 5m (D )后退3m
选做练习:
1 质量分别为m 和4m 的两个质点分别以k E 和4k E 的动能沿一直线相向运动,它们的总动量的大小为( )
(A )k 22mE (B )k 23mE (C )k 25mE (D )k 2)122(mE
2 有两个倾角不同、高度相同,质量相同的斜面置于光滑的水平面上,斜面也是光滑的,有两个一样的小球,从这两斜面顶点,由静止开始下滑,则( )
(A )两小球到达斜面底端时的动量相等
(B )小球和斜面组成的系统在水平方向上的动量守恒
(C )小球和斜面组成的系统的动量守恒
3 一圆锥摆的摆球在水平面上作匀速圆周运动。

如图所示,已知摆球质量为m ,
圆半径为R ,摆球速率为v ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大
小为 。

4 一个原来静止在光滑水平面上的物体,突然分裂为21 ,m m 和3m 三块,且以相同的速率沿三个方向在水
平面上运动。

各运动方向之间的夹角如图所示,则三块物体的质量之比321: :m m m = 。

相关文档
最新文档