学习模态分析要掌握的的知识
车架的模态分析知识讲解

车架的模态分析Frame模型的模态分析班级:T943-1姓名:王子龙学号:20090430124Frame模型的模态分析T943-1-24王子龙20090430124一、模型问题描述1、如图所示1,机架为一焊接件,材料为结构钢,在两根长纵梁的八个圆孔内表面采用CylinderSupport约束,分析结构的前6阶固有频率。
2、在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与原结构对比。
短纵梁短纵梁图1 机架模型二、模型分析(一)无预紧力情况1、导入模型:打开ANSYS Workbench,从左侧工具栏中双击Modal(ANSYS),右击A3项,右键选择Import Gemetry→Browse,找到文件Frame.x_t点击打开,然后双击A4栏,打开Mechanical窗口。
2、施加约束:选择左侧结构树中的Modal,选择两根长纵梁的八个圆孔内表面,右键选择Insert→Cylindrical Support,如图2所示。
图2 八圆孔内表面施加约束3、在solution(A6)中插入Toal Deformation,点击Solve求解,求解结果如图3所示。
图3 无应力时的变形图及6阶频率(二)有预紧力情况1、回到Workbench界面,从左侧工具栏中的Static Structural(Ansys)拖至A4栏,如图4所示,双击B5栏,进入Mechanical窗口。
图4 拖拽Static Stuctual(ANSYS)到A42、按住“shift”键,选择A5分支中Cylindrical Support,右键选择Copy,右键单击B5项,选择Paste。
3、在Static Structual(B5)中施加载荷:选择焊接件底面insert→Force,Force=4000N,如图5所示。
图5 施加预紧力4、在Solution(B6)中插入Equivalent Stress,点击Slove求解,如图6所示。
机械系统动力学特性的模态分析

机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
机械振动学基础知识振动系统的阻尼模态分析

机械振动学基础知识振动系统的阻尼模态分析机械振动学是研究物体在受到外力作用下产生的振动现象的学科,涉及到机械工程、土木工程、航空航天工程等领域。
振动系统的阻尼模态分析是机械振动学中一个重要的研究方向,通过对振动系统的阻尼特性和模态特性进行分析,可以更好地理解系统的振动行为,为系统的设计和优化提供理论支持。
阻尼是振动系统中的一种能量损耗机制,它通过阻尼器将系统振动能量转化为热能或其他形式的能量耗散出去。
振动系统的阻尼可以分为线性阻尼和非线性阻尼两种。
线性阻尼是指振动系统的阻尼力与速度成正比,常见于摩擦力和液体阻尼等。
非线性阻尼则是指振动系统的阻尼力与速度的平方或更高次幂相关,常见于气体阻尼和某些复杂系统中的耗能机制。
在振动系统的阻尼模态分析中,首先需要确定系统的动力学方程。
这通常是通过应用运动方程和力学平衡原理得到的,其中考虑了系统的质量、刚度、阻尼等因素。
然后可以通过对系统的特征值问题进行求解,得到系统的固有频率和模态形式。
在实际工程中,通常会采用数值模拟或实验测试的方法来确定系统的振动特性。
阻尼模态分析的结果可以帮助工程师深入了解系统的振动特性,包括固有频率、模态形式、阻尼比等参数。
通过分析这些参数,可以评估系统的稳定性、安全性和性能表现,为系统的设计和改进提供依据。
此外,阻尼模态分析还可以指导系统的故障诊断和故障分析,帮助工程师解决振动问题和改善系统的运行效果。
总的来说,机械振动学基础知识中的振动系统阻尼模态分析是一个复杂而重要的内容,它深刻影响着工程领域的发展和进步。
通过对振动系统阻尼特性和模态特性的研究,可以更好地理解系统的振动行为,提高系统的性能和可靠性,从而推动机械工程领域的发展。
模态分析基本知识

模态分析分析基本知识!1.什么是模态分析?模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
2.模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
3.模态试验时如何选择最佳悬挂点??模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。
4.模态试验时如何选择最佳激励点?最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。
如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。
5.模态试验时如何选择最佳测试点?模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。
在最佳测试点位置其ADDOF(Average Driving DOF Displacement) 值应该较大,一般可用EI(EffectiveIndependance) 法确定最佳测试点。
6. 模态参数有那些?模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼。
7. 什么是主模态、主空间、主坐标?无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
8. 什么是模态截断?理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
模态分析知识点总结

模态分析知识点总结一、基本用法1. 表示能力或可能性can 表示一种能力或者可能性,常用于表示某人有某种能力或者经验。
例如:He can speak English fluently.(他能流利地说英语。
)2. 表示允许或请求can 还可以表示允许或请求,常用于询问或请求。
例如:Can I borrow your pen?(我可以借用你的笔吗?)3. 表示推测may/might 表示一种推测或者可能性。
may 表示较肯定的可能性,而 might则表示较不肯定的可能性。
例如:She may be at home.(她可能在家。
)4. 表示意愿或请求will/would 表示一种意愿或请求,用于表达主观上的愿望。
例如:I will go with you.(我愿意和你一起去。
)5. 表示必须must 表示一种必须或者必然性,常用于表示情态。
例如:We must finish the work before 5 o'clock.(我们必须在5点之前完成工作。
)二、情态动词在疑问句和否定句中的用法1. 疑问句情态动词在疑问句中通常直接放在主语之后,而不需要借助助动词 do/does/did。
例如:Can you swim?(你会游泳吗?)2. 否定句在否定句中,情态动词需要在后面加上 not形成否定形式。
例如:I can not solve the problem.(我解决不了这个问题。
)三、情态动词在动词不定式中的用法情态动词后一般跟动词原形构成动词不定式。
例如:You must finish the work on time.(你必须按时完成工作。
)四、情态动词在完成时态中的用法情态动词在完成时态中不使用have/has/had构成完成时态的形式,而是直接加上动词原形。
例如:She must have known the truth.(她一定知道了真相。
)五、情态动词在被动语态中的用法在被动语态中,情态动词与 be 动词构成被动语态形式。
有关模态的知识

什么是模态分析?你能为我解释模态分析吗?好,需要花费一点时间,但是这是任何人都能明白的事情你不是第一个要求我用通俗易懂的语言解释模态分析的人,这样一来,任何人都能明白模态分析到底是怎样一个过程。
简单地说,模态分析是根据用结构的固有特征,包括频率、阻尼和模态振型,这些动力学属性去描述结构的过程。
那只是一句总结性的语言,现在让我来解释模态分析到底是怎样的一个过程。
不涉及太多的技术方面的知识,我经常用一块平板的振动模式来简单地解释模态分析。
这个解释过程对于那些振动和模态分析的新手们通常是有用的。
考虑自由支撑的平板,在平板的一角施加一个常力,由静力学可知,一个静态力会引起平板的某种静态变形。
但是在这儿我要施加的是一个以正弦方式变化,且频率固定的振荡常力。
改变此力的振动频率,但是力的峰值保持不变,仅仅是改变力的振动频率。
同时在平板另-个角点安装一个加速度传感器,测量由此激励力引起的平板响应。
E2平梅的■应*现在如果我们测量平板的响应,会注意到平板的响应幅值随着激励力的振动频率的变化而变化。
随着时间的推进,响应幅值在不同的频率处有增也有减。
这似乎很怪异,因为我们对此系统仅施加了一个常力,而响应幅值的变化却依赖于激励力的振动频率。
具体体现在,当我们施加的激励力的振动频率越来越接近系统的固有频率(或者共振频率)时,响应幅值会越来越大,在激励力的振动频率等于系统的共振频率时达到最大值。
想想看,真令人大为惊奇,因为施加的外力峰值始终相同,而仅仅是改变其振动频率。
图夕平械的瓠响困数屮时域数据提供了非常有用的信息,但是如果用快速傅立叶变换(FFT)将时域数据转换到频域,可以计算出所谓的频响函数(FRF)。
这个函数有一些非常有趣的信息值得关注:注意到频响函数的峰值出现在系统的共振频率处,注意到频响函数的这些峰出现在观测到的时域响应信号的幅值达到最大时刻的频率处。
如果我们将频响函数叠加在时域波形之上,会发现时域波形幅值达到最大值时的激励力振动频率等于频响函数峰值处的频率。
ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。
前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。
ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。
ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。
2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。
(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。
(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。
指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。
指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。
ANSYS模态分析教程及实例讲解

任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
频率分析的相关知识
• 静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具
有与各个固有频率对应的振动模态。
频率分析的相关知识
• 共振(以荡秋千为例) –荡得好的人荡几下马上就能荡得很高
–这是因为与秋千摆动的节拍和时间配合起来的原因。 –换句话说,与秋千的固有频率(固有周期)相配合,这
– 小变形 – 弹性范围内的应变和应力 – 没有诸如两物体接触或分离时的刚度突变。
应力
弹性模量 (EX)
应变
准备工作
A. 哪种分析类型?
• 如果加载引起结构刚度的显著变化,必须进行 非线性分析。引起结构刚度显著变化的典型因 素有: – 应变超过弹性范围(塑性) – 大变形,例如承载的鱼竿 – 两体之间的接触
• 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
• 固有振动模态(以弦的振动为例)
– 两端被固定住的弦,以手指弹一下张紧的弦,弦则振动 起来,振动在空气中传播发出声音。弦以下图所示的各
第三讲模态分析
• 在开始ANSYS分析之前,您需要作一些决定, 诸如分析类型及所要创建模型的类型。
• 标题如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模态分析中的几个基本概念
一、模态定义:物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示。
模态分析一般是在振动领域应用,每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性:
一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;
二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。
一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。
二、模态分析:模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。
将特征值从小到大排列就是阶次。
实际的分析对象是无限维的,所以其模态具有无穷阶。
但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。
一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。
所以模态的阶数就是对应的固有频率的阶数。
三、振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一阶固有频率都对应一种振型。
振型与体系实际的振动形态不一定相同。
振型对应于频率而言,一个固有频率对应于一个振型。
按照频率从低到高的排列,来说第一振型,第二振型等等。
此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。
在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。
实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。
四、模态扩展是为了是结果在后处理器中观察而设置的,原因如下:
求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT及振型文件Jobnmae.MODE中,输出内容中也可以包含缩减
的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。
在模态分析中,我们用“扩展”这个词指将振型写入结果文件。
也就是说,”扩展模态“不仅适用于Reduced模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。
因此,如果想在后处理器中观察振型,必须先扩展模态。
谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。
模态叠加是用于瞬态分析和谐分析的一种求解技术模态叠加是将从模态分析中得到各个振型分别乘以系数后叠加起来以计算动力学响应。
它是一个用来求解线性动力学问题的快速、有效的方法。
另一种可选用的方法是直接积分方法,这种方法需要较多的时间。
模态数指一个结构拥有模态的个数,对一般形状的振型,它可以看成是很多不同阶的形状的组合。
阶数与振型相对应。
有多少个振型就有多少个阶数。
对应基本周期的振型称为第一阶振型,比第一周期略小的(第二周期)对应的振型称为第二阶……第n阶,依次类推。
从理论上来说,任何结构的固有频率都有无限多个,按频率大小排列,数值最小的为一阶频率。
但在用有限元进行计算时只能求出有限多个固有频率(与无约束的自由度个数相同),且阶数越高,误差越大。
但对实际结构有意义的恰是频率较小的若干阶频率。
然而,为了便于对模态进行称呼,就以模态频率的大小进行排队,这种排队的顺序往往就是所谓的“阶”。
一个系统有几阶模态,理论上是N个自由度系统存在N个模态,而低阶模态的模态刚度相对比较弱,在同样量级的激励作用下,响应会相对所占的权值大一些,所以,工程上低阶模态比较被受关照,理论上低阶模态理论也相对成熟。
模态分析有什么用处?
模态分析的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:
1)评价现有结构系统的动态特性;
2)在新产品设计中进行结构动态特性的预估和优化设计;
3)诊断及预报结构系统的故障;
4)控制结构的辐射噪声;
5)识别结构系统的载荷。
模态参数有那些
模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。
模态分析和有限元分析怎么结合使用
1)利用有限元分析模型确定模态试验的测量点、激励点、支持点(悬挂点),参照计算振型队测试模态参数进行辩识命名,尤其是对于复杂结构很重要。
2)利用试验结果对有限元分析模型进行修改,以达到行业标准或国家标准要求。
3)利用有限元模型对试验条件所产生的误差进行仿真分析,如边界条件模拟、附加质量、附加刚度所带来的误差及其消除。
4)两套模型频谱一致性和振型相关性分析。
5)利用有限元模型仿真分析解决实验中出现的问题。
如何修正有限元分析的结果?
用试验模态分析的结果怎么修正有限元分析的结果
1)结构设计参数的修正,可用优化方法进行。
2)子结构校正因子修正。
3)结构矩阵元素修正,包括非零元素和全元素修正两种。
4)刚度矩阵和质量矩阵同时修正。