现代材料分析方法(8-SIMS)
南京大学现代分析技术之SIMS

(3)基体效应 同一元素的二次离子产额因其它成分的存在而改变。
二次离子的发射与中性原子溅射不同, 由于涉及电子转 移,因此与化学态密切相关,其它成分的存在影响了电子态。
(4)与入射离子种类关系 惰性元素离子:Ar+, Xe+ 电负性离子:O2+, O-, F-, Cl-, I- 电正性离子:Cs+ 电负性离子可大大提高正二次离子产额 电正性离子可大大提高负二次离子产额 它们随靶原子序数变化规律不同,在实际应用中
硅的二次离子质谱--负谱图
Si(111)注O2表面二次离子质谱--正谱图
Si(111)注O2表面二次离子质谱--负谱图
2.二次离子产额 S+或S-:一个一次离子平均打出的二次离子个数。
(1)与样品原子序数关系 明显的周期性关系 S+: 电离能 ↗ S+ ↘ S-: 电子亲和势↗ S- ↘ 各种元素离子产额差异大,可达4个数量级
Δ 在分析过程中,表面单分子层寿命长达几小时。
SIMS设பைடு நூலகம்示意图
高真空静态SIMS设备外观
SIMS设备中的离子枪
TOF-SIMS系统示意图
TOF-SIMS系统外观图
实验条件: 一次离子能量 < 5 keV 一次离子束流密度 < nA/cm2 在低的一次束流密度下,为提高灵敏度,采用: 一次束大束斑+离子计数+高传输率分析器
(2)动态SIMS-- 离子微探针 一次束流密度 J > 10-7A/cm2 溅射效果显著 非表层分析:微区扫描成象 深度剖面分析
3. 主要部分介绍
(1)离子源种类及参数
现代分析测试技术-SIMS

俄歇电子能谱(AES)—大本讲义
AES分析方法原理 AES谱仪基本构成 AES谱仪实验技术 AES谱图分析技术 SIMS基本结构及技术特点 XPS/AES/SIMS方法比较
离子溅射与二次 离子质谱
离子溅射过程:一定能量的离子打到固体表面→ 引起表面原子、分子或原子团的二次发射—溅射 离子;溅射的粒子一般以中性为主,有<1%的 带有正、负电荷—二次离子;
质量分析器
添加标题
检测器
添加标题
二次离子深度分析
添加标题
二次离子分布图像
添加标题
二次离子质谱系统 结构示意图
添加标题
二次离子质谱
二次离子质谱仪基本部件
• 初级离子枪:热阴极电离型离子源,双等离子体离子源,液态金属场离子源;离子束的纯度、电 流密度直接影响分析结果;
• 二次离子分析器:分析质荷比→磁偏式、四极式(静态SIMS )、飞行时间式(流通率高,测量 高质量数离子)质度剖面分析 微区分析 软电离分析
动态SIMS—深度剖面分析
分析特点:不断剥离下进行SIMS分析—获得 各种成分的深度分布信息;
深度分辨率:实测的深度剖面分布与样品中真 实浓度分布的关系—入射离子与靶的相互作用、 二次离子的平均逸出深度、入射离子的原子混 合效应、入射离子的类型,入射角,晶格效应 都对深度分辨有一定影响。
可以在超高真空条件下得到表层信息;
可检测正、负离子;
可检测化合物,并能给出原子团、分 子性离子、碎片离子等多方面信息; 对很多元素和成分具有ppm甚至ppb 量级的高灵敏度;
可检测包括H在内的全部元素; 可检测同位素; 可进行面分析和深度剖面分析;
二次离子质谱 分析技术
表面元素定性分析 表面元素定量分析
二次离子质谱 sims 的作用

二次离子质谱 sims 的作用二次离子质谱(Secondary Ion Mass Spectrometry,SIMS)是一种高灵敏度的表面分析技术,可以非常有效地对材料表面进行成分分析和结构表征,极大地促进了材料研究和开发。
SIMS原理是在样品表面炸出次级离子,并通过磁场加速和分离质量,最后检测出来。
主要应用于化学、物理、生物、医学、电子、半导体、材料科学等领域。
SIMS分析可以提供原子级别的化学成分信息,包括元素和同位素及其浓度,可以清晰地揭示出材料表面的化学组成、处理工艺、晶格缺陷、表面结构等特性。
其空间分辨率高,能够达到亚微米级甚至纳米级的分辨率,尤其对于小颗粒或表面分析有较大优势。
与其他传统表面分析方法相比,SIMS技术具有很多优势和特点:首先,它可以在非常小的分析区域内进行化学分析,对于材料的微小变化极为敏感;其次,样品表面不需特殊处理,可以进行多种形态的分析;并且,SIMS可以同时分析多个元素,操作上也更加灵活和方便;最后,它非常适用于表面分析以及非常薄的薄膜或特定区域的分析。
在工业上,SIMS技术被广泛应用在半导体制造和研发中。
它可以分析掺杂元素在晶体中的位置和扩散,检测器件的组成、品质和特征,从而可以改善器件的性能、可靠性和成本等方面。
在材料科学中,SIMS技术可以用来研究特殊的表面性质和组分变化。
例如,对于材料的界面结构和化学反应,可以通过组分分析得到更加明确和准确的信息。
在生命科学中,SIMS技术可以用来研究传染病的发生、进展和治疗方法等问题。
它能够对生物分子的组分进行分析,包括脂质、蛋白质、核酸等,这些信息对于病理学、药学和生物学等领域非常有用。
总之,二次离子质谱(SIMS)作为一种表面分析技术,已成为材料科学、微电子技术、生物医学及制药等领域中最有效的分析方法之一,具有广泛的应用前景和深远的影响。
材料现代分析方法

材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。
随着科学技术的不断发展,材料分析方法也在不断更新和完善。
现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。
首先,光谱分析是材料现代分析方法中的重要手段之一。
光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。
常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。
其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。
电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。
通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。
此外,质谱分析也是材料现代分析方法中的重要手段之一。
质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。
质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。
综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。
光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。
随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。
现代分析测试技术-SIMS

二次离子质谱分析技术 二次离子质谱分析技术
表面元素定性分析 表面元素定量分析技术 元素深度剖面分析 元素深度剖面分析 微区分析 软电离分析
动态SIMS 动态SIMS—深度剖面分析 SIMS—
分析特点:不断剥离下进行SIMS分析 获得各种成分的深度分布信息 分析特点:不断剥离下进行SIMS分析—获得各种成分的深度分布信息; SIMS分析 获得各种成分的深度分布信息; 深度分辨率:实测的深度剖面分布与样品中真实浓度分布的关系—入射 深度分辨率:实测的深度剖面分布与样品中真实浓度分布的关系 入射 离子与靶的相互作用、二次离子的平均逸出深度、 离子与靶的相互作用、二次离子的平均逸出深度、入射离子的原子混合效 入射离子的类型,入射角,晶格效应都对深度分辨有一定影响。 应、入射离子的类型,入射角,晶格效应都对深度分辨有一定影响。
离子溅射与二次离子质谱
离子溅射过程:一定能量的离子打到固体表面→引起表面原子、 离子溅射过程:一定能量的离子打到固体表面→引起表面原子、分子或原子 团的二次发射—溅射离子 溅射的粒子一般以中性为主, 溅射离子; 1%的带有正 的带有正、 团的二次发射 溅射离子;溅射的粒子一般以中性为主,有<1%的带有正、负 电荷—二次离子 二次离子; 电荷 二次离子; 二次离子质谱:利用质量分析器接收分析二次离子质量 电荷比值(m/Z) 二次离子质量—电荷比值 二次离子质谱:利用质量分析器接收分析二次离子质量 电荷比值(m/Z) 获得二次离子质谱,判断试样表面的元素组成和化学状态; 获得二次离子质谱,判断试样表面的元素组成和化学状态; 溅射产额:影响二次离子产额因素→与入射离子能量、入射角度、 溅射产额:影响二次离子产额因素→与入射离子能量、入射角度、原子序数 均有一定关系,并与靶原子的原子序数、晶格取向有关; 均有一定关系,并与靶原子的原子序数、晶格取向有关;
材料现代分析测试方法

材料现代分析测试方法材料现代分析测试方法是指利用现代科学技术手段对材料进行分析和测试的方法。
随着科学技术的不断发展,材料分析测试方法也在不断更新和完善,为材料研究和应用提供了更加精准、高效的手段。
首先,光谱分析是材料现代分析测试方法中常用的一种。
光谱分析利用物质对光的吸收、发射、散射等特性进行分析,可以得到物质的组成、结构、性质等信息。
常见的光谱分析方法包括紫外-可见吸收光谱、红外光谱、拉曼光谱等,这些方法可以对材料进行全面的分析。
其次,电子显微镜分析也是材料现代分析测试方法中的重要手段。
电子显微镜可以对材料进行高分辨率的成像和分析,可以观察到材料的微观结构和形貌特征。
透射电子显微镜、扫描电子显微镜等成像技术,以及能谱分析技术,可以对材料进行表面成分分析和元素分布分析,为材料研究提供了重要的信息。
此外,质谱分析也是材料现代分析测试方法中的重要手段之一。
质谱分析利用物质的分子离子质量和相对丰度信息,可以对材料进行成分分析和结构鉴定。
常见的质谱分析方法包括质子磁共振质谱、质子谱、碳谱等,这些方法可以对有机材料和高分子材料进行分析。
最后,热分析也是材料现代分析测试方法中的重要手段之一。
热分析利用材料在升温或降温过程中吸热、放热、质量变化等特性,可以对材料的热稳定性、热动力学性质等进行分析。
常见的热分析方法包括差示扫描量热法、热重分析法等,这些方法可以对材料的热性能进行全面的分析。
综上所述,材料现代分析测试方法在材料研究和应用中起着至关重要的作用。
通过光谱分析、电子显微镜分析、质谱分析、热分析等手段,可以全面了解材料的组成、结构、性质等信息,为材料的设计、制备和应用提供科学依据和技术支持。
随着科学技术的不断进步,材料现代分析测试方法也将不断完善和发展,为材料领域的发展注入新的活力。
材料现代分析方法

3
多尺度分析方法
结合不同尺度的分析方法,实现对材料的全方位、多角度的研究。
总结和结论
材料现代分析方法是理解材料性质和应用的关键工具。通过不断发展和创新,我们将能够更好地 设计和优化各种材料,推动科学和工程的进步。
现代分析方法的优势和局限性
1 优势
提供准确、可靠的分析结果,加速研究进展,优化材料性能。
2 局限性
部分方法需要昂贵的设备,技术要求高,可能无法应用于所有材料。
未来材料分析方法的发展趋势
1
先进成像技术
发展更高分辨率和更快速的成像技术,以更全面、准确地表征材料结构。
2
智能数据分析
利用机器学习和人工智能技术,加速材料数据的分析和解释,提高研究效率。
金属合金研究
使用电子显微镜和X射线衍射等技术,研究金 属合金的晶体结构和相变行为。
聚合物表征
通过红外光谱和质谱等技术,分析聚合物的 分子结构和功能性组。
涂层材料评估
利用表面分析技术,研究涂层材料的附着力、 耐腐蚀性和磨损性能。
航空航天材料检测
使用非破坏性测试方法,检测航空航天材料 的裂纹、疲劳和应力状态。
材料现代分析方法
材料现代分析方法涵盖了各种技术和工具,旨在深入研究和理解不同材料的 特性和性能。通过本次演示,我们将介绍一些常用的分析方法以及它们在材 料研究中的应用。
现代分析方法的定义和作用
现代分析方法是一系列科学和技术的应用,用于研究材料的结构、组成、性能和特性。它们的作 用是帮助科学家和工程师深入了解材料,优化其设计和应用。
常用的材料分析方法
光谱分析方法
通过观察和分析材料的光谱特征,了解其 组成和结构。
表面分析方法
研究材料表面的物理和化学特性,如X射 线光电子能谱。
材料现代分析方法

材料现代分析方法一.绪论1.材料现代分析方法:是关于材料成分、结构、微观形貌与缺陷等的现代分析,测试技术及其有关理论基础的科学。
2.基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法。
3.各种方法的分析、检测过程均可大体分为信号发生器、检测器、信号处理器与读出装置等几部分组成。
二.核磁共振1.核磁共振(Nuclear Magnetic Resonance,NMR):无线电波照射样品时,使特定化学结构环境中的原子核发生的共振跃迁(核自旋能级跃迁)。
2.拉摩尔进动:外磁场与核自旋磁场的相互作用,导致核自旋轴绕磁场方向发生回旋,称为拉摩尔进动。
3.核磁共振现象的产生机理:主要是由核的自旋运动引起的,核的自旋产生了不同的核自旋能级,当某种频率的电磁辐射与核自旋能级差相同时,原子核从低自旋能级跃迁到高自旋能级,产生了核磁共振现象。
4.描述核自旋运动的量子数I与原子核的质子数和中子数有关,有下列三种情况:(1)偶-偶核,I=0;(2)奇-偶核,I为半整数;(3)奇-奇核,I为整数。
5.核磁共振的条件:(1)原子核有自旋现象(I﹥0);(2)在外磁场中发生能级裂分;(2π)。
(3)照射频率与外磁场的比值υB=γIB。
6.1H核磁共振条件:υO=γI2π7.化学位移:某一质子吸收峰出现的位置,与标准物质质子吸收峰出现的位置之间的差异,称为该质子的化学位移δ。
8.化学位移现象:同一种类原子核,但处在不同的化合物中,或是虽在同一种化合物中,但所处的化学环境不同,其共振频率也稍有不同,这就是所谓的化学位移现象。
9.影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键效应和溶剂效应。
质子周围电子云密度↑,屏蔽效应↑,在较高磁场强度处(高场)发生核磁共振,δ小;电子云密度↓,屏蔽效应↓,在较低磁场强度处(低场)发生核磁共振,δ大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Al+的流强随时间变化的曲线
SIMS 离子溅射与二次离子质谱
Si的正二次离子质谱
SIMS 离子溅射与二次离子质谱
聚苯乙烯的二次离子质谱
SIMS 离子溅射与二次离子质谱
在超高真空条件下,在清 洁的纯Si表面通入20 L的氧 气后得到的正、负离子谱, 并忽略了同位素及多荷离 子等成份。除了有硅、氧 各自的谱峰外,还有SimOn (m,n = 1, 2, 3……)原子团离 子发射。应当指出,用氧 离子作为入射离子或真空 中有氧的成分均可观察到 MemOn (Me为金属)
SIMS 二次离子质谱仪
定性分析Biblioteka SIMS定性分析的目的是根据所获取的二次离子
质量谱图正确地进行元素鉴定。样品在受离子照射时,
一般除一价离子外,还产生多价离子,原子团离子,
一次离子与基体生成的分子离子。带氢的离子和烃离 子。这些离子有时与其它谱相互干涉而影响质谱的正 确鉴定。
SIMS 二次离子质谱仪
溅射产额与元素的升 华热倒数的对比
SIMS 离子溅射与二次离子质谱
溅射产额与晶格取向的关系
SIMS 离子溅射与二次离子质谱
在100~1000 eV下,用Hg+垂直入射Mo和Fe的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
= 60o时W靶的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
SIMS 离子溅射与二次离子质谱
是入射方向与
样品法向的夹角。
当 = 60o~ 70o时, 溅射产额最大, 但对不同的材料, 增大情况不同。
相对溅射产额与离子入射角度的关系
SIMS 离子溅射与二次离子质谱
溅射产额与入射离子原子序数的关系
SIMS 离子溅射与二次离子质谱
图中是Ar+在400 eV时对一些元素 的溅射产额,并 给出了元素的升 华热倒数,说明 溅射产额与元素 的升华热具有一 定的联系。
各种成分的深度分布信息,即动态SIMS。实测的深度
剖面分布与样品中真实浓度分布的关系可用深度分辩
率来描述。入射离子与靶的相互作用是影响深度分辨 的重要原因。二次离子的平均逸出深度,入射离子的 原子混合效应,入射离子的类型,入射角,晶格效应 都对深度分辨有一定的影响。
SIMS 二次离子质谱仪
定性分析
带氢的离子是因为在大部分的样品中含有氢, 且分析室内残留有H2,如CuH+, CuNH+等,其强 度为一次元素离子的10-2~10-4。带氢离子所占的比 例随一次离子种类的不同而大幅度地变化。一次离 子为Ar+时,带氢离子的比例很大;用O2+则显著减 少。
SIMS 二次离子质谱仪
溅射粒子能量分布曲线
SIMS 基体效应
17种元素的二次离子产额
金 属 清洁表面 覆氧表面 金 属 清洁表面 覆氧表面
Mg Al Ti V Cr Mn Ba Ta W
0.01 0.007 0.0013 0.001 0.0012 0.0006 0.0002 0.00007 0.00009
0.9 0.7 0.4 0.3 1.2 0.3 0.03 0.02 0.035
SIMS 二次离子质谱仪
SIMS类型-离子探针
SIMS的原理图
SIMS 二次离子质谱仪
SIMS类型-直接成像质量分析器
直 接 成 像 质 量 分 析 器 (Direct Imaging Mass
Analyzer—DIMA)也就是成像质谱计(Imaging Mass
Spectrometer—IMS),有时也称为离子显微镜(IM)。
SIMS 二次离子质谱仪
SIMS类型-动态SIMS
痕量元素的体分析
为了提高分析灵敏度,采用很高的溅射率,即 用大束流、较高能量(数keV—20keV)的一次束,靠 快速剥蚀不断地对新鲜表面进行分析,测到的是体 内的成分。
成分-深度剖析
选取二次离子质谱上的一个或几个峰,在较高 的溅射速率下,连续记录其强度随时间的变化,得 到近表面层的成分—深度剖图。
Fe Ni Cu Sr Nb Mo Si Ge
0.0015 0.0006 0.0003 0.0002 0.0006 0.00065 0.0084 0.0044
0.35 0.045 0.007 0.16 0.05 0.4 0.58 0.02
SIMS 基体效应
17种元素的各种氧化物的二次离子产额
金 属 Me+ MeO+ MeO2+ MeOMeO2MeO3MeO4Mg Al Ti V Cr Mn Ba Ta W Fe Ni Cu Sr Nb Mo Si Ge 0.9 0.7 0.4 0.3 1.2 0.3 0.03 0.02 0.035 0.35 0.045 0.007 0.16 0.05 0.4 0.58 0.02 0.0015 0.0006 0.5 0.6 0.2 0.007 0.017 0.02 0.15 0.014 0.035 0.3 0.3 0.011 0.0012 0.007 0.01 0.0025 0.005 0.012 0.06 0.017 0.01 0.02 0.0001 0.00025 0.004 0.0009 0.0007 0.007 0.0015 0.013 0.00038 0.00081 0.0025 0.02 0.008 0.002 0.018 0.03 0.007 0.001 0.0012 0.0085 0.06 0.015 0.006 0.0008 0.0014 0.058 0.045 0.018 0.01 0.07 0.004 0.008 0.13 0.0035 0.02 0.085 0.058 0.0081 0.0001 0.006 0.0002 0.01 0.014 -
SIMS
引言
二次离子质谱可以分析: 包括氢在内的全部元素; 给出同位素的信息; 分析化合物组分和分子结构。 二次离子质谱具有很高的灵敏度,可达到 ppm甚至ppb的量级,还可以进行微区成分成 像和深度剖面分析 。
SIMS
引言
早在本世纪30年代,Arnot等人就研究了二次离 子发射现象。1949年,Herzog和Viekbock首先把二 次离子发射与质谱分析结合起来。六十年代,先后
二次离子质谱(SIMS)
Secondary Ion Mass Spectroscopy
SIMS
引言
二次离子质谱是表征材料表面薄层化学成 分的离子束分析技术。
载能离子束经过聚焦,入射到处在真空中 的待分析样品表面,由于一次离子撞击时将动 能转移给样品,引起表面的原子或分子溅射。 溅射的粒子中有一部分带电荷的,即二次离子。 利用质谱法分析溅射产生的二次离子,则可获 取材料表面信息。
定量分析
SIMS在定性分析上是成功的,关键是识谱, 灵敏度达10-5~10-6,在定量分析上还不很成 熟。
(a)标准样品校正法
利用已知成份的标准样品,测出成份含量 与二次离子流关系的校准曲线,对未知样品的 成分进行标定。
SIMS 二次离子质谱仪
定量分析
低合金钢的校准曲线
SIMS 二次离子质谱仪
SIMS 离子溅射与二次离子质谱
描述溅射现象的主要参数是溅射阈能和溅射产额。溅 溅射产额决定接收到的二次离子的多少,它与入射离
射阈能指的是开始出现溅射时,初级离子所需的能量。
子能量、入射角度、原子序数均有一定的关系,并与
靶原子的原子序数晶格取向有关。
SIMS 离子溅射与二次离子质谱
Cu 的溅射产额与入射能量的关系
定量分析
利用离子注入的深度分布曲线及剂量,给出该元
(b)离子注入制作标准样品法:
素的浓度与二次离子流的关系作为校准曲线,然后,
进行 SIMS 分析。此外,还有利用LTE模型,采用内 标元素的定量分析法和基体效应修正法。
SIMS 二次离子质谱仪
深度剖面分析
在不断剥离的情况下进行SIMS分析,就可以得到
SIMS 离子溅射与二次离子质谱
苯基丙氨酸在银基 底上的二次离子谱。其 中,可以看到(M+1)+峰, 碎片离子峰,Ag峰及H+, H2O+峰。分子离子(或母 离子)及碎片离子等峰 给出了分子量、分子式 和分子结构方面的信息。
SIMS 离子溅射与二次离子质谱
综上所述,SIMS能给出一价离子(及 同位素)、多荷离子、原子团离子,化合物 的分子离子以至重排离子,亚稳离子及入 射离子与样品表面相互作用后生成的离子 及环境作用(如吸附)产生的离子谱,因而 提供了十分丰富的表面信息。
概念。静态SIMS要求分析室的真空度优于10-7Pa,从
而使分析时表面不会被真空环境干扰。初级离子束的
能量低于5 keV,束流密度降到nA/cm2量级,使表面单 层的寿命从几分之一秒延长到几个小时。
SIMS 二次离子质谱仪
SIMS类型-静态SIMS
利用较低能量和束流的一次束,使溅 射速率降低到表面单层在分析时的变化可 以忽略不计的程度,甚至在分析时间内只 发射1—2个二次离子。
SIMS 二次离子发射规律
基体效应
由于其他成分的存在,同一元素的二次 离子产额会发生变化,这就是SIMS的“基体 效应”。 -5 -2 清洁表面元素的正二次离子产额在10 ~10 范围内。 表面覆氧后,离子产额增加2~3个量级。
SIMS 二次离子发射规律
基体效应
合金中 Ni+ 的相对电离几率
发展了离子探针和直接成像质量分析器。七十年代
又提出和发展了静态二次离子质谱仪。这些二次离 子质谱仪的性能不断改进,使之成为一种重要的、
有特色的表面分析手段。
离子溅射
溅射:一定能量的离子束 轰击固体表面引起表面的 原子或分子射出。 入射粒子的能量必须 超过受轰击材料表面的阈 值。SIMS:1-20KeV。 溅射的粒子一般以中 性为主,其中有一部分带 有正、负电荷,这就是二 次离子。