机械设计中常用结构汇总
机械常用连接结构

详细描述
钎焊是一种通过将熔点较低的金属(钎料) 熔化后填充到两个金属物体之间,然后冷却 凝固形成连接的方法。在钎焊过程中,钎料 与母材之间发生润湿和扩散作用,形成牢固 的结合。常见的钎焊方法包括火焰钎焊、感 应钎焊和真空钎焊等。
05 过盈配合连接
CHAPTER
无垫圈过盈配合连接
总结词
无垫圈过盈配合连接是一种常见的机械连接方式,通过轴和孔之间的过盈配合实现连接。
详细描述
圆锥销连接由圆锥形的销和与之配合的孔组成。通过锥度配合,当销插入孔中后 ,可以自动锁定,防止相对转动。这种连接方式适用于需要承受较大扭矩或振动 载荷的场合,如发动机、变速箱等机械部件的连接。
开口销连接
总结词
开口销连接是一种简单可靠的固定连接方式,常用于固定轮轴与轴套之间的相对位置。
详细描述
压接
总结词
通过压接钳或压接机将两个导体压接在一起,实现电 气连接。
详细描述
压接是一种常见的机械连接方式,主要用于电气连接。 在压接过程中,两个导体被压接钳或压接机压缩,使得 它们的接触表面产生塑性变形,从而实现良好的电气接 触。压接具有较高的连接强度和可靠性,能够承受较大 的电流和电压,因此广泛应用于电线、电缆等领域的连 接。
谢谢
THANKS
压力焊
总结词
通过施加压力,使两个金属物体在接触 面处连接在一起。
VS
详细描述
压力焊是一种通过施加压力,使两个金属 物体在接触面处紧密结合的焊接方式。在 压力的作用下,金属原子之间的距离减小 ,形成金属键,从而实现连接。常见的压 力焊方法包括锻焊、电阻焊和摩擦焊等。
钎焊
总结词
通过将熔点较低的金属(钎料)熔化后填充 到两个金属物体之间,冷却后形成连接。
机械设计基础第二章--常用机构介绍

4—机架 1,3—连架杆→定轴转动 2—连杆→平面运动 整转副:二构件相对运动为
整周转动。
摆动副:二构件相对运动不 为整周转动。
曲柄:作整周转动的连架杆
摇杆:非整周转动的连架杆
C
2
B
3
1
A
D
4
二、平面四杆机构的常用形式
1、曲柄摇杆机构
(构件4为机架、构件2为机架)
2、双曲柄机构
}全回转副四杆机构
(二)曲柄为最短杆。 ▲铰链四杆机构存在曲柄的条件是:
(一)最短杆与最长杆长度之和小于或等于其 余两杆长度之和。
(二)机架或连架杆为最短杆。
4、曲柄滑块机构 二、平面四杆机构的内部演化:
第二节 凸轮机构
一、凸轮机构的组成与分类: 运动方式:将主动凸轮的连续转动或
移动转换成为从动件的移动或摆动。 分类:1、形状
①盘形凸轮机构——平面凸轮 机构
②移动凸轮机构——平面凸轮 机构
③圆柱凸轮机构——空间凸轮 机构
2、运动形式
按从动件的运动型式:
①尖底从动件:用于 低速;
②滚子从动件:应用 最普遍;
③平底从动件:用于 高速
O
r0
1 2 3
4
5
6 7 8
二、从动件的常用运动规律
从动件的运动规律——从动件在工作过程中, 其位移(角位移)、速度(角速度)和加 速度(角加速度)随时间(或凸轮转角) 变化的规律。
长 几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律; ②设计复杂;
③只用于速度较低的场合。
由转动副联接四个构
件而形成的机构,称为铰 链四杆机构,如图所示。 图中固定不动的构件是机 架;与机架相连的构件称 为连架杆;不与机架直接 相连的构件称为连杆。连 架杆中,能作整周回转的 称为曲柄,只能作往复摆 动的称为摇杆。根据两连 架杆中曲柄(或摇杆)的数 目,铰链四杆机构可分为 曲柄摇杆机构、双曲柄机 构和双摇杆机构。
机械设计常用机构

机械设计常用机构在机械设计中,机构是指由连接在一起的零件和它们之间的相对运动所组成的系统。
机构在机械设计中扮演着非常重要的角色,可以实现不同的功能和动力传递。
下面是一些常用的机构及其应用。
1.转动副:转动副是最简单的机构之一,用于实现两个零件之间的转动运动。
常见的转动副包括轴承、联轴器和齿轮等。
例如,轴承可以在旋转部件之间提供支撑和摩擦减小的功能,联轴器可以将两个轴连接在一起,齿轮可以将动力从一个轴传递到另一个轴。
2.平动副:平动副用于实现两个零件之间的直线运动。
常见的平动副包括直线导轨、滑块和斜块等。
例如,直线导轨可以提供平稳的直线运动,滑块可以在导轨上滑动,斜块可以将旋转运动转化为直线运动。
3.回转副:回转副用于实现一个零件相对于另一个零件的回转运动。
常见的回转副包括轴承、转轴和连杆等。
例如,轴承可以使一个零件在另一个零件上旋转,转轴可以将动力从一个零件传递到另一个零件,连杆可以将旋转运动转化为回转运动或直线运动。
4.正交副:正交副用于实现两个零件之间的相对平行移动。
常见的正交副包括齿轮、链条和齿条等。
例如,齿轮可以将动力从一个轴传递到另一个轴,并实现平行移动,链条可以在两个轮齿之间传递动力,齿条可以将旋转运动转化为直线运动。
5.万向节副:万向节副用于实现两个轴相互呈角度的任意转动。
常见的万向节副包括万向节和万向轴等。
例如,万向节可以使两个轴相互呈任意角度转动,万向轴可以将动力从一个任意角度的轴传递到另一个任意角度的轴。
除了以上介绍的机构,还有许多其他常用的机构,如滚珠丝杠副、曲柄滑块副、连杆机构等。
这些机构在不同的机械设计中扮演着不同的角色,用于实现各种功能和动力传递。
机械设计师在设计机构时需要考虑诸如结构复杂度、运动精度、可靠性和适应性等因素,并根据具体应用需求选择适合的机构。
第2章 工程机械的常用机构

螺旋机构类型及其应用
(1)传力螺旋 (1)传力螺旋 用于举重或克服较大阻力 的机械上。 常用螺母固定不动,螺杆 转动并移动的运动形式。 螺旋千斤顶 螺旋压力机
46
螺旋机构类型及其应用
⑵传导螺旋 主要用来传递运动。 常用螺杆转动,螺母 移动的运动形式。
车床进给机构
47
螺旋机构类型及其应用
(3)调整螺旋 (3)调整螺旋 主要用于零件(或工件) 主要用于零件(或工件) 的位置调整或固定。
41
棘爪 棘轮 摇杆 止动爪 弹簧
棘轮机构
42
槽轮机构
功能:实现间歇运动。 功能:实现间歇运动。 组成:槽轮2、带有圆销的拨盘1 组成:槽轮2、带有圆销的拨盘1和机架。 工作原理:将主动件拨盘的等速转动转换 工作原理:将主动件拨盘的等速转动转换 成槽轮的间歇运动。 特点:结构简单、外形尺寸小、工作可靠, 特点:结构简单、外形尺寸小、工作可靠, 转速不高。
(1 ) (2 )
22
杆2能做整周转动的条件2 能做整周转动的条件2
C‘’ l3
三角形∆B’‘C’’D
C
B l2
l4
B‘’
A
l1
D
23
三角形∆B’‘C’’D
根据三角形任意两边之和必大于第三边有:
l 2+l1≤l3+l4
(3 )
24
铰链四杆机构存在曲柄的条件
因此有:
l2-l4≤l1-l3 l2-l3≤l1-l4 l 2+l1≤l3+l4
平面机构运动简图举例 平面机构运动简图
颚式破碎机
颚式破碎机剖面图
10
平面机构运动简图举例 平面机构运动简图
颚式破碎机剖面图
八种常用机械结构

八种常用机械结构一、简单机构简单机构是机械工程中最基本的机构之一,它由两个或多个刚性零件通过铰链连接而成。
常见的简单机构有杠杆、曲柄连杆机构和齿轮传动机构。
杠杆是一种由固定支点连接的刚性杆件组成的机构,它可以用来放大力量或改变力的方向。
常见的杠杆有一级杠杆、二级杠杆和三级杠杆,它们的力量放大倍数依次递增。
杠杆在物理学中有着广泛的应用,比如撬动重物、刷牙时使用的牙刷等。
曲柄连杆机构是由一个曲柄和一个连杆构成的机构,它可以将旋转运动转换为往复运动。
曲柄连杆机构被广泛应用于内燃机、蒸汽机等发动机中,将活塞的往复运动转换为输出轴的旋转运动。
齿轮传动机构是利用齿轮之间的啮合传递动力和运动的机构。
它有许多种形式,如齿轮副、链轮副等。
齿轮传动机构具有传动效率高、传递功率大、传动稳定等优点,广泛应用于各种机械设备中。
二、滑块机构滑块机构是由滑块和导轨组成的机构,它可以将旋转运动转换为往复运动或直线运动。
滑块机构常用于各种工具和机械设备中,如冲床、拉床等。
滑块机构的运动规律可以通过几何分析和运动学计算来确定,为机械设计提供了重要的理论依据。
三、减速机构减速机构是一种将高速运动转换为低速运动的机构,常用于各种机械设备中。
减速机构的主要作用是减小输出轴的转速,增加输出轴的扭矩。
常见的减速机构有齿轮减速机、带传动减速机等。
齿轮减速机是利用齿轮的啮合传递动力和运动的机构,通过改变齿轮的大小和齿数比例来实现减速。
齿轮减速机具有结构简单、传动效率高、传递功率大等优点,在工业生产中得到广泛应用。
带传动减速机是利用带传动的原理来实现减速的机构,通过改变带轮的直径比例来改变传动比,从而实现减速。
带传动减速机具有传动平稳、噪音小、维护方便等优点,广泛应用于各种机械设备中。
四、连杆机构连杆机构是由连杆和铰链组成的机构,它可以将旋转运动转换为往复运动或直线运动。
连杆机构被广泛应用于各种机械设备中,如汽车发动机、机床等。
连杆机构的运动规律可以通过几何分析和运动学计算来确定,为机械设计提供了重要的理论依据。
机械设计常用机构

相互转动来实现运动和 柱齿轮的轮齿在轴线上
动力的传递。
倾斜排列,锥齿圆柱齿
轮的轮齿在一个锥面上
排列。
在圆锥齿轮机构中,两 个圆锥齿轮的轮齿在一 个锥面上排列,通过啮 合实现相交轴之间的运 动和动力传递。
在蜗轮蜗杆机构中,蜗 在平面齿轮机构中,直
杆的轮齿在蜗杆面上呈 齿平面齿轮的轮齿在一
螺旋状排列,蜗轮的轮 个平面上垂直排列,斜
用于传递垂直轴之间的运动和动 力,其传动比大、结构紧凑。
平面齿轮机构
用于传递两个平面之间的运动和 动力,其传动形式包括直齿、斜
齿和曲齿等。
齿轮机构的工作原理
01
02
03
04
05
齿轮机构的工作原理基 在圆柱齿轮机构中,直
于齿轮之间的啮合关系, 齿圆柱齿轮的轮齿在轴
通过一对或多个齿轮的 线上垂直排列,斜齿圆
圆锥凸轮机构
凸轮呈圆锥状,常用于需要较小接触面积的场 合。
凸轮机构的工作原理
01
凸轮机构通过凸轮的转动,使从动件产生预期 的运动规律。
02
凸轮的形状决定了从动件的运动轨迹,从而实 现各种复杂的运动要求。
03
当凸轮转动时,从动件在垂直于凸轮轴线的平 面内作往复运动。
凸轮机构的应用
自动化生产线
用于传递和改变运动轨 迹,实现自动化生产。
棘轮机构的工作原理
01
当主动件顺时针转动时 ,棘爪便随主动件一起 顺时针转动,并推动棘
轮逆时针转动。
02
当主动件逆时针转动时 ,棘爪便被压下,无法 与棘轮齿啮合,因此棘
轮不会转动。
03
棘轮机构的运动方向取 决于主动件的转动方向
。
棘轮机构的应用
机械原理机构

机械原理机构
机械原理机构是机械设备中起到传递和转换动力的组成部分。
它由各种机械元件按照一定的方式组合而成,可实现物体的运动和力的传递等功能。
机械原理机构的设计需要考虑机械元件的尺寸、形状、材料等因素,以确保机构的稳定性、合理性和可靠性。
在机械原理机构的设计中,需要了解机械元件的运动和力学原理。
例如,常见的机械原理机构有齿轮传动、连杆机构、凸轮机构等。
这些机构根据其特定的设计原理,可以实现不同的功能和运动方式。
齿轮传动是一种常见的机械原理机构,它由多个齿轮组成,通过齿轮之间的啮合来传递动力和运动。
在设计齿轮传动时,需要考虑齿轮的齿数、模数、压力角等参数,以确保传动的平稳和高效。
连杆机构是利用连杆的运动实现力的传递和转换的机械原理机构。
它由杆件和连接件组成,通过杆件的运动来实现力的传递和转换。
在设计连杆机构时,需要考虑连杆的长度、角度等参数,以确保机构的运动平稳和力的传递可靠。
凸轮机构是利用凸轮的运动实现力的传递和运动的机械原理机构。
它由凸轮、从动件和驱动件组成,通过凸轮的运动来驱动从动件的运动。
在设计凸轮机构时,需要考虑凸轮的轮廓、凸轮轴的转动方式等参数,以确保机构的运动轨迹准确和从动件的运动稳定。
除了以上三种常见的机械原理机构,还有许多其他类型的机构,如滑块机构、曲柄机构等。
每种机构都有其特定的设计原理和应用领域,可以根据具体的需求选择合适的机构进行设计和应用。
在机械工程设计中,机械原理机构是非常重要的组成部分,它的设计和选择直接关系到机械设备的性能和使用效果。
因此,对于机械工程师来说,掌握和理解机械原理机构的原理和设计方法是非常重要的。
机械设计手册-常用机构(共32张PPT)

结束
§ 12 - 1 棘轮机构
三 、棘轮机构的功能
1、间歇送进
结束
§ 12 - 1 棘轮机构
三 、棘轮机构的功能
2、制动
结束
§ 12 - 1 棘轮机构
三 、棘轮机构的功能
3、转位、分度
结束
§ 12 - 1 棘轮机构
三 、棘轮机构的功能
4、超越离合
结束
§ 12 - 1
四 、动程和动停比的调整
一、槽轮机构的组成及工作特点
1、组成: 主动拨盘、从动槽轮、机架
2、工作特点
将主动拨盘的连续转动转换为槽轮的 单向间歇转动
结构简单、尺寸小,传动平稳、效率高
;柔性冲击 中低速场合
槽轮
拨盘
结束
§ 12 - 2 槽轮机构
一、槽轮机构的组成及工作特点
1、组成:
主动拨盘、从动槽轮、机架 2、工作特点
将主动拨盘的连续转动转换 为槽轮的单向间歇转动
kn(1/21/z) 又 k 1 n 2 z /z ( 2 ) 结束
§ 12 - 2 槽轮机构
四 、普通槽轮机构的设计要点
1、槽数 z 和圆销数 n 的选取
运动系数 k: k td /t
td —— 拨盘转一周,槽轮的运动时间
t —— 拨盘转一周的总时间
拨盘1匀速转动
k
21 2
外槽轮机构 21槽数2 与圆2销数的关系
td —— 拨盘转一周,槽轮的运动时间 t —— 拨盘转一周的总时间
拨盘1匀速转动
k
21 2
外槽轮机构 2122
k2 2 1 2 2 2 2 2 /z 1 2 1 z
由上式可见: k 0 z 3 且 k 0 .5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章常用机构4.1 平面连杆机构4.1.1 平面连杆机构的组成我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。
1、构件的自由度如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。
我们把构件作独立运动的可能性称为构件的“自由度”。
所以,一个在平面自由运动的构件有三个自由度。
可用如图4-1所示的三个独立的运动参数x、y、θ表示。
2、运动副和约束平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。
这种使两构件直接接触并能产生一定运动的联接,称为运动副。
两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。
机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。
两构件组成的运动副,不外乎是通过点、线、面接触来实现的。
根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。
(1)低副两构件以面接触形成的运动副称为低副。
按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。
①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。
通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。
②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。
由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。
因转动副和移动副都是面接触,接触面压强低,称为低副。
我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。
由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。
此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。
平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。
(2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。
这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。
3、构件分类机构中的构件可分为三类。
(1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。
(2)原动件它是机构中接受外部给定运动规律的活动构件。
(3)从动件它是机构中的随原动件运动的活动构件。
4.1.2平面机构的运动简图为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。
它是表示机构运动特征的一种工程用图)1、常用运动副的符号(如图4-4)2、构件的表示法不管构件形状如何,都用简单线条表示,带短线的线条表示机架,如图4-5(b)、(c)、(e)所示。
如图4-6(a)所示表示能组成两转动副的构件,图4-6(b)所示表示组成一个转动副和一个移动副的构件;如图4-6(c)、(d)所示表示能组成三个转动副的构件。
3、绘制机构运动简图的方法在绘制机构运动简图时,首先必须分析该机构的实际构造和运动情况,分清机构中的主动件和从动件;然后从主动件开始,顺着运动传递路线,仔细分析各构件之间的相对运动情况;从而确定组成该机构的构件数、运动副数及性质。
并按一定的比例,用特定的符号,正确绘制出机构运动简图。
下面以如图4-7所示颚式破碎机为例,说明绘制机构运动简图的步骤。
(1)分析机构,确定构件的相对运动如图4-7(a)所示颚式破碎机中,运动由皮带轮5输入,通过偏心轴2带动活动颚3及摇杆4运动,构件1为机架,起支撑作用。
结构上,皮带轮5和偏心轴2可以看做一个构件,其作用是将外部输入的旋转运动转变成偏心2绕A点旋转运动。
活动颚板2工作时可绕偏心轴2的几何中心B点相对转动,摇杆4在C、D两点分别与活动颚板3的机架通过铰链连接。
(2)确定所有运动副的类型和数目从上述运动分析及图中可以看出,偏心轴为主动构件,活动颚板、摇杆为从动件,机架为固定构件。
各构件间均用转动副(共4个铰链)连接。
(3)测量各运动副的相对位置尺寸逐一测量出四个运动副中心A与B、B与C、C与D、D与A之间的和长度LAB、LBC、LCD、LDA。
(4)选定比例尺,用规定符号绘制运动简图根据测量出的各运动副的位置尺寸,选择恰当的视图方向,选定合适的绘图比例,给出各运动副的位置,并用规定的符号和线条绘出各构件。
(5)标明机架、构件序号、原动件、绘图比例等得到机构运动简图[如图4-7(b)]。
4.1.3平面机构的自由度1、平面机构自由度的计算平面机构自由度就是该机构所具有的独立运动数目。
平面机构自由度与组成机构的构件数目、运动副的数目及运动副的性质有关。
在平面机构中,每个平面低副(转动副、移动副)引入两个约束,使构件失去两个自由度,保留一个自由度;而每个平面高副(齿轮副、凸轮副等)引入一个约束,使构件失去一个自由度,保留两个自由度。
如果一个平面机构中含含有N 个活动构件(机架为参考坐标系,相对固定而不计),未用运动副联接之前,这些活动构件的自由度总数为3N 。
当各构件用运动副连接起来之后,由于运动副引入的约束使构件的自由度减少。
若机构中P L 个低副和P H 个高副。
则所有运动副引入的约束数为2P L +P H 。
因此,自由度的计算可用活动构件的自由度总数减去运动副引入的约束总数。
基机构的自由度用F 表示,则有:F =3N -(2P L +P H )=3N -2P L -P H (4-1)例4-1试计算图4-8所示四个平面机构的自由度解 图4-8(a )的自由度:图中除机架以外的活动构件数为2,转动副数为3,没有高副,由式(4-1)得:F =3N -2P L -P H =3×2-2×3-0=0该机构自由度为0,不能运动。
图4-8(b )自由度:图中除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:F=3N-2PL -PH=3×3-2×4-0=1该机构自由度为1,具有确定的相对运动。
图4-8(c)自由度:图中除机架以外的活动构件数为3,转动副数为5,没有高副,由式(4-1)得:F=3N-2PL -PH=3×3-2×5-0=-1该机构自由度为-1,不能运动。
图4-8(d)自由度:图中除机架以外的活动构件数为4,转动副数为5,没有高副,由式(4-1)得:F=3N-2PL -PH=3×4-2×5-0=2该机构自由度为2,原动件数为1,没有确定的相对运动(乱动)例4-2试计算如图4-7(b)所示叶、颚式破碎机的机构自由度。
解图4-7(b)中,除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:F=3N-2PL -PH=3×3-2×4-0=1该机构自由度为1,原动件数为1,具有确定的相对运动。
2、机构具有确定相对运动的条件由以上分析和计算可知,如果机构的自由度等于或小于零,所有构件就不能运动,因此,就构不成机构(称为刚性桁架)。
当机构自由度大于零时,如果机构自由等于原动件数,机构具有确定的相对运动;如果机构自由数大于原动件数,机构运动不确定。
因此,机构具有确定的相对运动的充分必要条件:机构的自由度必须大于零,且原动件的数目必须等于机构自由度数,即:机构的原动件数=机构的自由度>0。
3、机构自由度计算中几种特殊情况的处理(1)复合铰链如图4-9(a)所示,A处的符号容易被误认为是一个转动副,若观察它的侧视图,如图4-9(b )所示,则可以看出构件1、2、3在A 处构成了两个同轴的转动副。
这种由三个或以上构件在同一处组成转动副,即为复合铰链。
在计算机构自由度时,复合铰链处的转动副数目应为该处汇交的构件数减1。
例4-3试计算如图4-10所示机构的自由度。
解图4-10中除机架外有5个活动构件(4个杆件和1个滑块),A 、B 、C 、D 、E 共4个简单铰链,应计2个铰链,故共有铰链6个,1个移动副,即P L =7,高副数P H =0。
运用式(4-1)计算机构自由度得:F =3N -2P L -P H =3×5-2×7-0=1该机构有1个自由度,原动件数为1,该机构具有确定的相对运动。
(2)局部自由度机构中某些构件所具有的局部运动,并不影响整个机构运动的自由度。
如图4-11(a )所示,构件3是滚子,它能绕C 点作独立的运动,不论该滚子是否转动,转快或转慢,都不影响整个机构的运动。
这种不影响整个机构运动的、局部的独立运动,称为局部自由度。
在计算机构自由度时,应将滚子3与杆2看成是固定在一起的一个构件,如图4-11(b )所示,不计滚子与杆2间的转动副。
而滚子的作用仅仅是将B 处的滑动磨擦变为滚动磨擦,减少功率损耗,降低磨损。
(3)虚约束在机构中与其他约束重复而不起限制运动作用的约束称为虚约束。
在计算机构自由度时,应当去除不计。
如图4-12所示为机车车轮联动机构。
在此机构中AB 、CD 、EF 三个构件相互平行且长度相等:L AB =L CD =L EF ,L BC =L AD ,L CE =L DF ,按前述机构自由度的计算方法,此机构中N=4,PL =6、PH=0。
机构自由度为:F=3N-2PL -PH=3×4-2×6-0=0这表明该机构不能运动,显然与实际情况不符。
进一步分析可知,机构中的运动轨迹有重叠现象。
因为如果去掉构件4(转动副E、F也不再存在)当原动件1转动时,构件3上E点的轨迹是不变的。
因此,构件4及转动副E、F是否存在对于整个机构的运动并无影响。
也就是说,机构中加入构件4及转动副E、F后,虽然使机构增加了一个约束,但此约束并不起限制机构运动的作用,所以是虚约束。
因此,在计算机构自由度时应除去构件4和转动副E、F。
此时机构中N=3,PL=4、PH=0,则机构实际自由度为:F=3N-2PL -PH=3×3-2×4-0=1由此可知,当机构中存在虚约束时,其消防办法是将含有约束的构件及其组成的运动副去掉。
平面机构的虚约束常出现于下列情况中:(1)被联接件上点的轨迹与机构上联接点的轨迹重合时,这种联接将出现虚约束,如图4-12所示。
(2)机构运动时,如果两构件上两点间距离始终保持不变,将此两点用构件和运动副联接,则会带进虚约束,如图4-13所示的A、B两点。
(3)如果两个构件组成的移动副如图4-14(a)所示相互平行,或两个构件组成多个轴线重合的转动副时,如图4-14(b)所示,只需考虑其中一处,其余各处带进的约束均为虚约束。