机械设计中常用结构
常用的机械运动结构形式

常用的机械运动结构形式一、引言机械运动结构是指由运动副和运动链组成的系统,它能够实现各种机械运动形式。
在机械设计中,常用的机械运动结构形式有很多种,本文将对其中较为常见的几种进行详细介绍。
二、平面四杆机构平面四杆机构是一种最基本的机械运动结构形式,也是最早被应用于工业生产中的一种结构。
它由四根连杆组成,其中两根为主杆,另外两根为从杆。
其特点是具有一个定点和一个固定杆件,能够实现直线运动、旋转运动、摇摆运动等多种不同形式的机械运动。
三、曲柄滑块机构曲柄滑块机构由曲轴、连杆和滑块三部分组成,是一种常见的旋转-直线转换机构。
其特点是可以将旋转转化为直线或者将直线转化为旋转,并且能够实现往复或循环式的直线运动。
四、齿轮传动齿轮传动是一种通过齿轮配合来实现不同速度和力矩传递的机械运动结构。
它具有传动比稳定、效率高、噪音小等优点,因此在工业生产中得到了广泛应用。
常见的齿轮传动形式有直齿轮传动、斜齿轮传动、锥齿轮传动等。
五、链条传动链条传动是一种通过链条配合来实现不同速度和力矩传递的机械运动结构。
它与齿轮传动相比,具有更大的扭矩传递能力和更好的抗冲击性能,但是效率较低。
常见的链条传动形式有滚子链条、板链和双面链等。
六、减速器减速器是一种通过齿轮或其他机械元件组合来实现减速或增加扭矩的机械运动结构。
它具有结构紧凑、效率高、噪音小等优点,并且可以根据需要进行多级组合,实现不同程度的减速或增加扭矩。
常见的减速器形式有行星减速器、蜗杆减速器和圆锥摆线针轮减速器等。
七、连杆机构连杆机构是一种由多个连杆组成的机械运动结构,其特点是能够实现复杂的机械运动形式。
常见的连杆机构形式有曲柄摇杆机构、双曲线摇杆机构和滑板机构等。
八、总结在机械设计中,不同的运动结构形式具有不同的特点和适用范围。
本文对常见的几种机械运动结构形式进行了详细介绍,希望能够对读者在实际应用中选择合适的运动结构提供一些参考。
机械制造常用机构

规定: 和在圆销进入区为正,在圆 销离开区为负,变化区间为:
ω1
o1
R
α
α1 -α1
L
-α1≤α≤α1 -φ2≤φ≤φ2
A
φ B
φ2
O2 -φ2
在△ABO2中有如下关系:
AB R sin tg O2 B L R cos
ω2
令λ= R / L,并代入上式得: sin 1 = tg 1 cos
槽数z 圆销数n 3 1~6 1/6~1
k≤1 得:n≤2z/ (z -2)
4
1~4 0.25~1 5 、6 1~3 ≥7
提问:why k≤1? 事实上,当k=1时,槽轮机构已经不具备间歇运动特性了。
1~2
0.36~1
运动系数k
0.3~1
当z=4及n=2时 k=n(1/2-1/z) = 0.5 说明此时槽轮的运动时间和静止时间相等。
运动特性分析: ①槽轮运动的ω max、amax随槽数z的增多而减小。 ②存在柔性冲击。Z愈少,冲击愈大。
参赛专用版
运动特性曲线
圆销进入或退出径向槽时,角速度有突变,
国防科大潘存云教授研制
(2)内啮合槽轮机构
用同样方法可求得内啮合槽轮机构 的运动曲线如图所示。
2 12
1.0 0.75 0.5 0.25 0 -0.25 -0.5 -0.75 0.8 0.6 0.4 0.2
∵
F= Pn f 代入得: tgα> f =tgφ ∴ α >φ
da
o1
当 f=0.2 时,φ=11°30’
参赛专用版
通常取α=20°
国防科大潘存云教授研制
棘轮几何尺寸计算公式 棘轮参数 齿数z 模数m 计算公式或取值 12~25
常见旋转机构

常见旋转机构旋转机构是一种常见的机械结构,能够将输入的旋转运动转化为输出的旋转运动。
它广泛应用于机械、工程、自动化等领域,在各种机械设备和系统中都有重要作用。
下面将介绍一些常见的旋转机构。
1.齿轮传动:齿轮传动是最常见的旋转机构之一。
它通过齿轮之间的啮合,将输入轴的旋转运动转化为输出轴的旋转运动。
根据齿轮的不同形式和排列方式,可以实现不同的传动比,从而满足不同的工作要求。
常见的齿轮传动包括平行轴齿轮传动、斜齿轮传动、锥齿轮传动等。
2.带传动:带传动是一种基于带子的旋转机构。
它通过带子的张紧和摩擦力来传递转矩和旋转运动。
常见的带传动包括平行带传动、交叉带传动等。
带传动适用于距离较远、转速较低、转矩较小的传动场合。
3.链传动:链传动是一种使用链环连接两个或多个齿轮的旋转机构。
它可以通过链环的张紧来传递转矩和旋转运动。
链传动具有传动效率高、传动比稳定等优点,在工业生产中得到广泛应用。
4.曲柄摇杆机构:曲柄摇杆机构由曲柄、连杆和摇杆组成,常用于将旋转运动转换为直线运动或摇摆运动。
曲柄摇杆机构具有简单、紧凑的结构,适用于需要实现直线运动或摇摆运动的场合。
5.省力摇杆机构:省力摇杆机构是一种特殊的旋转机构,通过合理设计,能够减小输入力所产生的输出力的大小。
它常用于一些需要较大力量的场合,如挖掘机、起重机等。
6.平行四杆机构:平行四杆机构由四个长度相等的杆件组成,其连接方式形成一个平行四边形。
它可以将旋转运动转换为直线运动或者将直线运动转换为旋转运动。
平行四杆机构结构简单,传动可靠,在自动化装置中广泛应用。
7.凸轮摆线机构:凸轮摆线机构是一种借助凸轮和摆线机构实现的旋转机构。
它通过凸轮轮廓的特殊设计,能够将旋转运动转换为摆线运动。
凸轮摆线机构常用于一些需要实现复杂的运动轨迹的场合,如工业机械、汽车发动机等。
8.行星齿轮传动:行星齿轮传动是一种特殊的齿轮传动,由太阳轮、行星轮和内齿圈组成。
太阳轮为输入轴,内齿圈为输出轴。
工程机械结构件分类

工程机械结构件分类一、支撑结构件支撑结构件是工程机械中起到支撑作用的零部件,用于支撑整个机械的重量,并保证机械的稳定性。
常见的支撑结构件有底座、托板、支架等。
底座是机械设备的基础,一般由铸铁、钢板等材料制成,具有足够的强度和刚度,能够承受机械的重量和工作负荷。
二、传动结构件传动结构件是用于将动力从一个地方传递到另一个地方,使机械设备得以正常运转的零部件。
常见的传动结构件有轴、齿轮、齿条等。
轴是传递动力和承载力的重要零件,通常由金属材料制成,能够承受一定的转矩和力。
齿轮是常见的传动结构件之一,通过齿的啮合,实现轴间的转动传动。
齿条则是常见的线性传动结构件,通过齿轮和齿条的啮合,将回转运动转化为直线运动。
三、定位结构件定位结构件是用于确保机械设备在运动过程中的相对位置和相对运动方向的零部件,能够使各个零部件按照设计要求准确地定位。
常见的定位结构件有销轴、销销、销销凸缘、销销孔等。
销轴是通过销销的固定来实现部件之间的相对定位,在机械设备中应用广泛。
销销是将两个相对运动的部件定位连接在一起的定位结构件,可以使部件在运动过程中相对位置保持不变。
四、连接结构件连接结构件是用于连接机械设备中的各个部件,使其构成一个整体的零部件,能够承受外力和内力的作用。
常见的连接结构件有螺栓、螺母、销销等。
螺栓是一种常用的连接件,通过对接部件进行紧固,使之可以承受一定的拉力。
螺母是与螺栓配合使用的零部件,能够使螺栓与固定件连接在一起,实现部件之间的连接。
以上是工程机械结构件的一些分类,这些不同类型的结构件相互配合,使机械设备能够正常运行,并完成各种工作任务。
在工程机械的设计和制造过程中,需要根据具体的工作要求选择合适的结构件,并合理设计其结构和布局,以保证机械设备的性能和可靠性。
八种常用机械结构

八种常用机械结构一、简单机构简单机构是机械工程中最基本的机构之一,它由两个或多个刚性零件通过铰链连接而成。
常见的简单机构有杠杆、曲柄连杆机构和齿轮传动机构。
杠杆是一种由固定支点连接的刚性杆件组成的机构,它可以用来放大力量或改变力的方向。
常见的杠杆有一级杠杆、二级杠杆和三级杠杆,它们的力量放大倍数依次递增。
杠杆在物理学中有着广泛的应用,比如撬动重物、刷牙时使用的牙刷等。
曲柄连杆机构是由一个曲柄和一个连杆构成的机构,它可以将旋转运动转换为往复运动。
曲柄连杆机构被广泛应用于内燃机、蒸汽机等发动机中,将活塞的往复运动转换为输出轴的旋转运动。
齿轮传动机构是利用齿轮之间的啮合传递动力和运动的机构。
它有许多种形式,如齿轮副、链轮副等。
齿轮传动机构具有传动效率高、传递功率大、传动稳定等优点,广泛应用于各种机械设备中。
二、滑块机构滑块机构是由滑块和导轨组成的机构,它可以将旋转运动转换为往复运动或直线运动。
滑块机构常用于各种工具和机械设备中,如冲床、拉床等。
滑块机构的运动规律可以通过几何分析和运动学计算来确定,为机械设计提供了重要的理论依据。
三、减速机构减速机构是一种将高速运动转换为低速运动的机构,常用于各种机械设备中。
减速机构的主要作用是减小输出轴的转速,增加输出轴的扭矩。
常见的减速机构有齿轮减速机、带传动减速机等。
齿轮减速机是利用齿轮的啮合传递动力和运动的机构,通过改变齿轮的大小和齿数比例来实现减速。
齿轮减速机具有结构简单、传动效率高、传递功率大等优点,在工业生产中得到广泛应用。
带传动减速机是利用带传动的原理来实现减速的机构,通过改变带轮的直径比例来改变传动比,从而实现减速。
带传动减速机具有传动平稳、噪音小、维护方便等优点,广泛应用于各种机械设备中。
四、连杆机构连杆机构是由连杆和铰链组成的机构,它可以将旋转运动转换为往复运动或直线运动。
连杆机构被广泛应用于各种机械设备中,如汽车发动机、机床等。
连杆机构的运动规律可以通过几何分析和运动学计算来确定,为机械设计提供了重要的理论依据。
常用机构(四连杆机构)

械
设 转动导杆机构:
计 基
BC>AB
础 导杆可作360º回转
摆动导杆机构:
BC<AB 导杆在小于360º范围内摆动。
(牛头刨床的主传动机构)
平
面
4
连 杆 机 构
3 C
3 C
33 3 C
C3 C3
242 2 22 242
3C C3
C3
4224 B
4224
3C
4 2 21 22 2 4
C3 4
4
3 C
A CC
——双摇杆机构
最新课件
11
二、铰链四杆机构的演化
机
械
设
计 基
机构演化方法
础
平 改变杆件长度,用移动副取代回转副
面 连 杆
扩大回转副 变更机架等
机
构
连杆
2 连架杆 B
C 连架杆
3
1
A
4
D
最新课件
12
机 (1)改变杆件长度 —— 曲柄滑块机构
械
设 计
曲线导轨曲柄滑块机构
基
C
础
C
平
2
面
连
B
杆1
机
机
械
设
计
基
础
内容
平 面
• 平面四杆机构的基本类型
连 杆
• 平面四杆机构的演化
机 构
• 平面四杆机构的特点及设计
了解常用四杆机构的基本类型和应用。 对急回特性、传动角、压力角、死点位置等有明确概念。
最新课件
1
机 一、铰链四杆机构
械 设 计 基 础
平
面
连
常用的机械结构知识大全

机械设计:常用的机械结构知识大全平面连杆机构的组成我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。
1、构件的自由度如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。
我们把构件作独立运动的可能性称为构件的“自由度”。
所以,一个在平面自由运动的构件有三个自由度。
可用如图4-1所示的三个独立的运动参数x、y、θ表示。
机械设计:常用的机械结构知识大全机械设计:常用的机械结构知识大全2、运动副和约束平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。
这种使两构件直接接触并能产生一定运动的联接,称为运动副。
两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。
机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。
两构件组成的运动副,不外乎是通过点、线、面接触来实现的。
根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。
(1)低副两构件以面接触形成的运动副称为低副。
按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。
①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。
通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。
②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。
由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。
因转动副和移动副都是面接触,接触面压强低,称为低副。
我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。
由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。
此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。
平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。
机械设计常用机构

机械设计常用机构机械设计是一门综合性的学科,涉及到各种各样的机构和装置。
在机械设计中,机构是非常重要的一部分,它负责传递和转换力、运动和能量,从而实现机械装置的各项功能。
在机械设计中,常用的机构有很多种。
这些机构可以根据其功能、结构和运动特性进行分类和归纳。
下面,我将对一些常用的机构进行介绍。
一、连杆机构连杆机构是机械设计中最基本也是最常用的一种机构。
它由杆件和关节组成,通过杆件的连接和关节的运动,实现力和运动的传递。
连杆机构广泛应用于各种机械装置中,如汽车发动机的连杆机构、拉杆机构等。
二、齿轮机构齿轮机构是一种通过齿轮的相互啮合来传递运动和力的机构。
齿轮机构具有传动比恒定、传递力矩大、传递效率高等特点,广泛应用于各种传动装置中,如汽车变速器、机床传动等。
三、减速机构减速机构主要通过齿轮、皮带等传动元件将输入的高速运动转换为输出的低速运动。
减速机构在机械设计中非常常见,用于满足不同场合的运动速度要求。
四、滑块机构滑块机构是一种通过滑块在导轨上做直线运动来实现运动转换和力传递的机构。
滑块机构广泛应用于各种机械装置中,如工具机的进给机构、压力机的传动机构等。
五、摆线机构摆线机构是一种通过连杆和摆线来实现直线运动的机构。
它通过摆线的特殊形状和连杆的运动,将旋转运动转换为直线运动,广泛应用于各种机械装置中,如剪切机的摆线滑块机构、织机上纬缸的摆线机构等。
六、万向节机构万向节机构是一种通过球面和容器来实现输动与变动传动的机构。
它具有结构简单、运动灵活等优点,广泛应用于汽车、船舶和航空等领域。
以上介绍的只是机械设计中的一小部分常用机构,还有很多其他的机构在实际设计中也扮演着重要的角色。
在进行机械设计时,我们需要根据具体的应用要求和设计目标选择合适的机构,合理地组合和运用这些机构,以实现设计的目的。
总结起来,机械设计中常用的机构有连杆机构、齿轮机构、减速机构、滑块机构、摆线机构和万向节机构等。
这些机构在机械装置中起着重要的作用,通过它们的运动和力传递,实现了各种功能和要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章常用机构4.1 平面连杆机构4.1.1 平面连杆机构的组成我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。
1、构件的自由度如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。
我们把构件作独立运动的可能性称为构件的“自由度”。
所以,一个在平面自由运动的构件有三个自由度。
可用如图4-1所示的三个独立的运动参数x、y、θ表示。
2、运动副和约束平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。
这种使两构件直接接触并能产生一定运动的联接,称为运动副。
两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。
机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。
两构件组成的运动副,不外乎是通过点、线、面接触来实现的。
根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。
(1)低副两构件以面接触形成的运动副称为低副。
按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。
①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。
通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。
②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。
由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。
因转动副和移动副都是面接触,接触面压强低,称为低副。
我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。
由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。
此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。
平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。
(2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。
这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。
3、构件分类机构中的构件可分为三类。
(1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。
(2)原动件它是机构中接受外部给定运动规律的活动构件。
(3)从动件它是机构中的随原动件运动的活动构件。
4.1.2平面机构的运动简图为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。
它是表示机构运动特征的一种工程用图)1、常用运动副的符号(如图4-4)2、构件的表示法不管构件形状如何,都用简单线条表示,带短线的线条表示机架,如图4-5(b)、(c)、(e)所示。
如图4-6(a)所示表示能组成两转动副的构件,图4-6(b)所示表示组成一个转动副和一个移动副的构件;如图4-6(c)、(d)所示表示能组成三个转动副的构件。
3、绘制机构运动简图的方法在绘制机构运动简图时,首先必须分析该机构的实际构造和运动情况,分清机构中的主动件和从动件;然后从主动件开始,顺着运动传递路线,仔细分析各构件之间的相对运动情况;从而确定组成该机构的构件数、运动副数及性质。
并按一定的比例,用特定的符号,正确绘制出机构运动简图。
下面以如图4-7所示颚式破碎机为例,说明绘制机构运动简图的步骤。
(1)分析机构,确定构件的相对运动如图4-7(a)所示颚式破碎机中,运动由皮带轮5输入,通过偏心轴2带动活动颚3及摇杆4运动,构件1为机架,起支撑作用。
结构上,皮带轮5和偏心轴2可以看做一个构件,其作用是将外部输入的旋转运动转变成偏心2绕A点旋转运动。
活动颚板2工作时可绕偏心轴2的几何中心B点相对转动,摇杆4在C、D两点分别与活动颚板3的机架通过铰链连接。
(2)确定所有运动副的类型和数目从上述运动分析及图中可以看出,偏心轴为主动构件,活动颚板、摇杆为从动件,机架为固定构件。
各构件间均用转动副(共4个铰链)连接。
(3)测量各运动副的相对位置尺寸逐一测量出四个运动副中心A与B、B与C、C与D、D与A之间的和长度L AB、L BC、L CD、L DA。
(4)选定比例尺,用规定符号绘制运动简图根据测量出的各运动副的位置尺寸,选择恰当的视图方向,选定合适的绘图比例,给出各运动副的位置,并用规定的符号和线条绘出各构件。
(5)标明机架、构件序号、原动件、绘图比例等得到机构运动简图[如图4-7(b)]。
4.1.3平面机构的自由度1、平面机构自由度的计算平面机构自由度就是该机构所具有的独立运动数目。
平面机构自由度与组成机构的构件数目、运动副的数目及运动副的性质有关。
在平面机构中,每个平面低副(转动副、移动副)引入两个约束,使构件失去两个自由度,保留一个自由度;而每个平面高副(齿轮副、凸轮副等)引入一个约束,使构件失去一个自由度,保留两个自由度。
如果一个平面机构中含含有N个活动构件(机架为参考坐标系,相对固定而不计),未用运动副联接之前,这些活动构件的自由度总数为3N。
当各构件用运动副连接起来之后,由于运动副引入的约束使构件的自由度减少。
若机构中P L个低副和P H个高副。
则所有运动副引入的约束数为2P L+P H。
因此,自由度的计算可用活动构件的自由度总数减去运动副引入的约束总数。
基机构的自由度用F表示,则有:F=3N-(2P L+P H)=3N-2P L-P H (4-1)例4-1试计算图4-8所示四个平面机构的自由度解图4-8(a)的自由度:图中除机架以外的活动构件数为2,转动副数为3,没有高副,由式(4-1)得:F=3N-2P L-P H=3×2-2×3-0=0该机构自由度为0,不能运动。
图4-8(b)自由度:图中除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:F=3N-2P L-P H=3×3-2×4-0=1该机构自由度为1,具有确定的相对运动。
图4-8(c)自由度:图中除机架以外的活动构件数为3,转动副数为5,没有高副,由式(4-1)得:F=3N-2P L-P H=3×3-2×5-0=-1该机构自由度为-1,不能运动。
图4-8(d)自由度:图中除机架以外的活动构件数为4,转动副数为5,没有高副,由式(4-1)得:F=3N-2P L-P H=3×4-2×5-0=2该机构自由度为2,原动件数为1,没有确定的相对运动(乱动)例4-2试计算如图4-7(b)所示叶、颚式破碎机的机构自由度。
解图4-7(b)中,除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:F=3N-2P L-P H=3×3-2×4-0=1该机构自由度为1,原动件数为1,具有确定的相对运动。
2、机构具有确定相对运动的条件由以上分析和计算可知,如果机构的自由度等于或小于零,所有构件就不能运动,因此,就构不成机构(称为刚性桁架)。
当机构自由度大于零时,如果机构自由等于原动件数,机构具有确定的相对运动;如果机构自由数大于原动件数,机构运动不确定。
因此,机构具有确定的相对运动的充分必要条件:机构的自由度必须大于零,且原动件的数目必须等于机构自由度数,即:机构的原动件数=机构的自由度>0。
3、机构自由度计算中几种特殊情况的处理(1)复合铰链如图4-9(a)所示,A处的符号容易被误认为是一个转动副,若观察它的侧视图,如图4-9(b)所示,则可以看出构件1、2、3在A处构成了两个同轴的转动副。
这种由三个或以上构件在同一处组成转动副,即为复合铰链。
在计算机构自由度时,复合铰链处的转动副数目应为该处汇交的构件数减1。
例4-3试计算如图4-10所示机构的自由度。
解图4-10中除机架外有5个活动构件(4个杆件和1个滑块),A、B、C、D、E共4个简单铰链,应计2个铰链,故共有铰链6个,1个移动副,即P L=7,高副数P H=0。
运用式(4-1)计算机构自由度得:F=3N-2P L-P H=3×5-2×7-0=1该机构有1个自由度,原动件数为1,该机构具有确定的相对运动。
(2)局部自由度机构中某些构件所具有的局部运动,并不影响整个机构运动的自由度。
如图4-11(a)所示,构件3是滚子,它能绕C点作独立的运动,不论该滚子是否转动,转快或转慢,都不影响整个机构的运动。
这种不影响整个机构运动的、局部的独立运动,称为局部自由度。
在计算机构自由度时,应将滚子3与杆2看成是固定在一起的一个构件,如图4-11(b)所示,不计滚子与杆2间的转动副。
而滚子的作用仅仅是将B处的滑动磨擦变为滚动磨擦,减少功率损耗,降低磨损。
(3)虚约束在机构中与其他约束重复而不起限制运动作用的约束称为虚约束。
在计算机构自由度时,应当去除不计。
如图4-12所示为机车车轮联动机构。
在此机构中AB、CD、EF三个构件相互平行且长度相等:L AB=L CD =L EF,L BC=L AD,L CE=L DF,按前述机构自由度的计算方法,此机构中N=4,P L=6、P H=0。
机构自由度为:F=3N-2P L-P H=3×4-2×6-0=0这表明该机构不能运动,显然与实际情况不符。
进一步分析可知,机构中的运动轨迹有重叠现象。
因为如果去掉构件4(转动副E、F也不再存在)当原动件1转动时,构件3上E点的轨迹是不变的。
因此,构件4及转动副E、F是否存在对于整个机构的运动并无影响。
也就是说,机构中加入构件4及转动副E、F后,虽然使机构增加了一个约束,但此约束并不起限制机构运动的作用,所以是虚约束。
因此,在计算机构自由度时应除去构件4和转动副E、F。
此时机构中N=3,PL=4、PH=0,则机构实际自由度为:F=3N-2P L-P H=3×3-2×4-0=1由此可知,当机构中存在虚约束时,其消防办法是将含有约束的构件及其组成的运动副去掉。
平面机构的虚约束常出现于下列情况中:(1)被联接件上点的轨迹与机构上联接点的轨迹重合时,这种联接将出现虚约束,如图4-12所示。
(2)机构运动时,如果两构件上两点间距离始终保持不变,将此两点用构件和运动副联接,则会带进虚约束,如图4-13所示的A、B两点。
(3)如果两个构件组成的移动副如图4-14(a)所示相互平行,或两个构件组成多个轴线重合的转动副时,如图4-14(b)所示,只需考虑其中一处,其余各处带进的约束均为虚约束。
(4)机构中对运动不起限制作用的对称部分,如图4-18所示齿轮系,中心轮1,通过三个齿轮2、2'、2"、驱动内齿轮、齿轮2'和齿轮2"中有两个齿轮对传递运动不起独立作用,从而引入了虚约束。