plc控制变频器调速
PLC控制变频器的七段调速及指示灯

教
学
引
入
导入Байду номын сангаас课:
复习上节课所学内容:
1、PLC控制变频器三段调速的接线方法。
2、三段调速中参数设置
3、编辑PLC程序时应注意什么
回顾前面所学内容,引入本节课内容
新
课
教
学
任务要求:
任意时刻按下启动按钮SB1,5s后电动机以10Hz正向运行同时红灯亮,再5s后电动机以15Hz正向运行同时绿灯亮,再5s后电动机以20Hz正向运行同时红绿灯亮,再5s后电动机以25Hz正向运行同时黄灯亮,再5s后电动机以30Hz正向运行同时黄红灯亮,再5s后电动机以40Hz正向运行同时黄绿灯亮,再5s后电动机以50Hz正向运行同时黄绿红灯亮,再5s后电动机停止工作。任意时刻按下SB2电动机停止工作。
授课班级
17级机电4班
课程名称
机电设备组装与调试
授课日期
2019年4月24日
授课地点
1号实训楼2楼
授课课题
PLC控制变频器的七段调速
教学课时
2课时
教学目标
知识与技能
1、学会变频器七段调速、PLC的接线方法。
2、掌握变频器七段调速的参数设置。
3、学会用PLC程序控制变频器的七段调速和指示灯。
4、掌握如何调试变频器和PLC程序。
2、掌握变频器七段调速的参数设置。
3、学会用PLC程序控制变频器的七段调速和指示灯。
4、掌握如何调试变频器和PLC程序。
教学难点
1、学会用PLC程序控制变频器的七段调速和指示灯。
2、掌握如何调试变频器和PLC程序。
教学方法
阅读法、小组合作法、讲授法、对比教学法
教学准备
plc控制变频器调速

基于PLC控制变频器调速实验报告电控学院电气实训目的:本次实验针对电气工程及其自动化专业。
通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。
要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。
在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。
学生实验应做到以下几点:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。
2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。
3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。
4. 培养动手能力,增强对可编程控制器运用的能力。
5. 培养分析,查找故障的能力。
6. 增加对可编程控制器外围电路的认识。
实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机第一部分采样转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。
编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。
欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。
变频器多段调速的PLC控制规范件

察变频器显示的频率是否正确。
2
按停止按钮SB2,电动机随时停止。再按下
起动按钮SB1,又重新C、变频器、电动机,为 了保护好设备,也可按下面方法调试:
变频器多段调速的PLC控制
1
模拟调试程序。暂时断开变频器电源,观察PLC
的输出指示灯是否按要求指示,否则,检查并修改程序,
1
连接PLC的输入端外接元
件; 2 连接PLC的输出端外接元
件;
3
连接PLC和变频器的电源
(注意不要带电作业);
4 连接电动机;
5
连接PLC、变频器、电动
机的接地线。
变频器R、S、T为三相电源进
线,U、V、W接电动机,注意不
能接反。
本项目实物模拟接线图如图5-
2-3所示。
图5-2-3 变频器多段调速的 PLC控制项目实物模拟接线图
项目实施 (五)程序编写
变频器多段调速的PLC控制
图5-2-4 变频器多段调速的PLC控制项目状态转移 图
项目实施 (五)程序编写
变频器多段调速的PLC控制
图5-2-5 变频器多段调速的PLC控制项目梯形图程 序
项目实施 (五)程序编写
变频器多段调速的PLC控制
图5-2-6 变频器多段调速的PLC控制项目指令程 序
在上个项目图5-1-12中是用开关的通断来给变频器的RH、 RM、RL端子产生控制信号,如用PLC来控制时,只需用 PLC的输出端子控制变频器的RH、RM、RL调速输入端子, 通过运行PLC程序即可实现控制。
输入端(I)
变频器多段调速的PLC控制
输出端(O)
项目实 施 外接元 件
输入端子
外接元件
输出端子
PLC控制变频器调速系统实训

第一章实训任务、目的及要求1.1 实训要求1. 确定控制方案,选择PLC和变频器。
2. 画出电气控制线路图。
3. 设计程序。
4. 完成PLC控制系统梯形图软件及其语句表的编制任务。
5. 在实验室条件下,通过试验调试初步验证其程序的正确性。
1.2 实训任务和目的1.了解PLC 控制变频调速系统。
2.了解S7-200CPU 加M440 变频器参数设置。
3.了解电气控制系统设计的基本原则、内容与一般步骤。
4.掌握PLC 变频调速控制系统调试基本过程和方法。
1.3 系统控制要求1.变频调速器受0-10v 电压控制。
输出0Hz 对应同步转速为0r/min。
输出50Hz 对应同步转速为1500r/min。
输出100Hz 对应同步转速为3000r/min。
输入电压与输出频率按线性关系变化。
2.要求输出转速按函数变化,请编写梯形图控制程序,并完成调试。
3.改变输出转速-时间的变化函数,重复上述过程。
1.4 PLC 简介1.4.1 PLC 的基本概念可编程控制器是计算机家族中的一员,是为工业控制应用而设计制造的。
早期的可编程控制器称作可编程逻辑控制器(ProgrammableLogicController),简称PLC,它主要用来代替继电器实现逻辑控制。
随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。
但是为了避免与个人计算机(PersonalCompute)r的简称混淆,所以将可编程控制器简称PLC。
由于它可通过软件来改变控制过程,而且具有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,非常适合于在恶劣的工业环境下使用。
故自60 年代末第一台PLC 问世以来,已很快被应用到机械制造、冶金、矿业、轻工等各个领域,大大推进了机电一体化进程。
进入80 年代,随着微电子技术和计算机技术的迅猛发展,使得可编程控制器有了突飞猛进的发展,功能日益增强,已远远超出逻辑控制、顺序控制的范围,具备模数转换、数模转换、高速计数、速度控制、位置控制、轴定位控制、温度控制、PID 控制、远程通讯、高级语言编辑以及各种物理量转换等功能。
实训三-PLC控制变频器三段调速-副本

实训三:PLC控制变频器三段调速
一、实训目的
1、掌握PLC与变频器的连接
2、掌握电柜的装接
3、掌握触摸屏、PLC与变频器对电机多段调速的控制方法和使用
4、掌握变频器的使用
二、实训器材
PLC、PC、触摸屏各一台,S500变频器一台、1:1电柜一个,交流接触器、电熔等各种仪器仪表若干,三相电机一台台电线若干等等
三、实训要求
实现PLC对变频器的三段调速控制,电机自动从低速到中速再到高速循环运行
四、变频器参数设置
1、清零
2、设置参数
Pr0=5%(力矩增加) Pr4=45(高速)Pr8=3s(下降时间)
Pr1=50 (运行上限) Pr5=30(中速)Pr9=0.65(过流保护)
Pr2=0(运行下限)Pr6=20(低速)Pr30=1(扩展功能)
Pr3=50(运行基底)Pr7=2s(上升时间)
五、实训内容
1、接线图
2、指令表
3、梯形图
4、实物接线图。
PLC控制交流变频调速电梯

PLC控制交流变频调速电梯电梯已成为现代建筑不可或缺的交通手段,而电梯的安全、舒适、高效与否则与其控制系统密切相关。
PLC控制交流变频调速电梯具有精确的控制、快速的响应以及良好的节能效果,因此在现代电梯中得到了广泛的应用。
什么是PLC?PLC是可编程逻辑控制器(Programmable Logic Controller)的缩写,是一种专门用于工业自动化控制的计算机,主要用于将控制逻辑编写成程序,以控制机械、电气、液压、气动等各种生产输送设备的运行,达到自动化的目的。
什么是交流变频调速控制?交流变频调速控制是指通过控制交流变频调速器,使电梯基于阶层运行,并拥有调速功能,实现对电梯性能的调节。
它将电机电源交流电转换成变频交流电,在驱动电机时,通过改变电源频率和电压来改变电机转速,进而实现对电梯的精准控制。
PLC控制交流变频调速电梯原理在PLC控制交流变频调速电梯中,使用了一台变频器和一台PLC控制器,变频器用于将交流定频电源变换成交流变频电源,PLC控制器则负责控制变频器输出的电压和频率,进而控制电梯的运行。
PLC控制器中的程序通过传感器等捕捉电梯状态,并通过执行器等输出模块控制电梯的运行。
在电梯进入运行状态时,PLC控制器会让变频器输出相应的电压和频率,使电机达到所需转速,从而开始运行。
在电梯到达指定楼层时,PLC控制器会让电梯逐层停靠。
PLC控制交流变频调速电梯的优势精确的控制通过PLC控制交流变频调速电梯,可以精确地控制电梯的运行速度和刹车距离,从而提高电梯运行的安全性和稳定性。
同时,PLC控制电梯的运行过程不仅可以降低设备的损耗,同时可以保证电梯的寿命。
快速的响应PLC控制交流变频调速电梯不仅可以实现快速的启动和刹车,还可以根据需求自动判断当前运行状态,从而实现更加灵活的运行。
这样的优势不仅可以提高电梯的效率,更重要的是可以降低旅客的等待时间。
良好的节能效果PLC控制交流变频调速电梯在节能方面也有着很大的优势。
《2024年PLC控制电机变频调速试验系统的设计与实现》范文

《PLC控制电机变频调速试验系统的设计与实现》篇一一、引言随着工业自动化程度的不断提高,PLC(可编程逻辑控制器)与电机变频调速技术已经成为了现代工业生产中的重要组成部分。
本文旨在设计并实现一套基于PLC控制的电机变频调速试验系统,以实现对电机运行状态的有效监控与精确控制,提高生产效率与产品质量。
二、系统设计1. 硬件设计本系统主要由PLC控制器、变频器、电机、传感器等部分组成。
其中,PLC控制器负责整个系统的控制与协调,变频器用于调节电机的运行速度,电机则作为执行机构实现具体的运动,传感器则用于实时监测电机的运行状态。
(1)PLC控制器:选用高性能的PLC控制器,具备强大的逻辑控制与数据处理能力。
(2)变频器:选用适合电机类型与功率的变频器,具备高精度、高效率的调速性能。
(3)电机:根据实际需求选择合适的电机类型与功率。
(4)传感器:选用能够实时监测电机运行状态的高精度传感器。
2. 软件设计软件设计主要包括PLC控制程序的编写与调试。
首先,根据系统需求,设计合理的控制逻辑;其次,利用编程软件编写控制程序;最后,通过调试与测试,确保程序能够正常运行并实现预期功能。
(1)控制逻辑设计:根据电机运行的需求,设计合理的控制逻辑,包括启动、停止、调速等功能。
(2)编程软件选择:选用适合PLC控制的编程软件,如梯形图、结构化控制语言等。
(3)程序调试与测试:对编写好的程序进行调试与测试,确保程序能够正常运行并实现预期功能。
三、系统实现1. 连接硬件设备根据硬件设计,将PLC控制器、变频器、电机、传感器等设备进行连接。
确保各部分之间的连接牢固、可靠。
2. 编写与调试程序根据软件设计,编写PLC控制程序。
在编写过程中,需要充分考虑系统的实时性、稳定性以及可扩展性。
编写完成后,通过调试与测试,确保程序能够正常运行并实现预期功能。
3. 系统测试与优化对系统进行全面的测试,包括启动、停止、调速等功能。
根据测试结果,对系统进行优化与调整,提高系统的性能与稳定性。
完整版)基于PLC控制的变频器调速系统

完整版)基于PLC控制的变频器调速系统目录第一章系统的功能设计分析和总体思路1.1 概述本文旨在对系统的功能设计和总体思路进行分析和讨论,以确保系统的高效运行和稳定性。
1.2 系统功能设计分析在系统功能设计分析中,我们需要考虑系统的需求和目标,以及用户的使用惯和需求。
在此基础上,我们可以确定系统的主要功能和模块,并对其进行详细的设计和实现。
1.3 系统设计的总体思路系统设计的总体思路包括系统的整体架构设计、模块之间的关系和数据流程,以及系统的系统性能和稳定性等方面。
在设计过程中,我们需要充分考虑系统的可维护性和可扩展性,并采用合适的技术和工具来实现系统的设计。
第二章 PLC和变频器的型号选择2.1 PLC的型号选择在PLC的型号选择中,我们需要考虑系统的需求和目标,以及PLC的性能和稳定性等方面。
在此基础上,我们可以选择合适的PLC型号,并进行详细的参数设置和调试。
2.2 变频器的选择和参数设置在变频器的选择和参数设置中,我们需要考虑系统的负载和功率需求,以及变频器的性能和稳定性等方面。
在此基础上,我们可以选择合适的变频器型号,并进行详细的参数设置和调试,以确保系统的高效运行和稳定性。
第一章系统功能设计分析和总体思路1.1 概述在工业自动化生产中,调速系统的快速性、稳定性和动态性能是基本要求。
调速系统在国防、汽车、冶金、机械、石油等工业中具有举足轻重的作用。
然而,调速控制系统的工艺过程复杂多变,具有不确定性,因此需要更为先进的控制技术和控制理论。
1.2 可编程控制器(PLC)可编程控制器(PLC)是一种工业控制计算机,它是继续计算机、自动控制技术和通信技术为一体的新型自动装置。
PLC具有抗干扰能力强、价格便宜、可靠性高、编程简单易学等特点,因此在工业领域中被广泛使用。
尽管在控制领域中逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS),但在控制策略方面,常规的PID控制仍然占据主导地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
plc控制变频器调速苏州市职业大学课程设计任务书课程名称: PLC应用技术起讫时间: 2011年6月20日至24日院系: 电子信息工程系班级: 09电气(4) 姓名: 王田兵指导教师: 丁金林系主任: 张红兵第一章绪论1.1 PLC的发展与应用可编程控制器(PLC)是在计算机技术、通信技术和继电器控制技术的发展基础上开发出来的,现已广泛应用于工业控制的各个领域。
它以微处理器为核心,用编写的程序进行逻辑控制、定时、计数和算术运算等,并通过数字量和模拟量的输入/输出来控制机械设备或生产过程。
如今,PLC在我国各个工业领域中的应用越来越广泛。
在就业竞争日益激烈的今天,掌握PLC设计和应用是从事工业控制研发技术人员必须掌握的一门专业技术。
任何生产机械电气控制系统的设计,都包括两个基本方面:一个是满足生产机械和工艺的各种控制要求,另一个是满足电气控制系统本身的制造、使用以及维修的需要。
因此,电气控制系统设计包括原理设计和工艺设计两个方面。
前者决定一台设备使用效能和自动化程度,即决定着生产机械设备的先进性、合理性,而后者决定着电气控制设备生产可行性、经济性、外观和维修等方面的性能。
在现代控制设备中,机-电、液-电、气-电配合得越来越密切,虽然生产机械的种类繁多,其电气控制设备也各不相同,但电气控制系统的设计原则和设计方法基本相同。
在最大限度满足生产设备和生产工艺对电气控制系统要求的前提下,力求运行安全、可靠,动作准确,结果简单、经济,电动机及电气元件选用合理,操作、安装、调试和维修方便。
要完成好电气控制系统的设计系统,除要求我们掌握必要的电气设计基础知识外,还要求我们必须经过反复实践,深入生产现场,将我们所学的理论知识和积累的经验技术应用到设计中来。
本次课程设计正是本着这一目的而着手实施的实践性环节,它是一项初步的模拟工程训练。
通过这次课程设计,我感到更深地了解一般电气控制系统的设计要求、设计内容和设计方法。
1.2 PLC的特点PLC是面向用户的专用工业控制计算机,具有许多明显的特点。
1. 可靠性高,抗干扰能力强为了限制故障的发生或者在发生故障时,能很快查出故障发生点,并将故障限制在局部,采取了多种措施,使PC除了本身具有较强的自诊断能力,能及时给出出错信息,停止运行等待修复外,还使PC具有了很强的抗干扰能力。
2. 通用性强,控制程序可变,使用方便PLC品种齐全的各种硬件装置,可以组成能满足各种要求的控制系统,用户不必自己再设计和制作硬件装置。
用户在硬件确定以后,在生产工艺流程改变或生产设备更新的情况下,不必改变PLC的硬设备,只需改编程序就可以满足要求。
因此,PLC除应用于单机控制外,在工厂自动化中也被大量采用。
3. 功能强,适应面广现代PLC不仅有逻辑运算、计时、计数、顺序控制等功能,还具有数字和模拟量的输入输出、功率驱动、通信、人机对话、自检、记录显示等功能。
既可控制一台生产机械、一条生产线,又可控制一个生产过程。
4. 编程简单,容易掌握目前,大多数PLC仍采用继电控制形式的“梯形图编程方式”。
既继承了传统控制线路的清晰直观,又考虑到大多数工厂企业电气技术人员的读图习惯及编程水平,所以非常容易接受和掌握。
PLC在执行梯形图程序时,用解释程序将它翻译成汇编语言然后执行(PLC内部增加了解释程序)。
与直接执行汇编语言编写的用户程序相比,执行梯形图程序的时间要长一些,但对于大多数机电控制设备来说,是微不足道的,完全可以满足控制要求。
5. 减少了控制系统的设计及施工的工作量由于PLC采用了软件来取代继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,控制柜的设计安装接线工作量大为减少。
同时,PLC的用户程序可以在实验室模拟调试,更减少了现场的调试工作量。
并且,由于PLC的低故障率及很强的监视功能,模块化等等,使维修也极为方便。
6. 体积小、重量轻、功耗低、维护方便PLC是将微电子技术应用于工业设备的产品,其结构紧凑,坚固,体积小,重量轻,功耗低。
并且由于PLC的强抗干扰能力,易于装入设备内部,是实现机电一体化的理想控制设备。
第二章主要器件介绍2.1 欧姆龙CP1H的特点及功能简介2.1.1 欧姆龙CP1H的特点欧姆龙 CP1H小型高功能PLC ,有如下特点:1.基本性能处理速度:基本指令0.1μs;特殊指令0.3μs;I/O容量: 最多7个扩展单元,开关量最大320点,模拟量最大37路程序容量:20K步;数据容量:32K字 ;机型类别:本体40点,24点输入,16点输出,继电器输出或晶体管输出可选;2.特殊功能4轴脉冲输出:100kHz×2和30 kHz×2(X型和XA型),最大1MHz(Y型);4轴高速计数:单向100kHz或相位差50 kH z×4(X型和XA型),最大1MHz(Y 型);内置模拟量: 4输入,2输出(XA型);3.通信功能通信接口:最大2个串行通信口(RS-232A或RS-422/485任选);本体附带一个USB编程端口;通信功能:上位链接、无协议通信、NT链接(1:N)、串行网关功能、串行PLC链接功能、 Modbus-RTU简易主站;4-1模拟量输入手动设定; 4.其他功能2位7段码发光二极管显示故障信息;支持欧姆龙中型机CJ1系列高功能模块(最大2块);支持FB/ST编程,可以利用欧姆龙的Smart FB库,与CJ1/CS1系列程序统一,可以互换。
2.1.2 欧姆龙CP1H的功能1.中断功能CP1H的CPU单元,通常周期性重复(公共处理?运算处理?扫描处理?I/O刷新?外设端口服务)的处理,运算处理中执行周期执行任务。
与此不同,根据特定要求的发生,可以在该周期的中途中断,使其执行特定的程序。
中断功能种类如下:(1)输入中断(直接模式)(2)输入中断(计时器模式)(3)定时中(4)高速计数器中断(5)外部中断2.模拟输入/输出功能XA型的CP1HCPU单元内置模拟输入4点及模拟输出2点。
分辨率分为1/6000或1/12000两种。
输入,输出分别刻选择:0,5V、1,5V、0,10V、,10V,10V、0,20,A、4,20,A等5种方式。
3.串行通信功能CP1H CPU单元支持串行通信功能有串行网关、串行PLC链接、NT链接1:N、上位链接、工具总线等。
2.2 VFO变频器介绍2.2.1 松下变频器VF0的特点小巧,操作简单,可由PLC直接调节频率松下变频器VFO系列特点:1.小巧:为了满足各类机器小型化的需要,实现了同类产品中最小型化;2.操作简单:采用了新设计的调频电位器,使调频操作简单轻松;而且用操作盘就可容易地操作正转/反转;3.可由PLC直接调节频率:可直接接收PLC的PWM信号并可控制电动机频率;同时可与PLC(FP0等)配套使用,无需模拟I/O单元;4.功能齐全的小型产品:8段速控制制动功能;再试功能;根据外部SW调整频率增减和记忆功能;再生制动功能的充实;400V系列型:内置制动电路;200V系列型:内置0.4-1.5kW电阻;0.2kW电路没有制动电阻;0.4kW是外部设置的同包装电阻。
2.2.2 变频器模式设定在模式设置中通过改变P08和P09改变控制方式为面板控制和面板外控。
当设置为面板控制设置fr控制其输出频率,设置dr控制其旋转方向。
当设置为面板外控时,输出频率和旋转方向有外界信号控制。
在这次实验中将P08的值改为4,则端子5控制运行和停止,端子6控制旋转方向。
将P09的值改为3,端子2、3接受0~5v电压信号控制输出频率。
1.将P08的值改为4把运行指令设为面板外控,操作板有复位功能。
2.将P09的值设为4把频率设定信号改为外控,设定信号为0~5v电压信号,改变电压大小改变其输出频率大小。
接线端子为NO.2、3(2:+,3:—)。
2.3 电机介绍2.3.1 电机的参数指标变频器在使用过程中带动的是电机,所以,变频器的选型可以从电机的角度来选择型号、规格。
那首先,我们就必须先了解电机的各项规格指标参数。
每台电机都有它自己出厂的铭牌,从铭牌上,我们不难找到电机的各项参数。
这些参数中,我们需要了解的主要参数有:电机的额定电压、额定电流、额定频率、额定转速等。
电机的额定电压:电机的额定电压一般有110V、220V、380V、690V、1140V、6kV等。
电机的额定电流:电机的额定电流根据电机的功率不同而不同。
选择变频器时,变频器的额定电流应大于或等于电机的额定电流,特殊情况应将变频器功率档次放大一档。
电机的额定频率:普通电机的额定频率一般是50,60Hz,高速电机有1000,3000Hz等。
CH_100系列可满足0,600Hz电机的需要,如需更高频率,请选用CH_150系列变频器。
电机的额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。
我们一般用的电机的额定转速是1500 rpm对应4极电机。
变频器也是根据4极电机来设计的。
2极对应3000 rpm、6极对应960 rpm、8极对应720 rpm左右。
2.3.2 电机的工作原理当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。
感应电流和磁场的联合作用向电机转子施加驱动力。
三组绕组问彼此相差120度,每一组绕组都由三相交流电源中的一相供电。
电动机使用了电流的磁效应原理,发现这一原理的的是丹麦物理学家奥斯特。
2.3.3 电机的接线在接线完成后。
通入电源,若发现未控制电机反转,而旋转方向反转,则断开电源可以通过任意对调电动机的两根相线来改变其旋转方向。
图2-1 电机旋转方向第三章总体设计方案本次设计是实现控制变频调速系统,选用PLC和变频器的组合可完成数字量的输入,实现模拟量和数字量的输出控制。
可以通过对频率的调节来实现对速度的控制,使得速度变化更加平滑和实现精确调速。
3.1 选择机型本次设计采用欧姆龙CP1H系列PLC进行控制,从以上分析可以知道,该系统只需开关量输入点2个。
本设计中的变频器采用松下VF0变频器。
电动机采用一般的三相异步电动机即可。
3.2 系统控制结构由PLC和变频器组成的控制系统,开关量输入端由两输入,开始与停止按钮;PLC输出端作为变频器的输入。
实现如下控制:按下启动输出频率为手动控制; 延时时间到时自动跳转到下一输出频率为15HZ 的状态; 延时时间到时自动跳转到下一输出频率为20HZ的状态等一直自动跳转8个频率段至45HZ的状态,然后循环,直到按下停止按钮。
第四章硬件设计4.1 变频器的接线变频器主回路的接线如图4-1所示图4-1 变频器电源接线控制回路的接线如图4-2所示图4-2控制回路接线PLC模拟量信号输出端(COM端)接入变频器3端子。