动态规划及其在资源分配中的应用(精选)
第07章 动态规划 《运筹学》PPT课件

动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优
化
多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优
化
3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优
化
4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。
动态规划的应用举例大全

在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。
动态规划在资源配置中的应用研究

动态规划在资源配置中的应用研究在当今复杂多变的社会和经济环境中,资源的有效配置成为了各个领域追求高效发展的关键。
而动态规划作为一种强大的数学优化方法,在资源配置问题中发挥着至关重要的作用。
动态规划的核心思想在于将一个复杂的问题分解为一系列相互关联的子问题,并通过对这些子问题的求解来逐步得出原问题的最优解。
这种方法的优势在于它能够充分考虑到问题的动态性和阶段性,从而更加贴合实际情况。
资源配置问题通常涉及到多个因素的权衡和决策。
例如,在企业生产中,需要决定如何分配有限的人力、物力和财力资源,以实现最大的产出和利润;在项目管理中,要合理安排任务的顺序和资源的投入,确保项目按时完成且成本最低;在交通运输领域,需要优化车辆的调度和路线规划,以提高运输效率和降低运营成本。
以生产企业为例,假设一家工厂有多种产品可以生产,每种产品的生产需要消耗不同数量的原材料、工时和设备使用时间,同时每种产品在市场上的售价也不同。
为了实现利润最大化,企业需要决定每种产品的生产数量。
这就是一个典型的资源配置问题。
如果使用传统的方法来解决这个问题,可能会面临计算复杂、难以考虑所有可能情况等困难。
而动态规划则为我们提供了一种有效的解决方案。
首先,我们可以将生产计划划分为多个阶段,每个阶段对应一个决策点,即决定是否生产某种产品以及生产多少。
然后,我们定义状态变量,例如在某个阶段剩余的原材料、工时和设备可用时间等。
接着,通过建立递推关系式,计算在每个阶段不同决策下的收益,并选择最优的决策。
动态规划在资源配置中的应用具有以下几个显著的优点:一是能够处理大规模的问题。
随着问题规模的增大,传统方法的计算量往往呈指数级增长,而动态规划通过巧妙的分解和递推,可以有效地降低计算复杂度。
二是能够考虑到问题的动态变化。
在实际的资源配置中,各种因素可能会随着时间而发生变化,例如原材料价格的波动、市场需求的变化等。
动态规划可以根据这些变化及时调整策略,保证资源配置的最优性。
运筹学及其应用9.1 多阶段决策过程最优化问题举例

6
t
使 S = ∑ ∑ f ( x i ) + 16 u j =
i =1
j =1
Байду номын сангаас
6
∑ f ( xi ) + 16(5x1 + 4 x2 + 3x3 + 2 x4 + x5 − 185)
i =1
为最小,其中
f
(xi )
=
110200xxii
,0 −
≤ xi ≤ 15 300,15 < xi
≤
30
6
例1
因此,我们的问题就变成:求y,y1,y2,…,yn-1,以使 g(y)+h(x-y)+g(y1)+h(x1-y1)+…+g(yn-1)+h(xn-1-yn-1) 达到最大,且满足条件
x1=ay+b(x-y) x2=ay1+b(x1-y1)
……… xn-1=ayn-2+b(xn-2-yn-2) yi与xi均非负,i=1,2, …,n-1
5
例1
若以y与x-y分别投入生产方式A与B,在第一 阶段生产后回收的总资源为x1=ay+b(x-y),再将x1 投入生产方式A和B,则可得到收入g(y1)+h(x1-y1), 继续回收资源x2=ay1+b(x1-y1),……
若上面的过程进行n个阶段,我们希望选择n 个变量y,y1,y2,…,yn-1,使这n个阶段的总收入最大。
第二种方法即所谓“局部最优路径”法,是 说某人从k出发,他并不顾及全线是否最短,只是选 择当前最短途径,“逢近便走”,错误地以为局部 最优会致整体最优,在这种想法指导下,所取决策
必是v1→v2→v5→ v9→ v10 ,全程长度是30;显
动态规划解决资源调度问题

考虑特殊情况
对于某些特殊情况,需要 单独设定初始状态或边界 条件。
算法流程与实现细节
算法流程设计
根据状态转移方程和边界条件,设计算法的整体流程,包括状态更新、决策选择等步骤。
数据结构选择
选择合适的数据结构来存储状态变量和中间结果,以便高效地实现算法。
细节处理
在实现算法时,需要注意一些细节问题,如状态变量的更新方式、数组越界等。同时,为 了提高算法的效率,可以采用一些优化技巧,如记忆化搜索、滚动数组等。
状态转移方程
建立状态转移方程,描述系统状态在不同决策下的变 化情况。
目标函数与约束条件
根据调度目标,构建目标函数,并考虑系统约束条件 ,将其转化为数学表达式。
模型分析与求解思路
01
边界与初始状态分析
明确模型的边界条件和初始状态,为求解过程提供基础。
02
决策与状态转移分析
分析不同决策对系统状态的影响,以及状态转移过程中可能出现的情况
边界与状态转移方程
在动态规划中,需要定义问题的边界条件和状态 转移方程,以描述子问题之间的关系和转化方式 。
优缺点
动态规划方法具有高效性、可扩展性等优点,但 也存在对问题结构要求较高、难以应用于非线性 问题等缺点。
02
资源调度问题建模
问题描述与定义
资源类型与数量
明确系统中存在的资源类型及其可用数量,如CPU、内存、存储等 。
的优化目标。
约束条件
资源调度问题通常涉及多种约束条 件,如资源数量限制、任务时间要 求、优先级等。
优化目标
优化目标可以是最大化资源利用率 、最小化完成任务时间、最小化成 本等。
动态规划方法简介
1 2 3
基本思想
动态规划在应用数学中的应用有哪些

动态规划在应用数学中的应用有哪些在应用数学的广袤领域中,动态规划是一种强大而富有成效的解题策略。
它为解决许多复杂的优化问题提供了高效且精确的方法。
那么,动态规划究竟在应用数学中有哪些具体的应用呢?让我们一起来探索。
首先,动态规划在资源分配问题中发挥着重要作用。
想象一下,一个企业有有限的资金、人力和时间等资源,需要将这些资源分配到不同的项目或业务部门,以实现最大的利润或效益。
这时候,动态规划就可以登场了。
通过建立合适的模型,将资源分配过程分解为一系列的阶段,并确定每个阶段的决策和状态,动态规划能够计算出最优的资源分配方案。
例如,一家制造企业要决定在不同的产品线之间分配生产资源,以满足市场需求并最大化总利润。
通过考虑每个产品线的生产成本、市场需求预测、生产能力等因素,利用动态规划可以找到最优的生产计划。
其次,动态规划在路径规划问题中也有广泛的应用。
比如说,在物流配送中,如何找到从起点到终点的最短路径或最优路径,使得运输成本最低、时间最短。
动态规划可以将整个路径空间分解为多个子问题,并通过逐步求解这些子问题来找到最优路径。
这在交通规划、网络路由等领域都具有重要意义。
比如,在城市交通中,为救护车规划最优的行驶路线,以最快的速度到达目的地,挽救生命。
再者,动态规划在库存管理中也能大显身手。
企业需要合理地控制库存水平,以平衡库存成本和满足客户需求。
通过动态规划,可以根据历史销售数据、市场需求预测、订货成本、存储成本等因素,确定最佳的订货策略和库存水平。
例如,一家零售商要决定何时补货、补多少货,以最小化库存成本并避免缺货现象。
动态规划能够帮助其做出明智的决策。
另外,动态规划在投资决策中也具有重要价值。
投资者常常面临着在不同的投资项目中分配资金,以实现最大的回报和最小的风险。
通过建立动态规划模型,可以考虑不同投资项目的预期收益、风险水平、投资期限等因素,找到最优的投资组合。
比如说,一个投资者有一定的资金,要在股票、债券、基金等多种投资工具中进行选择和分配,动态规划可以帮助他制定最优的投资策略。
运筹学教材课件(第四章动态规划)

最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
动态规划在资源分配中的应用

第 2 第 6期 2卷
Vo. 2 N . 12 o 6
荆 门职业技术 学院学报
Ju a fJn me e h ia l g o r l ig n T c nc l n o Co e e
20 07年 6月
Jn 20 u .0 7
2 动 态 规 划 的数 学模 型 及 求解 步 骤
动态 规划的 学模 数 型是:
பைடு நூலகம்
Ot p @ (k , R X, )
X : ( , )
J s .
∈ U ( ) k∈
j }= 1, … , 2, 忍
() 1
[ 收稿 日期 ]2 0 06—1 3 2—1 [ 作者简 介]王小华( 9 1 , , 16 一) 女 四川三 台人 , 罗定职业技术学 院讲 师。研究方 向: 高等代数 、 高等 数学 。E—m i a l
4 )根 据状 态变 量 之 间的递 推关 系 , 出状 态 转移方 程 写 6 )建立 动态 规划 基本 方程 : = ( , ( ) ; ) 5 建 立 指标 函数 : ) 一般 用 r( , )描写 阶段 效应 , ) 示 k一1 A( 表 2阶段 的最优 策 略函数 ;
合这 种 要求 的一 种决 策方 法。
1 动 态 规 划 的最 优 性 原 理
动态规划在经济管理、 军事、 工程技术等方面都有广泛 的应用。“ 最优化原理” 是动态规划的核心, 所有动态规划 问题 的递推关系都是根据这个原理建立起来的。 最优性原理 :整个过程的最优策略具有这样 的性质 : “ 即无论过程过去 的状态和决策 如何 , 对前面 的决策所形成 的状态而言 , 余下的诸决策必须构成最优策略。 简而言之 , ” 最优性原理的含义就是 : 最优 策略 的任何一部分子策略也必须是最优的。