小学五年级方程知识点归纳-版

合集下载

五年级数学简易方程知识点

五年级数学简易方程知识点

简易方程是指只含有一个未知数的方程,通常以字母x表示未知数,如:2x+3=7、在这个方程中,未知数x的值为多少,是需要我们求解的。

五年级学生会学习如何通过逆向思维推导未知数的值,从而解决简易方程问题。

下面是五年级数学简易方程的主要知识点:1.方程的定义:方程是由等号连接的两个代数式组成的数学式子。

例如:2x+3=72.未知数:在方程中,未知数是我们要求解的对象,通常用字母表示,如x、y 等。

3.等式:方程中等号左右两侧的代数式相等,表示方程的基本关系。

如2x+3=74.解方程的基本方法:解方程的目的是求出未知数的值。

通常需要通过“逆向运算”的方法,逐步将未知数“从一边移到另一边”,直到得到未知数的具体值。

5.逆向运算:在解方程时,当方程中有一项与未知数相乘(或相除)时,可以通过与这项相反的运算,将未知数的系数化为1、例如方程2x=8,可以通过除以2的运算将方程转化为x=46.两侧相等性质:方程中的等号两侧进行相同的运算,结果仍然相等,即方程仍然成立。

例如方程2x=8,如果两侧同时除以2,则得到x=4,这个方程的解与原方程相等。

7.减去常数、乘以常数:方程中可以进行减去常数和乘以常数的运算,不会改变方程的解。

例如方程2x-3=7,如果两侧同时加上3,则得到2x=10,这个方程的解与原方程相等。

8.联立方程:联立方程是指同时解多个方程的问题。

对于两个方程,可以利用消元法或代入法来求解。

9.检验答案:求解方程之后,需要对解进行检验以确认答案的正确性。

将解代入原方程中,检验等号两侧是否相等。

小学五年级数学简易方程的知识点归纳

小学五年级数学简易方程的知识点归纳

小学五年级数学简易方程的知识点归纳数学方程是数学中常见的一个概念,它是一个等式,其中包含一个或多个未知数。

在小学五年级的数学学习中,学生开始接触简易方程的概念和解题方法。

本文将对小学五年级数学简易方程的知识点进行归纳。

一、方程的基本概念方程是由等号连接的两个代数式组成,其中至少包含一个未知数。

例如,下面的方程是一个简单的数学方程:2x + 3 = 9在这个方程中,未知数是x,左边的2x + 3是一个代数式,右边的9也是一个代数式。

二、方程的解解方程,就是要找到使得方程成立的未知数的值。

对于简易方程来说,解通常是一个特定的数。

在解方程时,我们必须使用逆运算来保持等式的平衡。

例如,对于上面的方程2x + 3 = 9,我们可以先减去3再除以2来解方程,即:2x + 3 - 3 = 9 - 32x = 62x ÷ 2 = 6 ÷ 2x = 3所以x=3是这个方程的解。

三、方程的变形及性质在解方程的过程中,我们经常需要进行方程的变形。

方程的变形即改变方程的形式,使得方程更易于求解。

常见的方程变形方法包括:1. 合并同类项:将方程中相同的项合并,以简化方程。

2. 移项:将方程中的项按照规则从一边移到另一边,以便合理组织方程形式。

3. 消元:通过适当的运算,使得方程中的某些项相互抵消,以简化方程。

四、常见的简易方程类型1. 一元一次方程:一元一次方程是最简单的方程类型,形式为ax +b = c,其中a、b、c都是已知的实数,且a不等于0。

例如:2x + 3 = 7解这个方程的步骤是:2x + 3 - 3 = 7 - 32x = 42x ÷ 2 = 4 ÷ 2x = 2所以,这个方程的解是x=2。

2. 带括号的一元一次方程:在一元一次方程中,有时方程中带有括号,解这类方程的关键是先去括号再进行求解。

例如:3(x + 2) = 15首先展开括号:3x + 6 = 15然后解方程:3x + 6 - 6 = 15 - 63x = 93x ÷ 3 = 9 ÷ 3x = 3因此,这个方程的解是x=3。

五年级解方程知识点归纳

五年级解方程知识点归纳

解方程不同类型的解法
1.牢记以下公式:
加数+加数=和因数×因数=积
和-一个加数=另一个加数积÷一个因数=另一个因数被减数-减数=差被除数÷除数=商
减数+差=被减数除数×商=被除数
被减数-差=减数被除数÷商=除数
2.不同类型的方程解法归纳
①x+a=b, ②x-a=b, ③ax=b, ④x÷a=b.
解x=b-a x=b+a x=b÷a x=b×a
以上四种类型可以直观的看出,a在左边是加法,挪到右边为减法;a在左边是减法,挪到右边为加法;a在左边是乘法,挪到右边为除法;a在左边是除法,挪到右边为乘法。

⑤ax+b=c ⑥ax-b=c ⑦a(x+b)=c ⑧a(x-b)=c
解ax=c-b ax=c+b x+b=c÷a x-b=c÷a x=(c-b)÷a x=(c+b)÷a x=c÷a-b x=c÷a+b 计算以上四种类型题时,⑤⑥把ax先当做一个整体⑦⑧把括号当做一个整体,按照①②③的计算方法进行第一步计算;第二步按照①②③④的相应步骤进行计算
⑨ a-x=b ⑩ a÷x=b ⑪ax+bx=c ⑫ ax+bx=c
x=a-b x=a÷b (a+b)x=c (a-b)x=c
x=c÷(a+b) x=c÷(a-b)。

数学五年级下册用方程解决问题 知识点

数学五年级下册用方程解决问题 知识点

数学五年级下册用方程解决问题知识点1、简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

2、方程:含有未知数的等式叫做方程。

(注意方程是等式,又含有未知数,两者缺一不可)方程和算术式不同。

算术式是一个式子,它由运算符号和已知数组成,它表示未知数。

方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

3、方程的解使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

4、方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

5、解方程:解方程,求方程的解的过程叫做解方程。

6、列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

7、列方程解答应用题的步骤(1)弄清题意,确定未知数并用x表示;(2)找出题中的数量之间的相等关系;(3)列方程,解方程;(4)检查或验算,写出答案。

8、列方程解应用题的方法(1)综合法先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

9、列方程解应用题的范围:小学范围内常用方程解的应用题:(1)一般应用题;(2)和倍、差倍问题;(3)几何形体的周长、面积、体积计算;(4)分数、百分数应用题;(5)比和比例应用题。

列方程解应用题练习1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。

五年级数学的知识点总结

五年级数学的知识点总结

自我介绍例文参考自我介绍样本一:我是一个对理想有着执着追求的人,坚信是金子总会发光。

大学毕业后的工作,让我在文案筹划方面有了很大的进步,文笔流畅,熟悉传媒工作、广告学制作与设计等工作方面。

为人热情,活泼,大方,本人好学上进,诚信、敬业、责任心强,有强烈的团体精神,对工作认真积极,严谨负责。

本人性格内外结合,适应才能强,为人老实,有良好的人际交往才能,具备相关的专业知识和认真。

细心、耐心的工作态度及良好的职业道德修养。

相信团体精神的我对工作认真负责,总希望能把事情做得更好!性格开朗,对文字语言和数字敏感,对生活充满希望,对工作充满热情! 能在短期间内适应新环境,有强烈的品质意识;对工作认真负责,上进心强!懂电脑根本操作,纯熟小键盘操作!我的理念是:在年轻的季节我甘愿吃苦受累,只愿通过自己富有激情、积极主动的努力实现自身价值并在工作中做出最大的奉献:作为初学者,我具备出色的学习才能并且乐于学习、敢于创新,不断追求卓越;作为参与者,我具备老实可信的品格、富有团队合作精神;作为指导者,我具备做事干练、果断的风格,良好的沟通和人际协调才能。

受过系统的经济文化相关专业知识训练,有很强的忍受力、意志力和吃苦耐劳的品质,对工作认真负责,积极进取,个性乐观执着,敢于面对困难与挑战。

为了企业公司的利益而早想,为了在企业公司付出个人的思想文化才能程度,尽心尽力的忠诚于企业公司,企业公司这样才有利于我的开展目的,去脚踏实地奋斗实现我的梦想,追求一些生活物资财富等。

努力的为企业公司渐渐的壮观强大的开展起来,成功的阶段渐渐的有所进步,在社会上可以抬得起头,在社会上知名知名度和良好的方面。

在企业公司上奉献我的人生价值和风度才能程度,在社会上全方面的体会出来。

看过了我的个人简历自我介绍信息的企业公司指导人们,请合格同意批准我进入企业公司的工作方面,积极面对企业公司的工作,合适企业公司环境的范围,投入企业公司工作方面的用处和理解,渐渐的习惯起来这企业公司的这一工程职业道路的开展空间。

数学方程知识点五年级

数学方程知识点五年级

数学方程知识点五年级数学方程是数学中非常重要的一个概念,对于五年级的学生来说,理解并掌握基本的方程知识是非常关键的。

以下是一些五年级数学方程的知识点:1. 方程的定义:方程是含有未知数的等式。

例如,\( x + 3 = 7 \) 就是一个方程,其中 \( x \) 是未知数。

2. 解方程:解方程就是找到未知数的值,使得等式成立。

在上述例子中,解方程 \( x + 3 = 7 \) 就是找到 \( x \) 的值,使得等式两边相等。

解得 \( x = 4 \)。

3. 方程的类型:五年级学生主要接触的是一元一次方程,即只含有一个未知数,且未知数的次数为1的方程。

4. 解方程的步骤:- 移项:将含有未知数的项移到等式的一边,常数项移到等式的另一边。

例如,\( x + 3 = 7 \) 可以变为 \( x = 7 - 3 \)。

- 合并同类项:将等式两边的同类项合并,简化方程。

例如,\( x = 7 - 3 \) 可以简化为 \( x = 4 \)。

- 系数化为1:如果方程中未知数的系数不是1,需要通过乘法或除法将其化为1。

例如,\( 2x = 8 \) 可以变为 \( x = 4 \)。

5. 方程的应用:方程在实际问题中的应用非常广泛,如解决速度、距离、时间的问题,以及分配问题等。

6. 列方程解应用题:在解决实际问题时,学生需要学会根据问题的条件列出相应的方程。

例如,如果知道总路程和时间,可以列出方程\( \text{速度} \times \text{时间} = \text{路程} \) 来解决问题。

7. 检查解的正确性:解出方程后,应该将解代入原方程,检查等式两边是否相等,以验证解的正确性。

8. 练习和应用:通过大量的练习题来巩固解方程的技巧,提高解题速度和准确率。

通过以上知识点的学习,五年级的学生可以逐步建立起对数学方程的理解和应用能力,为今后更高级的数学学习打下坚实的基础。

五年级数学简易方程知识点

五年级数学简易方程知识点

一、方程的概念方程是一个含有未知数的等式。

方程的解就是能够使得方程成立的数值。

二、一步方程一步方程是指只需要一步运算就能求得未知数的方程。

例如:x+3=7,x-5=9三、积均差商1.积的意义:设一个数为x,另一个数为a,它们的积是m,那么可以用方程表示为:x*a=m。

2.均的意义:设一个数为x,另一个数为a,它们的均值是m,那么可以用方程表示为:(x+a)/2=m。

3.差的意义:设一个数为x,另一个数为a,它们的差是m,那么可以用方程表示为:,x-a,=m。

4.商的意义:设一个数为x,另一个数为a,它们的商是m,那么可以用方程表示为:x/a=m。

四、二步方程二步方程是指需要两步运算才能求得未知数的方程。

例如:2x+3=9,3x-5=7五、解一元一次方程的方法1.通过算式变形等式两边进行等式两边的运算,使得方程等式的形式更简单,进而求得未知数的值。

例如:x-5=10,可以通过加5得到x的值为152.通过倒运算等式两边进行倒运算,得出未知数的值。

例如:2x+3=9,可以通过减去3、除以2来得到x的值为3六、解二元一次方程的方法二元一次方程是含有两个未知数的方程,可以通过联立方程组的方法求解。

例如:x+y=5,2x+3y=10。

七、方程的解的判断在解一元方程或二元方程时,解的唯一性可以通过检验等式两边是否相等来判断。

综上所述,五年级数学简易方程的知识点包括方程的概念、一步方程、积均差商、二步方程、解一元一次方程的方法、解二元一次方程的方法以及方程的解的判断。

通过掌握这些知识点,学生可以解决简单的数学方程问题,提高数学解题的能力。

最全小学五年级数学方程知识点

最全小学五年级数学方程知识点

最全小学五年级数学方程知识点小学五年级数学方程知识点1、列方程解应用题的步骤:(1)找到题中的等量关系式(2)解设所求量为x(3)根据等量关系式列出相应的方程(4)解答方程,注意计算结果不带单位(5)检验做答2、在有多个未知数量的应用题中,通常应将1倍数设为x,举例如下:例:爸爸的年龄是儿子年龄的4倍,父子俩年龄之和为40,求父亲和儿子的年龄各是多少岁?解:首先根据题意找出等量关系式:爸爸年龄+儿子年龄= 40因为儿子年龄是1倍数,所以:设儿子年龄为x岁,那么爸爸年龄就是4x,代入等量关系式得:爸爸年龄为:4x= 4×8= 32(岁)答:爸爸的年龄为32岁,儿子的年龄为8岁。

3、相遇问题涉及到的公式:路程= 速度×时间时间= 路程÷速度相距距离= 速度和×相遇时间小学体积和表面积知识点汇总三角形的面积= 底×高÷2。

公式S= a×h÷2正方形的面积= 边长×边长公式S= a2长方形的面积= 长×宽公式S= a×b平行四边形的面积= 底×高公式S= a×h梯形的面积= (上底+下底)×高÷2公式S= (a+b)h÷2内角和:三角形的内角和= 180度。

长方体的表面积= (长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2正方体的表面积= 棱长×棱长×6公式:S= 6a2长方体的体积= 长×宽×高公式:V= abh长方体(或正方体)的体积= 底面积×高公式:V= abh正方体的体积= 棱长×棱长×棱长公式:V= a3圆的周长= 直径×π公式:L= πd= 2πr圆的面积= 半径×半径×π公式:S= πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级数学上册方程知识点归纳总结
-最新版
1、小数乘整数的意义——求几个相同加数的和的简便运算。

如1:3χ表示χ的3倍是多少或3个χ的和的简便运算。

如2:χ表示χ的倍是多少或个χ的和的简便运算。

2、?在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。

(这叫做积不变性质)
3、在除法里:被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。

(这叫做商不变性质)
4. 乘法分配律:a×(b ± c) = a×b ± a×c
5、(P45)在含有字母的式子里,字母中间的乘号可以简记“·”,也可以省略不写。

(注意:加号、减号、除号以及数与数之间的乘号不能省略。

字母与数字相乘简写时,数字写在字母前面。


(P46)a×a可以写作a·a或a2 ,a2读作a的平方或a的二次方。

??2a 6、
表示a+a
7、(P54)方程:含有未知数的等式称为方程。

(所有的方程都是等式,但等式不一定都是等式。


使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

(方程的解是一个数;解方程是一个计算过程。


8、(P55、56)解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

9、加、减、乘、除运算数量关系式:
加法:和=加数+加数? ? 一个加数=和-两一个加数
减法:差=被减数-减数?? 被减数=差+减数?? 减数=被减数-差
乘法:积=因数×因数? 一个因数=积÷另一个因数
除法:商=被除数÷除数? 被除数=商×除数? 除数=被除数÷商
10、解方程的方法:
方法一:利用天平平衡原理(即等式的性质)解方程;
方法二:利用加、减、乘、除运算数量关系解方程。

11、常用数量关系式:
路程=(速度)×(时间)? ?速度=(路程)÷(时间) 时间=(路程)÷(速度)
总价=(单价)×(数量)?? 单价=(总价)÷(数量)? 数量=(总价)÷(单价)
总产量=(单产量)×(数量) 单产量=(总产量)÷(数量) 数量=(总产量)÷(单价 )
大数-小数=相差数大数-相差数=小数小数+相差数=大数
一倍量×倍数=几倍量几倍量÷倍数=一倍量? 几倍量÷一倍量=倍数
工作总量=(工作效率)×(工作时间) 工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
12、列方程解应用题的一般步骤:
1、弄清题意,找出未知数,并用x表示。

(解设)
2、找出应用题中数量之间的相等关系,列方程。

(找关系)
3、解方程。

(列)
4、检验,写出答案。

(验)
13、方程的检验过程:因为方程左边=……
……=方程右边 ,所以,X=…是方程的解。

相关文档
最新文档