曲轴轴系的扭转振动讲解
合集下载
曲轴轴系扭转振动等效模型

4
三、发动机曲轴轴系示意图
5
四、扭振模型等效公式
6
四、扭振模型等效公式
以上公式中,Jhub式为扭转减振器轮毂绕曲轴转动中心线的转动惯量, Jsegi为阶梯轴i绕曲轴转动中心线的转动惯量, Jmgi 为主轴颈i绕曲轴转动中心线 的转动惯量, Jwi为第i个曲柄臂绕曲轴转动中心线的转动惯量, Jcpi为第i个曲 柄销绕曲轴转动中心线的转动惯量, Jgear为齿轮绕曲轴转动中心线的转动惯量, Jcyli为第i缸活塞组件及其连杆等效转动惯量, Jfw为飞轮绕曲轴转动中心线的转 动惯量。个弹簧的扭转刚度如下
Ksegi为第i个阶梯轴扭转刚度, Kmji为第i个主轴颈扭转刚度, Kwi为第i个曲 柄臂的刚度, Cri为曲轴轴系的内阻尼, Coi为曲轴轴系的外阻尼。 安装曲轴扭转减振器的模型将再多等效一个惯量环、弹簧与阻尼。
7
曲轴轴系扭转振动模型
曲轴
飞轮
扭转减 振器
1
一、发动机曲轴轴系示意图
Байду номын сангаас
2
二、曲轴轴系扭振模型等效原则
将发动机曲轴轴系简化为曲轴扭振模型时,每个部件等效为两个相同转 动惯量盘和一个弹簧,具体方法如下图。两个管两盘的转动惯量的和等于原 部件的转动惯量,弹簧的刚度等于原部件的扭转刚度。
3
三、曲轴轴系分割示意图与扭振模型
曲轴系统的扭转振动

图4-3 三质量扭振系统
I1 ϕ1 + C1ϕ1 − C1ϕ 2 = 0 I 2 ϕ2 − C1ϕ1 + ( C1 + C2 ) ϕ2 − C2ϕ3 = 0 I 3 ϕ3 − C2ϕ2 + C2ϕ3 = 0
(4-13)
第二节 扭转振动系统自由振动计算
三、三质量扭振系统
设通解 ϕi = φi sin(ωet + ε ),此时各质量应为同步运动。代入方程式 (4-13)得到频率方程为
4.研究扭振的目的
通过计算找出临界转速、振幅、扭振应力,决定是否采取减振措施, 或避开临界转速。
5.扭振当量系统的组成
根据动力学等效原则,将当量转动惯量布置在实际轴有集中质量的 地方;当量轴段刚度与实际轴段刚度等效,但没有质量。
第二节 扭转振动系统自由振动计算
一、单质量扭振系统
单质量的扭振系统是有一根一端固 定、只有弹性没有质量(因而没有惯性) 的假象轴和在轴的另一端固定着的一个 只有质量(惯性)没有弹性的假象圆盘 所组成(如图4-1)
图4-1 单质量扭振系统
设轴的扭转刚度为C(N•m/rad),圆盘的单位角度转动惯量(简称转动 惯量)为I(kg•m2/rad),轴的长度为l,如图4-1所示。由于这种单质量扭振 系统的运动可由圆盘的一个变量(扭转角 ϕ)来表征,故称单自由度系统。 所谓自由扭转振动是指当扭振系统受到一个暂时的干扰力矩左右使系 统偏离平衡位置一个不大的角度,并突然排除干扰力矩使系统不再受任何 外界干扰的作用,仅由于轴系本身的恢复力矩与惯性力矩的交替变换,系 统就按着本身固有频率ωe(或称自振频率)而产生的扭转振动。 接下来研究这种扭转振动。
ϕ =φ sin (ωe t+ε )
I1 ϕ1 + C1ϕ1 − C1ϕ 2 = 0 I 2 ϕ2 − C1ϕ1 + ( C1 + C2 ) ϕ2 − C2ϕ3 = 0 I 3 ϕ3 − C2ϕ2 + C2ϕ3 = 0
(4-13)
第二节 扭转振动系统自由振动计算
三、三质量扭振系统
设通解 ϕi = φi sin(ωet + ε ),此时各质量应为同步运动。代入方程式 (4-13)得到频率方程为
4.研究扭振的目的
通过计算找出临界转速、振幅、扭振应力,决定是否采取减振措施, 或避开临界转速。
5.扭振当量系统的组成
根据动力学等效原则,将当量转动惯量布置在实际轴有集中质量的 地方;当量轴段刚度与实际轴段刚度等效,但没有质量。
第二节 扭转振动系统自由振动计算
一、单质量扭振系统
单质量的扭振系统是有一根一端固 定、只有弹性没有质量(因而没有惯性) 的假象轴和在轴的另一端固定着的一个 只有质量(惯性)没有弹性的假象圆盘 所组成(如图4-1)
图4-1 单质量扭振系统
设轴的扭转刚度为C(N•m/rad),圆盘的单位角度转动惯量(简称转动 惯量)为I(kg•m2/rad),轴的长度为l,如图4-1所示。由于这种单质量扭振 系统的运动可由圆盘的一个变量(扭转角 ϕ)来表征,故称单自由度系统。 所谓自由扭转振动是指当扭振系统受到一个暂时的干扰力矩左右使系 统偏离平衡位置一个不大的角度,并突然排除干扰力矩使系统不再受任何 外界干扰的作用,仅由于轴系本身的恢复力矩与惯性力矩的交替变换,系 统就按着本身固有频率ωe(或称自振频率)而产生的扭转振动。 接下来研究这种扭转振动。
ϕ =φ sin (ωe t+ε )
内燃机曲轴系统扭转振动-发动机-扭转-振动

际振幅与各轴段的扭转振动附加应力 ⑤ 针对上述计算结果,全面评定整个轴系工作
是否可靠
轴系的当量换算
原则:振动特性相同
惯量较大且较集中 的部件
惯量较小且较分散 的部件
阻尼
非弹性的惯量元 件
无惯量的弹性元 件
弹性元件的轴段 阻尼和惯性元件 的质量阻尼
激励载荷只作用在惯性元件上轴系的当量系统图来自对应于圆心角 i 的圆
弧带的转动惯量
Ii' 3i602Li(Ri4-Ri41)
整个曲柄臂的转动惯量
Iwi n13i602Li(Ri4Ri41)
用同样的方法可求得平衡重的转动惯量 综上,单位曲柄(crank)的转动惯量为
IcImIp2Iw2Ib
上述转动惯量可在三维CAD软件中求得
活塞、连杆当量转动惯量的换算
原则:运动动能不变
往复运动质量(mj mpmc1)的运动动能
E K 1 2 m jv 2 1 2 m jR 2 ω 2 (si n 2 s2 in )2
曲柄转动一周,往复运动质量的平均动能
EKm
1
2
2
0 EKd
1 2
mjR2ω2
(1 2
2
8
)
设往复运动质量的当量转动惯量为 I rc ,
2 i
及其对应的特征
矩阵[A]
矩阵[A]的第i列矢量{A}i就是 轴系振动 的第i阶固 有圆频率 Ωi的振形矢量
轴系自由扭转振动 振形图
振形图:各质量在 每阶固有圆频率 Ωi 下的相对振幅
相对振幅:将振形 矢量{A}i的第一个 元素进行归1化 , 但不改变各质量间 的相对振幅比例关 系
不同的自振频率有 不同的振形图
L1 GJ1
是否可靠
轴系的当量换算
原则:振动特性相同
惯量较大且较集中 的部件
惯量较小且较分散 的部件
阻尼
非弹性的惯量元 件
无惯量的弹性元 件
弹性元件的轴段 阻尼和惯性元件 的质量阻尼
激励载荷只作用在惯性元件上轴系的当量系统图来自对应于圆心角 i 的圆
弧带的转动惯量
Ii' 3i602Li(Ri4-Ri41)
整个曲柄臂的转动惯量
Iwi n13i602Li(Ri4Ri41)
用同样的方法可求得平衡重的转动惯量 综上,单位曲柄(crank)的转动惯量为
IcImIp2Iw2Ib
上述转动惯量可在三维CAD软件中求得
活塞、连杆当量转动惯量的换算
原则:运动动能不变
往复运动质量(mj mpmc1)的运动动能
E K 1 2 m jv 2 1 2 m jR 2 ω 2 (si n 2 s2 in )2
曲柄转动一周,往复运动质量的平均动能
EKm
1
2
2
0 EKd
1 2
mjR2ω2
(1 2
2
8
)
设往复运动质量的当量转动惯量为 I rc ,
2 i
及其对应的特征
矩阵[A]
矩阵[A]的第i列矢量{A}i就是 轴系振动 的第i阶固 有圆频率 Ωi的振形矢量
轴系自由扭转振动 振形图
振形图:各质量在 每阶固有圆频率 Ωi 下的相对振幅
相对振幅:将振形 矢量{A}i的第一个 元素进行归1化 , 但不改变各质量间 的相对振幅比例关 系
不同的自振频率有 不同的振形图
L1 GJ1
轴系扭转振动PPT演示课件

2019/11/7
11
二.扭振的计算模型与当量转化
惯量计算
规则物体转动惯量,可应用一般公式进行计算。 对于螺旋桨转动惯量,可按下式计算
J p J 0 ZJ 1 J p K B (J 0 ZJ 1 )
式中: J0 — 轮毂转动惯量,kg.m2; Z — 叶片数; J1 — 桨叶转动惯量,kg. m2;
确定简谐次数
确定临界转速
确定相对振幅矢量和
确定扭振附加应力尺标
方法
Holzer表法(√)
系统矩阵法
传递矩阵法(#)
2019/11/7
2
一.关于“推进轴系扭振”
什么是“推进轴系扭转振动”?
定义
还有:纵向 振动和回旋
振动
船舶轴系出现的周向交变运动及其相应变形。
产生原因
柴油机气缸内气体压力的周期性变化引起的激励
运动部件的重力及往复惯性力的周期性变化引起的激励
接受功率的部件不能均匀的地吸收扭振而形成的激励
常见的现象
低速柴油机轴系容易出现节点在传动轴中的单节点振动
中速柴油机轴系,常易出现节点在曲轴的双节点扭振
对于长轴系及有传动齿轮的轴系,在使用转速范围内,可 能有1、2和3节点的振动模态
2019/11/7
5
二.扭振的计算模型与当量转化
实际动力装置系统当量系统(计来自模型)2019/11/7
6
二.扭振的计算模型与当量转化
当量系统,就是把复杂的柴油机轴系转化成如图所示的
集中质量—弹性系统。
转化原则:当量系统能代表实际轴系的扭振特性,其自
由振动计算固有频率与实际固有频率基本相同,振型与 实际的基本相似。实测固有频率与计算值相差大于5% 时,应对当量系统进行修正。
曲轴轴系的扭转振动计算

文献标志码 :A
To so a b a in Cac lt n o a k h f y tm r i n lVi r t lu a i fCr n s a tS se o o
DENG Jn Z NG e ,V B n 2 ig , HO W PL ig ( .h nd o pesrPa tC C J hi o e q imetC mpn , hn d 1 10, hn ;.ra l D ln nier gC mpn ii d 1C e gu C m rso ln, NP i a P w rE up n o ay C eg u6 0 0 C ia2G erWa rl gE gne n o oyLm t e l ii i e
4e+ 2e= .5 - rdN・ + 3e+ 591 x O7( / m) l a
()装有齿轮的轴段 1 ,= (d z :+ ) 39 x 0 ( g m2 f4 = . k . ) 11 + 51
4
轴段3 的柔 度
()装有平衡重的轴段 2
I2 p '= 4
文章 编号 :0 6 2 7 ( 0 2 0 — 0 6 0 10 — 9 1 2 1 )4 0 2 — 5
曲轴轴系的扭转振动计算
邓 晶’ ,钟 蔚 吕 冰z ,
(. 1 中国石油集 团济柴 动力 总厂成都压缩 机厂 , 四川 成都 600 ;. 城钻探工程有 限公 司苏里格气 田项 目 , 1102 长 部 内蒙古 苏里格 14 1) 200
() 对 于 曲 轴 的 曲拐 部 分 , 由于 几 何 形 状 极 3
为复杂 ,且在整个 曲拐扭转 时各部 分发生不 同形 式 的变形 ,因此很 难用纯理论公式 进行计算 ,目 前 一 般 采 用 实 验 数 据 修 正 过 的半 经 验 公 式 进 行 计
第三节 轴系的扭转振动分析

第三节
轴系的扭转振动
船舶推进轴系是一个既有扭转弹性、又 有回转质量的扭转振动系统。轴系扭转振 动为边旋转边做周向来回振动,不可避免。 规范要求:功率大于 220KW的柴油机推进系 统、额定功率大于 110KW的柴油机发电系统 要进行扭振计算并提交审查及实船测量, 如计算及测试超过规定必须采取避振和减 振措施
五 轴系扭转振动的减振措施
一、船舶轴系扭转振动许用应力和许用扭矩 1转速比r=共振转速/标定转速=nc /ne 2持续运转工况0r1.0 3危险临界转速 1)扭振应力或扭矩超过持续运转的许用值时的共振转 速 2)防止措施: (1)设转速禁区;(2)禁区内不应 持续运转,允许快速超越;(3)转速表用红色标明, 并在操纵台前设示告牌 4常用转速r=0.8-1.05范围内不允许存在转速禁区。 在r=0.9-1.03范围内应尽可能不用减小振幅的方 法来消除转速禁区
4封缸运行时的扭振特点 1)封缸运行类型 (1)单缸停油,运动件未拆除 (2)损坏运动件拆除 2)相应扭振特点 (1)运动件未拆除较常见,使扭振振幅和扭振应 力增大,即扭振恶化 (2)运动件拆除对扭振影响最严重,使转动惯量 减小,固有频率、固有振型发生变化,扭振振 幅、应力增大 5现代船用大型柴油机的扭振特点 使轴系扭转振动加剧,中间轴产生过大的扭 振振幅和扭振附加应力
1)由强制振动φ1与有阻尼自由扭振φ2两种 简谐振动合成,经过一定时间后φ2消失, 只剩下强制振动φ1 2)强制振动φ1是由激振力矩Mt激起的,且其 圆频率与激振力矩圆频率相同,即皆为同一 个ω 3)A1的大小主要取决于扭摆的自振圆频率ωe 与阻尼比n。在无阻尼(n→0)情况下,若 ωe=ω,则振动振幅A1→∞;在有阻尼情 况下,若ωe=ω,则A1不会无限大,但也 为最大值,称系统共振
轴系的扭转振动
船舶推进轴系是一个既有扭转弹性、又 有回转质量的扭转振动系统。轴系扭转振 动为边旋转边做周向来回振动,不可避免。 规范要求:功率大于 220KW的柴油机推进系 统、额定功率大于 110KW的柴油机发电系统 要进行扭振计算并提交审查及实船测量, 如计算及测试超过规定必须采取避振和减 振措施
五 轴系扭转振动的减振措施
一、船舶轴系扭转振动许用应力和许用扭矩 1转速比r=共振转速/标定转速=nc /ne 2持续运转工况0r1.0 3危险临界转速 1)扭振应力或扭矩超过持续运转的许用值时的共振转 速 2)防止措施: (1)设转速禁区;(2)禁区内不应 持续运转,允许快速超越;(3)转速表用红色标明, 并在操纵台前设示告牌 4常用转速r=0.8-1.05范围内不允许存在转速禁区。 在r=0.9-1.03范围内应尽可能不用减小振幅的方 法来消除转速禁区
4封缸运行时的扭振特点 1)封缸运行类型 (1)单缸停油,运动件未拆除 (2)损坏运动件拆除 2)相应扭振特点 (1)运动件未拆除较常见,使扭振振幅和扭振应 力增大,即扭振恶化 (2)运动件拆除对扭振影响最严重,使转动惯量 减小,固有频率、固有振型发生变化,扭振振 幅、应力增大 5现代船用大型柴油机的扭振特点 使轴系扭转振动加剧,中间轴产生过大的扭 振振幅和扭振附加应力
1)由强制振动φ1与有阻尼自由扭振φ2两种 简谐振动合成,经过一定时间后φ2消失, 只剩下强制振动φ1 2)强制振动φ1是由激振力矩Mt激起的,且其 圆频率与激振力矩圆频率相同,即皆为同一 个ω 3)A1的大小主要取决于扭摆的自振圆频率ωe 与阻尼比n。在无阻尼(n→0)情况下,若 ωe=ω,则振动振幅A1→∞;在有阻尼情 况下,若ωe=ω,则A1不会无限大,但也 为最大值,称系统共振
内燃机构造与设计--5-4扭振

实际发动机曲轴系统扭振的激振力矩主要是输出的单缸扭矩M,M是一个周期函 数,而周期函数是由无限个简谐分量组成,每一个简谐分量都可能引起共 振,所以曲轴系统的扭振可能有很多共振工况。当其中某一阶谐量的频率与 曲轴的固有频率相等时,则曲轴就将与此简谐激振力矩发生共振,振幅大大 增加。发生共振时,曲轴一方面在平均扭矩的作用下正常旋转,另一方面按 某一主振型反复扭振。
4.1 有关扭转振动的一些基本概念
4.1.2 单自由度扭摆的自由振动
4.1.2.1 无阻尼自由振动
4.发动机轴系的扭转振动
单自由度扭摆——由一根有弹性无质量(转动惯量)的扭杆和一个有
质量无弹性的圆盘组成。
扭摆的状态只用一个坐标——圆盘偏离其
平衡位置的角位移θ即可充分地表示出来。
圆盘的转动惯量为I。 扭杆的抗扭刚度为k=GJp/l。
危害:扭振会使机件中产生附加应变和应力,磨损增大,严重时曲轴、齿 轮的齿等零件会断裂,机械噪音增大,发动机平衡性恶化使机体振动加剧
等不良后果。
4.1 有关扭转振动的一些基本概念
• •
4.发动机轴系的扭转振动
产生的原因:
内因:曲轴系统是一个多质量的弹性体,具有一定的惯性、弹性。 外因:在曲轴系统上作用着一个大小、方向都周期性变化的激振力矩。
4.2 发动机轴系的扭振分析及减振措施
弹性参数的换算——扭转刚度k或柔度e
4.发动机轴系的扭转振动
轴段的扭转刚度:作用在直轴段两端的扭矩与扭转角度的比值。
l k M G / dx 0 J ( x) Δφ p
G——材料的剪切弹性模数,Jp(x)——x截面处的极惯性矩,l——轴段的自由扭 转长度。 轴段的柔度:轴段在单位力矩作用下的扭转变形。 e Δ φ 1
《轴系的扭转振动》课件

分析轴系扭振的动态特性, 如阻尼比和固有频率的变化 规律。
比较不同实验条件下的轴系 扭振响应,以验证结果的可 靠性和一致性。
结果比较与验证
比较方法
01
比较不同实验条件下的结果,以评估实验 的重复性和可靠性。
03
02
将实验结果与理论模型进行对比,验证模型 的准确性和适用性。
04
验证内容
验证理论模型的预测与实验结果的符合程 度。
智能化与数值模拟
利用智能化技术和数值模拟方法,可实现对轴系 扭转振动更精确、高效的预测和控制。未来研究 可关注智能化技术和数值模拟方法在轴系扭转振 动研究中的应用和发展。
减振技术发展
随着减振技术的不断进步,未来将有更多高效、 可靠的减振方法和装置应用于轴系设计中。研究 可关注减振技术的创新发展及其在轴系设计中的 应用前景。
标准与规范更新
随着轴系扭转振动研究的深入和工程实践的积累 ,相关标准和规范也需要不断更新和完善。未来 研究可关注国际和国内相关标准与规范的动态, 推动轴系扭转振动研究的标准化进程。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
04
பைடு நூலகம்
数据采集器将实时采集的数据传输到计算 机进行后续分析。
实验结果与分析
01
实验结果
02 轴系扭振的位移、速度和加速度随时间变化的曲 线图。
03
不同激振频率和幅值下的轴系扭振响应。
实验结果与分析
• 轴系扭振的阻尼比和固有频率等 参数。
实验结果与分析
结果分析
探讨激振频率和幅值对轴系 扭振的影响。
PART 07
总结与展望
本课程总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I12 k1,2 1
1
1
I 2 2
0 k1,2 1
I1 I2 k
I1I2
2、双质量扭振系统
A1
A1 I1
A2
I2
A2
结点
3、多质量扭振系统
4、三盘解例
4、三盘解例
设3盘的直径为1m,质量分别为500kg, 1000kg和1500kg。L1=L2=75cm, d=12cm,材料的剪切模量 G=8×109N/m2
相当于在强迫振动的基础上,叠加有阻尼的自由振动。
h
B
h
2
2 p2 2 4n2 p2
1
p
2
2
2n
2
p
2
2n p
2np arctan
2 p2
arctan
1
p 2
2n
B B0
,
B0
h
2
1
1
p
2
2
2
p
2
p
arctan
1
p
2
强迫振动的幅频特性和相频特性
第四节 曲轴轴系的扭转振动
• 曲拐作用力大小和方向变化 • 阻力矩的变化
产生曲轴的扭转振动和弯曲振动。
曲轴的弯曲刚度大,固有频率高,不易产生弯曲振动。 曲轴的扭转刚度小,扭振频率低,易产生扭振。
一、自由扭转振动
1、单质量扭振系统
I k 0
2 0
0
cost
0
sin t
Asin t
二、单质量有阻尼强迫扭转振动
1、单质量有阻尼扭振
阻尼力矩:R -C
I C k 0 2n 2 0
R
Aent sin 2 n2t
振动周期: T
2 2 2 n2
1
1
n2
2
2、单质量有阻尼扭振特征
• 当n>ω 时,非周期运动,盘缓慢返回平衡位置 • 当n=ω 时,临界阻尼 • 当n<ω 时,周期性振动,
固振周期:
T 2 I
k
振
幅: A
0 0
2、双质量扭振系统
I11 k1,2 1 2 0 I22 k1,2 2 1 0
1 A1 sin t 2 A2 sin t
I12 k1,2 1 A1 A2 0
A1 I2 2 k1,2 1 A2 0
周期增长,振幅几何级数衰减。
3、单质量有阻尼强迫振动
I C k M sin pt
2n 2 hsin pt
R
T=M sin(pt)
Aent sin 2 n2t Bsin pt
h B
2 p2 2 4n2 p2
arctan
2np 2p
2
4、单质量有阻尼强迫扭振特征
三、直列6缸机曲轴扭振计算
1、计算模型
2、激振转矩相位机主激振谐量
3、曲轴扭振Ⅰ、Ⅱ阶主振型
四、曲轴的减振措施
1、减振措施
• 减小激振输入 • 改变曲轴固有频率 • 装置减震器
2、减震器
• 动力型减震器 • 阻尼型减震器 • 动力阻尼型减震器
图10-18 液压阻尼式扭振减振器 1—轮毂 2—片簧组 3—中间体 4—压紧环 5—侧板 6—供油孔