方程的认识PPT课件
合集下载
认识一元二次方程ppt课件

析
[领悟提能]
求一元二次方程的项及各项系数时,应先化为一般形式
,注意各项系数包括前面的符号.
∴ 一元二次方程 ax2+bx+c=0(a,b,c 为常数,a≠0)
一个解 x 的范围为0.6<x<0.7.
[答案] C
2.1 认识一元二次方程
考 ■考点四 根据实际问题列一元二次方程
点
清
(1)审题(理解题目的含义)
单
解
(2)找等量关系(通过已知量、未知量
读
步骤
来找等量关系)
(3)设未知数
(4)列出一元二次方程
单
解
次方程 的值叫做一元二次方程的解,也叫一元二
读
的解
次方程的根
一般步骤:(1)列表,利用未知数的取
估计一元 值分别计算方程 ax 2 +bx+c=0(a≠0)中
二次方程 ax2+bx+c 的值;(2)在表中找出使ax2
的解
+bx+c 的值可能等于 0 的未知数符合要求
的范围;
2.1 认识一元二次方程
2.1 认识一元二次方程
考
点
清
单
解
读
[解题思路]
[答案] x(x-1)=30
2.1 认识一元二次方程
重 ■题型一 利用一元二次方程的定义求值
难
|m|+1-3x=7 是关于 x 的一元
例1
已知方程(m-1)x
题
型 二次方程,则有 (
)
突
破
A. m=1
B. m=-1
C. m=±1
D. m≠±1
2.1 认识一元二次方程
一元二次方程必须同时满足三个条件:(1)是整
[领悟提能]
求一元二次方程的项及各项系数时,应先化为一般形式
,注意各项系数包括前面的符号.
∴ 一元二次方程 ax2+bx+c=0(a,b,c 为常数,a≠0)
一个解 x 的范围为0.6<x<0.7.
[答案] C
2.1 认识一元二次方程
考 ■考点四 根据实际问题列一元二次方程
点
清
(1)审题(理解题目的含义)
单
解
(2)找等量关系(通过已知量、未知量
读
步骤
来找等量关系)
(3)设未知数
(4)列出一元二次方程
单
解
次方程 的值叫做一元二次方程的解,也叫一元二
读
的解
次方程的根
一般步骤:(1)列表,利用未知数的取
估计一元 值分别计算方程 ax 2 +bx+c=0(a≠0)中
二次方程 ax2+bx+c 的值;(2)在表中找出使ax2
的解
+bx+c 的值可能等于 0 的未知数符合要求
的范围;
2.1 认识一元二次方程
2.1 认识一元二次方程
考
点
清
单
解
读
[解题思路]
[答案] x(x-1)=30
2.1 认识一元二次方程
重 ■题型一 利用一元二次方程的定义求值
难
|m|+1-3x=7 是关于 x 的一元
例1
已知方程(m-1)x
题
型 二次方程,则有 (
)
突
破
A. m=1
B. m=-1
C. m=±1
D. m≠±1
2.1 认识一元二次方程
一元二次方程必须同时满足三个条件:(1)是整
5.1 认识方程 课件 (共20张PPT) 北师大版数学七年级上册

4. 已知方程 (m 2)x m 1 3 m 5 是关于 x 的一元一 次方程,求 m 的值,并写出原方程.
解:因为方程 (m 2)x m 1 3 m 5 是关于 x 的一元 一次方程, 所以 |m|-1 = 1,且 m-2 ≠ 0,得 m = -2. 所以原方程为-4x + 3 = -7.
A. 3x-2=2x
B. 4x-1=2x+3
C. 3x+1=2x-1 D. 5x-3=6x-2
2. 若 x=4 是关于 x 的方程 ax=8 的解,则 a 的值 为___2___.
当堂小结
认识方程
方程的定义 一元一次方程
方程的解
课堂练习 1. x = 1 是下列哪个方程的解
A. 1 x 2 C. x 1 x 2
甲种支数 乙种支数 20支
解:设甲种铅笔买了 x 支,乙种铅笔买了 (20 - x) 支. 0.3x + 0.6(20-x) = 9,是一元一次方程.
(3)一个梯形的下底比上底多 2 cm,高是 5 cm,面 积是 40 cm2,求上底.
1 2 (上底+下底)×高 = 梯形面积
解:设上底为 x cm,则下底为 (x + 2) cm. 1 (x x 2)5 40,是一元一次方程. 2
x
415 424 433 442 451 460 379 388 …
10x + 15(45 - x) 46570 64655 6460 465 470 475 480 485 …
总结 使方程左、右两边的值相等的未知数的值,叫作方 程的解。求方程的解的过程称为解方程。
练一练
1. 下列方程中,解为 x=-2 的是( C )
典例精析
例1 判断下列各式哪些是方程:
认识方程课件

小学数学北师大
方
程
数 学
y y
200毫升
2y+200=2000
自学要求:
1、先自己将式子分类 2、两个人讨论交流,并说出分类依据
什么是方程?
含有未知数的等式叫方程。
下面哪些是方程,哪些不是? 为什么? a - 15 (×) 5y=35 9.8+0.2=10 80+□=120 (×) n+17>27 (√ ) 36- =9×3 (√ )
x
(√ )
(×)
6x+
45+
=78
=78
你能举几个方程吗?
所有的方程都是等式。(√ )
所有的等式都是方程。(x )
等式与方程有什么关系?
等式 方程
早在三千六百多年前,埃及人 就会用方程解决数学问题了。在我 国古代,大约两千年前成书的《九 章算术》中,就记载了用一组方程 解决实际问题的史料。一直到三百 年前,法国的数学家笛卡尔第一个 提倡用x、y、z等字母代表未知数, 才形成了现在的方程。
一、根据方程x+3=7填空
X+3+( )=7 + 8 X + 3 - 3=7 -( ) X+3+( )=7+( )
二、根据题意列方程
三、梯形的面积是18平方分米。
?
4.5
2
方
程
数 学
y y
200毫升
2y+200=2000
自学要求:
1、先自己将式子分类 2、两个人讨论交流,并说出分类依据
什么是方程?
含有未知数的等式叫方程。
下面哪些是方程,哪些不是? 为什么? a - 15 (×) 5y=35 9.8+0.2=10 80+□=120 (×) n+17>27 (√ ) 36- =9×3 (√ )
x
(√ )
(×)
6x+
45+
=78
=78
你能举几个方程吗?
所有的方程都是等式。(√ )
所有的等式都是方程。(x )
等式与方程有什么关系?
等式 方程
早在三千六百多年前,埃及人 就会用方程解决数学问题了。在我 国古代,大约两千年前成书的《九 章算术》中,就记载了用一组方程 解决实际问题的史料。一直到三百 年前,法国的数学家笛卡尔第一个 提倡用x、y、z等字母代表未知数, 才形成了现在的方程。
一、根据方程x+3=7填空
X+3+( )=7 + 8 X + 3 - 3=7 -( ) X+3+( )=7+( )
二、根据题意列方程
三、梯形的面积是18平方分米。
?
4.5
2
小学数学认识方程公开课ppt教学课件

《认识方程》 单元备课
本单元是第一次认识方程,也是学生由算术思维迈向代数思维 的新起点。用字母表示数和等量关系的学习对小学生而言,都 很抽象,同时这个单元的学习又是后续学习代数相关知识的基 础,所以这个单元的学习在整个小学阶段显得尤为重要。
方程的本质是描述现实世界的一种等量关系,列方程解决问题 就是在现实问题中构建未知数与已知数之间的关系,进而通过 未知数求得已知数的过程,所以对方程的概念教学不能只停留 在表面。
学生在列方程解决问题过程中,最突出的困难体现在用 字母式表示未知量上,如何突破这种困难?有没有比较 切实有效的方法?
几点困惑:
用字母表示数 找等量关系 认识方程 解方程(一)(二) 猜数游戏 练习五
课时安排:
教材编排: 教材安排了数青蛙、年龄问题两个情境,着重关注用字母表示关系式,即字
母式。 俞正强老师认为,学生在学习用字母表示数时要经历三层境界:
1.知道的用数字表示,不知道的用字母表示。 2.不同的对象用不同的字母表示。 3.有关系的时候可以用字母式表示。 思考:教材设置的情境对学生来说有一定难度,因此教学时应思考设计怎样 的情境,引导学生体验并达到这三个水平。
解方程
设置相应对比练习帮助学生进一步体会方程的意 义,重在培养兴趣,体现方程再解题过程中的优 势。
猜数游戏及练习
在后续的分数除法应用题的教学时,学生喜欢用算术方 法,我想那是因为老师过于强调“单位‘1’= 对应数量 / 对应分率”这个公式的原因。新教材,在这一部分, 只讲到了方程的方法,没有提出算术方法,那么在讲分 数除法应用题时,是否可以完全撇开算术方法呢?
单元概况:
1.结合具体情境,学会用字母表示数和数量关系,发展抽象概括能力。 2.结合具体情境,体会等量关系,能用方程表示简单情境中的等量关系,了解方程的 作用。 3.了解等式性质,能用等式性质解简单的方程。
本单元是第一次认识方程,也是学生由算术思维迈向代数思维 的新起点。用字母表示数和等量关系的学习对小学生而言,都 很抽象,同时这个单元的学习又是后续学习代数相关知识的基 础,所以这个单元的学习在整个小学阶段显得尤为重要。
方程的本质是描述现实世界的一种等量关系,列方程解决问题 就是在现实问题中构建未知数与已知数之间的关系,进而通过 未知数求得已知数的过程,所以对方程的概念教学不能只停留 在表面。
学生在列方程解决问题过程中,最突出的困难体现在用 字母式表示未知量上,如何突破这种困难?有没有比较 切实有效的方法?
几点困惑:
用字母表示数 找等量关系 认识方程 解方程(一)(二) 猜数游戏 练习五
课时安排:
教材编排: 教材安排了数青蛙、年龄问题两个情境,着重关注用字母表示关系式,即字
母式。 俞正强老师认为,学生在学习用字母表示数时要经历三层境界:
1.知道的用数字表示,不知道的用字母表示。 2.不同的对象用不同的字母表示。 3.有关系的时候可以用字母式表示。 思考:教材设置的情境对学生来说有一定难度,因此教学时应思考设计怎样 的情境,引导学生体验并达到这三个水平。
解方程
设置相应对比练习帮助学生进一步体会方程的意 义,重在培养兴趣,体现方程再解题过程中的优 势。
猜数游戏及练习
在后续的分数除法应用题的教学时,学生喜欢用算术方 法,我想那是因为老师过于强调“单位‘1’= 对应数量 / 对应分率”这个公式的原因。新教材,在这一部分, 只讲到了方程的方法,没有提出算术方法,那么在讲分 数除法应用题时,是否可以完全撇开算术方法呢?
单元概况:
1.结合具体情境,学会用字母表示数和数量关系,发展抽象概括能力。 2.结合具体情境,体会等量关系,能用方程表示简单情境中的等量关系,了解方程的 作用。 3.了解等式性质,能用等式性质解简单的方程。
《认识方程》ppt课件

利润问题
其他问题
利用二元一次方程组表示进价、售价和利润 之间的关系,求解最大利润等问题。
如浓度问题、配套问题等,都可以通过设立 二元一次方程组进行求解。
04
一元二次方程
一元二次方程形式
一般形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$
标准形式
02
$(x-p)^2 = q$
含有绝对值的情况
需要根据绝对值的性质,分别讨论绝对值内部表达式的正负情况, 从而转化为常规的无理方程进行求解。
含有参数的情况
需要根据参数的不同取值范围,分别讨论方程的解的情况,从而 得到参数对方程解的影响。
06
方程在实际问题中应用
行程问题建模与求解
路程、速度和时间关系建模
通过方程表达路程、速度和时间之间的数学关系,如s=vt(s为路 程,v为速度,t为时间)。
标准形式
$x + a = b$,通过移项可将一般 形式转化为标准形式。
解一元一次方程方法
等式性质法
利用等式性质(等式两边 同时加上或减去同一个数, 等式仍成立)来解方程。
移项法
将方程中的未知数项移到 等式的一边,常数项移到 等式的另一边,从而解出 未知数。
合并同类项法
将方程中的同类项合并, 简化方程后求解。
不等式
用不等号连接的式子称为不等式,表示左右两边不 相等。
不等式性质
不等式两边同时加上或减去同一个数,不等式性质 不变;不等式两边同时乘以或除以同一个正数,不 等式性质不变;不等式两边同时乘以或除以同一个 负数,不等式反向。
02
一元一次方程
一元一次方程形式
一般形式
北师大版七年级上册数学5.1 认识方程PPT课件

树苗原来的高度40厘米+长的高度=1米
解:设大约x周后树苗长到1米,根据题意得: 40+5x=100.
探究新知
(2)第六次全国人口普查统计数据(2010年11月1日新华社公布). 截止2010年11月1日0时,全国每10万人中具有大学文化程 度的人数为8930人,比2000年7月1日0时增长了147.30%, 2000年6月底每10万人中约有多少人具有大学文化程度?
课堂检测
能力提升题
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买了 两种铅笔共20 支,两种铅笔各买了多少支?
买甲种共用的钱+买乙种共用的钱=9元 甲种支数+乙种支数=20支
解:设甲种铅笔买了x支,乙种铅笔买了(20-x)支.
0.3x+0.6(20-x)=9,是一元一次方程.
课堂检测
探究新知 归纳小结 判断一个数值是不是方程的解的步骤: 1. 将数值代入方程左边进行计算; 2. 将数值代入方程右边进行计算; 3. 若左边=右边,则是方程的解,反之,则不是.
巩固练习
变式训练
1.下列一元一次方程中,解为 x=1 的是( B )
A. 2x+1=4
B. x+1=2
C. 2x-3=5
A. 1-x=2
B. 2x-1=4-3x
C.
x+1 2
=x-2
D. x-4=5x-2
2. 若 x =1是方程x2 -2mx +1=0的一个解,则m的值为( C )
A. 0
B. 2
C. 1
D. -1
课堂检测
基础巩固题
3. 下列方程:
①x -2=
1 x
④y2 -4y=3
解:设大约x周后树苗长到1米,根据题意得: 40+5x=100.
探究新知
(2)第六次全国人口普查统计数据(2010年11月1日新华社公布). 截止2010年11月1日0时,全国每10万人中具有大学文化程 度的人数为8930人,比2000年7月1日0时增长了147.30%, 2000年6月底每10万人中约有多少人具有大学文化程度?
课堂检测
能力提升题
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买了 两种铅笔共20 支,两种铅笔各买了多少支?
买甲种共用的钱+买乙种共用的钱=9元 甲种支数+乙种支数=20支
解:设甲种铅笔买了x支,乙种铅笔买了(20-x)支.
0.3x+0.6(20-x)=9,是一元一次方程.
课堂检测
探究新知 归纳小结 判断一个数值是不是方程的解的步骤: 1. 将数值代入方程左边进行计算; 2. 将数值代入方程右边进行计算; 3. 若左边=右边,则是方程的解,反之,则不是.
巩固练习
变式训练
1.下列一元一次方程中,解为 x=1 的是( B )
A. 2x+1=4
B. x+1=2
C. 2x-3=5
A. 1-x=2
B. 2x-1=4-3x
C.
x+1 2
=x-2
D. x-4=5x-2
2. 若 x =1是方程x2 -2mx +1=0的一个解,则m的值为( C )
A. 0
B. 2
C. 1
D. -1
课堂检测
基础巩固题
3. 下列方程:
①x -2=
1 x
④y2 -4y=3
《认识一元二次方程》一元二次方程PPT(第1课时)教学课件

102+112+122=132+142.
你还能找到五个连续整数,使前三个数的平方 和等于后两个数的平方和吗?
如果将这五个连续整数中的第一个数设为x,那 么怎样用含x的代数式表示其余四个数?根据题意, 你能列出怎样的方程?
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地 面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯 子的底端滑动多少米?
(来自《点拨》)
知3-练
1 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计, 2014年约为20万人次,2016年约为28.8万人次,设观赏人数年 均增长率为x,则下列方程中正确的是( ) A.20(1+2x)=28.8 B.28.8(1+x)2=20 C.20(1+x2)=28.8 D. 20+(1+2x)+20(1+x)2=28.8
油利画用的长面方积形与的整面个积挂公 图式的和面油积画.面积与整个
90+2x
挂图面积之间的关系
解:(90+2x)(40+2x)×54%=90×40.
列(方来程自《点拨》)
总结
知3-讲
建立一元二次方程模型解决实际问题时,既要 根据题目条件中给出的等量关系,又要抓住题目中隐 含的一些常用关系式(如面积公式、体积公式、利润 公式等)进行列方程.
到右依次填写28,18,10,4. (4)通过分析表格中的数值,估计方程的解,对表格中所填数值
的分析应至少包括以下两个方面:①表格中,当x的值从小到 大变化时,(8-2x)(5-2x)的值逐渐减小,经历了从大于 18到等于18再到小于18的过程. ②由表格可知,当x=1时, (8-2x)(5-2x)-18,由方程的解得意义,可以得出“x-1是 方程,(8-2x)(5-2x)-18的解得结论,从而所求宽度为1 m.
你还能找到五个连续整数,使前三个数的平方 和等于后两个数的平方和吗?
如果将这五个连续整数中的第一个数设为x,那 么怎样用含x的代数式表示其余四个数?根据题意, 你能列出怎样的方程?
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地 面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯 子的底端滑动多少米?
(来自《点拨》)
知3-练
1 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计, 2014年约为20万人次,2016年约为28.8万人次,设观赏人数年 均增长率为x,则下列方程中正确的是( ) A.20(1+2x)=28.8 B.28.8(1+x)2=20 C.20(1+x2)=28.8 D. 20+(1+2x)+20(1+x)2=28.8
油利画用的长面方积形与的整面个积挂公 图式的和面油积画.面积与整个
90+2x
挂图面积之间的关系
解:(90+2x)(40+2x)×54%=90×40.
列(方来程自《点拨》)
总结
知3-讲
建立一元二次方程模型解决实际问题时,既要 根据题目条件中给出的等量关系,又要抓住题目中隐 含的一些常用关系式(如面积公式、体积公式、利润 公式等)进行列方程.
到右依次填写28,18,10,4. (4)通过分析表格中的数值,估计方程的解,对表格中所填数值
的分析应至少包括以下两个方面:①表格中,当x的值从小到 大变化时,(8-2x)(5-2x)的值逐渐减小,经历了从大于 18到等于18再到小于18的过程. ②由表格可知,当x=1时, (8-2x)(5-2x)-18,由方程的解得意义,可以得出“x-1是 方程,(8-2x)(5-2x)-18的解得结论,从而所求宽度为1 m.
人教版五年级上册数学方程的意义(课件)(共21张PPT).ppt

是方程。
探求新知
方程的意义:
方程必须具备两个条件:一是等式;二是等式中必须含有未知 数。方程与等式的关系如图所示:
注意:方程都是等式,但等式不一定是方程。
巩固练习
1.下面哪些式子是方程?
[教材P63 做一做 第1题 ]
35+65=100
不含未知数
x-14>72
不是等式
y+24
不是等式
5x+32=47 (是)
重点难点
【重点】
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
【难点】
方程与等式的关系;方程中等量关系的建立。
天平
探求新知 同学们,你们认识它吗?
砝码
天平由天平秤与砝码组成,当放在两端托盘的物体的质量相等时,
天平就会平衡,根据这个原理,我们可以称出物体的质量。
探求新知
左边有两个50g。
天平保持平衡。
50+50=100
这是一个等式。
等式的概念:含有等号的式子叫等式。
正好平衡。
探求新知 空杯子重100g。
探求新知
一杯水有多重?
如果水重xg,杯 子和水共重……
100g
探求新知
哪边重些?
100+x>200
100+x<300
探求新知
平衡了!
100+x=250
探求新知
50+50=100 100+x>100 100+x>200 100+x<300 100+x=250 像100+x = 250,100+x +50= 300……这样,含有未知数的等式就
28<16+14
探求新知
方程的意义:
方程必须具备两个条件:一是等式;二是等式中必须含有未知 数。方程与等式的关系如图所示:
注意:方程都是等式,但等式不一定是方程。
巩固练习
1.下面哪些式子是方程?
[教材P63 做一做 第1题 ]
35+65=100
不含未知数
x-14>72
不是等式
y+24
不是等式
5x+32=47 (是)
重点难点
【重点】
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
【难点】
方程与等式的关系;方程中等量关系的建立。
天平
探求新知 同学们,你们认识它吗?
砝码
天平由天平秤与砝码组成,当放在两端托盘的物体的质量相等时,
天平就会平衡,根据这个原理,我们可以称出物体的质量。
探求新知
左边有两个50g。
天平保持平衡。
50+50=100
这是一个等式。
等式的概念:含有等号的式子叫等式。
正好平衡。
探求新知 空杯子重100g。
探求新知
一杯水有多重?
如果水重xg,杯 子和水共重……
100g
探求新知
哪边重些?
100+x>200
100+x<300
探求新知
平衡了!
100+x=250
探求新知
50+50=100 100+x>100 100+x>200 100+x<300 100+x=250 像100+x = 250,100+x +50= 300……这样,含有未知数的等式就
28<16+14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
x+ 10 = 15
6
二、合作探索
分类整理 不等式
等式
χ + 20 <100 χ + 20 > 50 10 < 100
不含未知数 含有未知数
100+100=200
χ + 20 = 70 2 χ = 150
3 χ + 10 = 100 χ + 10 = 15
含有未知数的等式,叫做方程。
方程
.
7
二、合作探索
苹果总个÷ 数 =盘每子盘数个数
方程:χ ÷ 3 = 12
.
13
三、自主练习
5.用生活中的具体实例描述下列方程。
4χ = 68 ɑ - 7 + 10 = 32
.
14
四、回顾反思
.
15
方程的认识
情境导入 合作探索 自主练习 回顾反思
.
1
一、情境导入
盛米粉的 碗重20克。
这只熊猫一次 需要喂一碗米 粉。
盛米粉的碗重20克
这只熊猫一次需要 喂一碗米粉。
米粉重多少克?
根从据图这中些,信你息发,现你了能哪提些出数什学么信问息题??
.
2
二、合作探索
米粉重多少克?
我们借助天平来研究。.3 Nhomakorabea.
10
三、自主练习
2.仔细观察下图,说出图中存在的相等关系。并列出方程。
4千克 χ千克
43千克
兔子的体重 + 猴子的体重 = 熊猫的体重
4 + χ = 43
.
11
三、自主练习
3.看图列方程。
3 χ = 60
.
χ +30 = 100
12
三、自主练习
4.填一填。
书包的价钱+ 橡皮的价=钱总价钱
方程: χ + 2 = 25
等式和方程的关系: 等式不一定是方程。 方程一定是等式。
等式
等式
方程
.
8
方程我知道
早在公元1650年,古埃及人就在纸草书上写下了含 有未知数的问题,14世纪初,我国数学家朱世杰创立了 “四元术”(四元相当于四个未知数)这是中国古代数 学的一次飞跃。
三百年前,法国数学家笛卡尔第一个提倡用x、y、z 等字母代表未知数,才形成了现在的方程。掌握了方程, 人们会深切地感受到许多用算术方法解起来很难的问题, 用方程来解决却轻而易举。
.
9
三、自主练习
1.下列哪些式子是方程?是方程的打“√ ”。
X+ 5 ( ) 15+ 5 =20 ( ) X÷ 5 <20 ( )
3Y= 12 ( √ )
8- n =6 ( √ )
10÷ m=2 ( √ )
2X+3> 10 ( ) 3X+5X= 160 ( √ ) 24+6Y= 540 ( √ )
二、合作探索
米粉重多少克? 我们借助天平来研究。
怎样用天平XX快++速22称00<>出=15米70000粉的质量呢?
.
4
二、合作探索
你能用等式表示下面天平两边物体的质量关系吗?
211X00<+=>+1X320X5<X0<=101100000
.
5
试一试
根据天平图,写出数学关系式。
100+ 100 = 200
x+ 10 = 15
6
二、合作探索
分类整理 不等式
等式
χ + 20 <100 χ + 20 > 50 10 < 100
不含未知数 含有未知数
100+100=200
χ + 20 = 70 2 χ = 150
3 χ + 10 = 100 χ + 10 = 15
含有未知数的等式,叫做方程。
方程
.
7
二、合作探索
苹果总个÷ 数 =盘每子盘数个数
方程:χ ÷ 3 = 12
.
13
三、自主练习
5.用生活中的具体实例描述下列方程。
4χ = 68 ɑ - 7 + 10 = 32
.
14
四、回顾反思
.
15
方程的认识
情境导入 合作探索 自主练习 回顾反思
.
1
一、情境导入
盛米粉的 碗重20克。
这只熊猫一次 需要喂一碗米 粉。
盛米粉的碗重20克
这只熊猫一次需要 喂一碗米粉。
米粉重多少克?
根从据图这中些,信你息发,现你了能哪提些出数什学么信问息题??
.
2
二、合作探索
米粉重多少克?
我们借助天平来研究。.3 Nhomakorabea.
10
三、自主练习
2.仔细观察下图,说出图中存在的相等关系。并列出方程。
4千克 χ千克
43千克
兔子的体重 + 猴子的体重 = 熊猫的体重
4 + χ = 43
.
11
三、自主练习
3.看图列方程。
3 χ = 60
.
χ +30 = 100
12
三、自主练习
4.填一填。
书包的价钱+ 橡皮的价=钱总价钱
方程: χ + 2 = 25
等式和方程的关系: 等式不一定是方程。 方程一定是等式。
等式
等式
方程
.
8
方程我知道
早在公元1650年,古埃及人就在纸草书上写下了含 有未知数的问题,14世纪初,我国数学家朱世杰创立了 “四元术”(四元相当于四个未知数)这是中国古代数 学的一次飞跃。
三百年前,法国数学家笛卡尔第一个提倡用x、y、z 等字母代表未知数,才形成了现在的方程。掌握了方程, 人们会深切地感受到许多用算术方法解起来很难的问题, 用方程来解决却轻而易举。
.
9
三、自主练习
1.下列哪些式子是方程?是方程的打“√ ”。
X+ 5 ( ) 15+ 5 =20 ( ) X÷ 5 <20 ( )
3Y= 12 ( √ )
8- n =6 ( √ )
10÷ m=2 ( √ )
2X+3> 10 ( ) 3X+5X= 160 ( √ ) 24+6Y= 540 ( √ )
二、合作探索
米粉重多少克? 我们借助天平来研究。
怎样用天平XX快++速22称00<>出=15米70000粉的质量呢?
.
4
二、合作探索
你能用等式表示下面天平两边物体的质量关系吗?
211X00<+=>+1X320X5<X0<=101100000
.
5
试一试
根据天平图,写出数学关系式。
100+ 100 = 200