差热分析分析
差热分析分析

差热分析分析差热分析是一种热分析技术,用于测定样品在温度变化过程中吸收或放出的热量。
差热分析主要应用于材料科学、化学、生物医学等领域,常用于确定材料的热稳定性、相变、降解等特性,以及化学反应、生物活性等反应过程的动力学参数。
本文将对差热分析技术的基本原理、数据分析、应用前景等进行详细介绍。
一、基本原理差热分析主要基于热量守恒原理,通过对比样品和参比样品在温度变化过程中的热量差异,得出样品在该温度范围内所吸收或放出的热量。
差热分析一般使用差动热量计,其基本结构由两个热电偶构成,一个接触样品,另一个接触参比样品。
当样品和参比样品接受相同的温度变化时,两侧热电偶所产生的电动势不同,这种电势差称为差动信号,与样品的热量吸收或释放有关。
差热分析实验中,通常以恒定的升温速率对样品和参比样品加热,同时测量两侧热电偶的电动势和温度。
通过对比两侧热电偶的信号,得出样品与参比样品的热量差异,进而确定样品的物理化学性质。
在差热分析过程中,常用的参比样品有空气、金属等。
二、数据分析差热分析实验中,得到的差动信号曲线通常呈现出峰形或谷形。
当样品发生物理化学变化时,其热量吸放会导致差动信号出现峰谷现象,峰表示样品吸收热量,谷表示释放热量。
通过对峰谷的面积、高度、位置等参数的分析,可以确定样品的热力学特性、相变、反应动力学参数等。
常用的数据分析方法包括:1. 峰温和半高宽分析:通过对峰温和半高宽的测量,可以确定样品的相变温度、热稳定性等。
2. 反应级数分析:差热分析可用于研究化学反应中的反应级数、反应机理等。
通过对峰形状的分析,可以确定反应级数以及反应动力学参数。
3. 动力学分析:差热分析可以用于测定反应的激活能、反应速率常数等动力学参数。
三、应用前景总之,随着科学技术的不断进步,差热分析技术将在材料科学、化学、生物医学等多个领域得到广泛应用,为相关研究提供有力的支持。
实验一差热分析一、目的意义差热分析(dta,differentialthermal

实验一 差热分析一、目的意义差热分析(DTA ,differentialthermal analysis)是研究相平衡与相变的动态方法中的一种,利用差热曲线的数据,工艺上可以确定材料的烧成制度及玻璃的转变与受控结晶等工艺参数,还可以对矿物进行定性、定量分析。
本实验的目的:1.了解差热分析的基本原理及仪器装置;2.学习使用差热分析方祛鉴定未知矿物。
二、基本原理差热分析的基本原理是:在程序控制温度下;将试样与参比物质在相同条件下加热或冷却,测量试样与参比物之间的温差与温度的关系,从而给出材料结构变化的相关信息。
物质在加热过程中,由于脱水,分解或相变等物理化学变化,经常会产生吸热或放热效应。
差热分析就是通过精确测定物质加热(或冷却)过程中伴随物理化学变化的同时产生热效应的大小以及产生热效应时所对应的温度,来达到对物质进行定性和/或定量分析的目的。
差热分析是把试样与参比物质(参比物质在整个实验温度范围内不应该有任何热效应,其导热系数,比热等物理参数尽可能与试样相同,亦称惰性物质或标准物质或中性物质)置于差热电偶的热端所对应的两个样品座内,在同一温度场中加热。
当试样加热过程中产生吸热或放热效应时,试样的温度就会低于或高于参比物质的温度,差热电偶的冷端就会输出相应的差热电势。
如果试样加热过程这中无热效应产生,则差热电势为零。
通过检流计偏转与否来检测差热电势的正负,就可推知是吸热或放热效应。
在与参比物质对应的热电偶的冷端连接上温度指示装置,就可检测出物质发生物理化学变化时所对应的温度.不同的物质,产生热效应的温度范围不同,差热曲线的形状亦不相同(如图16-2所示)。
把试样的差热曲线与相同实验条件下的已知物质的差热曲线作比较,就可以定性地确定试洋的矿物组成。
差热曲线的峰(谷)面积的大小与热效应的大小相对应,根据热效应的大小,可对试样作定量估计。
三.仪器设备与装置差热分析所用的设备主要由加热炉,差热电偶,样品座及差热信号和温度的显示仪表等所组成。
差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis)1.DTA的基本原理差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。
在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。
如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。
一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。
差热分析的原理如图Ⅱ-3-1所示。
将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。
则它们的升温曲线如图Ⅱ-3-2所示。
若以对t作图,所得DTA曲线如图Ⅱ-3-3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。
随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。
显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。
图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图图II-3-2试样和参比物的升温曲线1.参比物;2.试样;3.炉体;4.热电偶(包括吸热转变)图Ⅱ-3-3 DTA吸热转变曲线TA曲线所包围的面积S可用下式表示式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。
这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。
这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。
差热和热重分析

差热分析可以用来研究土壤中污染物 的热分解和转化过程,例如研究土壤 中农药的分解和转化过程。
热重分析可以用来研究土壤中污染物 的迁移和分布特性,例如研究土壤中 重金属的分布和迁移特性。
06 差热和热重分析的未来发 展与挑战
新技术发展
新型传感器技术
利用新型传感器技术,如纳米传感器和柔性传感器,提高差热和 热重分析的灵敏度和精度。
差热分析的应用
01 确定物质的熔点、玻璃化转变温度等物理 性质。
02 研究物质的热稳定性、热分解和氧化等化 学性质。
03
用于药物、食品、聚合物、陶瓷等领域的 研发和质量控制。
04
热重分析(TGA)
02 热重分析(TGA)
热重分析的定义
热重分析(TGA)是一种在程序控温下测量物质质量与温度关系的分析方法。通过 测量物质质量随温度变化的情况,可以研究物质在加热或冷却过程中的物理和化学 变化。
在热重分析中,样品被放置在热天平上,并加热或冷却以模拟不同的温度条件。随着温度的变化,样 品的质量会发生变化,这些变化被记录并转化为温度与质量之间的关系曲线。通过对曲线的分析,可 以了解物质在加热或冷却过程中的质量变化情况。
热重分析的应用
热重分析在多个领域都有广泛的应用,包括材料科学 、化学、制药、食品科学等。它可以用于研究材料的 热稳定性、分解行为、反应动力学以及物质在温度变 化过程中的相变等。
陶瓷材料的抗热震性能
差热分析可以研究陶瓷材料在不同温度下的热震稳定性,对于陶瓷 材料的应用具有重要意义。
金属材料
金属材料的熔点和凝固点
01
通过差热分析,可以精确测定金属材料的熔点和凝固点,有助
于了解金属材料的热物性。
金属材料的氧化和腐蚀行为
差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis)1.DTA的基本原理差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。
在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。
如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。
一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。
差热分析的原理如图Ⅱ-3-1所示。
将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。
则它们的升温曲线如图Ⅱ-3-2所示。
若以对t作图,所得DTA曲线如图Ⅱ-3-3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。
随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。
显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。
图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图图II-3-2试样和参比物的升温曲线1.参比物;2.试样;3.炉体;4.热电偶(包括吸热转变)图Ⅱ-3-3 DTA吸热转变曲线TA曲线所包围的面积S可用下式表示式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。
这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。
这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。
差热分析实验报告

差热分析实验报告一、实验介绍差热分析(Differential Thermal Analysis,DTA)是一种热分析技术,通过测量样品和参比物的温度差异来分析样品中的物理和化学变化。
该技术被广泛应用于化学、材料、地质学等领域的研究中。
本次实验使用的是DSC-TG联用仪器,其中DSC(差示扫描量热分析)能够测试热量变化,而TG(热重分析)则能够测试质量变化。
本次实验主要是通过分析样品在不同温度下的热量和质量变化来研究其物理和化学性质。
二、实验步骤1. 样品准备将约1g的样品粉末放入铂盘中,加热至110℃干燥去除水分和杂质,并在110℃将其冷却至室温。
2. 测量参数设置在DTA和TG仪器上设置参数,包括扫描速度、温度范围、样品和参比物的数量和质量等。
3. 实验操作将样品和参比物放置于仪器中心的测量室,加热仪器并进行扫描。
在扫描过程中,记录并分析热量和质量的变化。
4. 数据处理通过对实验结果的分析和比较,进行样品的物理和化学性质的研究。
三、实验结果分析本次实验使用了三种不同的样品:一种是硫酸铜(CuSO4)的水合物,一种是淀粉,另一种是煤。
1、硫酸铜的水合物图1:硫酸铜的水合物的DTA和TG曲线实验结果显示,硫酸铜的水合物的DTA曲线显示出一个明显的峰,在约60℃时达到最高点。
这说明在此温度下发生了一次物理或化学反应。
TG曲线显示出样品减重,在60℃时体现出一个明显峰值。
据此可以推断,60℃可能是水合物中水分的脱去温度。
2、淀粉图2:淀粉的DTA和TG曲线实验结果显示,淀粉的DTA和TG曲线均没有明显的峰值和变化,表明该样品不存在显著的物理和化学反应。
这与淀粉作为多聚糖的特性相符。
3、煤图3:煤的DTA和TG曲线实验结果显示,煤的DTA和TG曲线均表现出非常复杂的特征,其中包括多个峰值和谷值。
这表明煤在DTA-TG条件下的热解、分解、燃烧和氧化反应非常复杂。
四、实验总结本次实验使用DSC-TG联用仪器,在不同温度下对硫酸铜的水合物、淀粉和煤进行了DTA和TG测试。
差热分析

• 将试样和参考物(在一定 温度范围内不发生热效应 的一些热惰性物质)放在 炉子的恒温区内,以完全 相同的条件升温或降温, 在试样和参考物的底部安 装两支热电偶,并把这两 支热电偶反向串联—差示 热电偶起来。如右图所示:
•
当试样加热过程中产生吸热或放热效应时,试 样的温度就会低于或高于参比物质的温度,差热 电偶的冷端就会输出相应的差热电势。通过检流 计偏转与否来检测差热电势的正负,就可推知是 吸热或放热效应。在与参比物质对应的热电偶的 端连接上温度指示装置,就可检测出物质发生物 理化学变化时所对应的温度。
DTA与DSC区别
• DSC多了个补偿加热器 • 用差式扫描量热仪可以直接测量热量 ,差式分析却不可以。DTA在试样发 生热效应时,试样的实际温度已发生 改变。而DSC的试样热量变化随时可 以被补充。试样与参比物温度始终相 等,避免了热传。
典型的DSC曲线
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以时间(t)或温度(T) 为横坐标,即dH/dt-t(或T) 曲线。 曲线离开基线的位移即代表样 品吸热或放热的速率(mJ· s1),而曲线中峰或谷包围的 面积即代表热量的变化。 因而差示扫描量热法可以直接 测量样品在发生物理或化学变 化时的热效应。
图7 典型的DSC曲线
第三节 热重法
• 热重法(TG或TGA):在程序控制 温度条件下,测量物质的质量与温度 关系的一种热分析方法。 • 其数学表达式为: ΔW=f(T)或(τ) • ΔW为重量变化,T是绝对温度,τ是时 间。 • 热重法试验得到的曲线称为热重曲线 (即TG)。 • TG曲线以质量(或百分率%)为纵坐 标,从上到下表示减少,以温度或时 间作横坐标,从左自右增加,试验所 得的TG曲线,对温度或时间的微分可 得到一阶微商曲线DTG和二阶微商曲 线DDTG
差热分析实验报告

差热分析实验报告一、实验目的差热分析(DTA)是一种在程序控制温度下,测量物质和参比物之间的温度差与温度关系的一种热分析技术。
通过本次实验,我们旨在达到以下目的:1、了解差热分析的基本原理和实验方法。
2、掌握差热分析仪的操作技能。
3、学会分析差热曲线,确定物质的相变温度、热效应等参数。
4、培养对实验数据的处理和分析能力。
二、实验原理差热分析是基于物质在加热或冷却过程中会发生物理化学变化,从而产生吸热或放热效应。
在实验中,将样品和参比物(通常为惰性物质,如αAl₂O₃)置于相同的加热环境中,同时测量它们的温度差(ΔT)随温度(T)的变化。
当样品发生相变、分解、氧化等反应时,会吸收或放出热量,导致样品温度与参比物温度不同,产生温度差。
根据差热曲线的峰形、峰位和峰面积,可以定性和定量地分析样品的热性质。
峰形反映了热效应的类型(吸热或放热),峰位对应着相变或反应的温度,峰面积与热效应的大小成正比。
三、实验仪器与试剂1、仪器差热分析仪电子天平坩埚研钵2、试剂待测试样(如某种金属氧化物)参比物(αAl₂O₃)四、实验步骤1、样品制备用电子天平准确称取适量的待测试样和参比物,分别放入两个坩埚中。
将试样和参比物在研钵中充分研磨,使其粒度均匀。
2、仪器准备打开差热分析仪电源,设置升温程序,升温速率一般为 10℃/min 至 20℃/min,终止温度根据试样的性质确定。
安装好装有试样和参比物的坩埚,确保热电偶与坩埚良好接触。
3、实验操作启动实验程序,仪器开始加热。
实时记录差热曲线和温度数据。
4、实验结束待实验完成,停止加热,让仪器自然冷却。
取出坩埚,清理实验仪器。
五、实验数据处理与分析1、绘制差热曲线根据实验记录的数据,以温度为横坐标,温度差为纵坐标,绘制差热曲线。
2、确定相变温度和热效应从差热曲线上找出峰的位置,对应的温度即为相变温度。
通过积分计算峰面积,可定量得到热效应的大小。
3、分析结果结合试样的化学组成和结构,对相变温度和热效应进行分析和解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 由于热阻的存在,参比与样品之间的温度差( △T )与热流差成一定 的比例关系。将△T 对时间积分,可得到热焓:
H K Tdt
0
May 2008
t
K = f (温度,热阻, 材料性质,…)
NETZSCH Analyzing & Testing
4
DSC vs DTA
• 工作原理差别 DTA 只能测试△T信号,无法建立△H与△T之间的联系 DSC 测试△T信号,并建立△H与△T之间的联系
May 2008
NETZSCH Analyzing & Testing
2
差热曲线峰的形成
DSC的前身是差热分析DTA
记录的是温差信号 峰面积没有热焓意义
May 2008
NETZSCH Analyzing & Testing
3
热流型 DSC
• 样品热效应引起参比与样品之间的热流不平衡
△T Q A △X
May 2008
NETZSCH Analyzing & Testing
11
同步热分析仪的灵活性
• STA 传感器多种选择
TG-DSC传感器 测量模式:TG-DSC-DTA 适合于绝大多数应用场合
TG-DTA传感器 测量模式:TG-DTA 适合于对防腐蚀有特殊要 求的场合
TG传感器 测量模式:TG 适合于大体积样品
1.0
0.5
929.9 ℃
0.0
136.3 J/g
-0.5
ZrCu 合金 B7-rod
-1.0
面积: 峰值 Ts: 峰值 Tr: 起始点:
-61.23 J/g 530.1 ℃ 520.3 ℃ 517.5 ℃
-1.5
样品称重:48.68mg 升温速率:20K/min 气氛:Ar 测试仪器:STA409PC
TG 起始点:热稳定性的表征 DTG 峰温:质量变化速率最大的温度点
May 2008 NETZSCH Analyzing & Testing 9
同步热分析的优势
样品的TG(质量变化) 和DSC(热量) 效应可以在一次测量中完成
• 缩短测试时间 • 确保了测试结果的可比性
不会受测试条件的影响 不会受样品制备的影响 不会受材料的不均一性的影响
第一次升温
[1.5]
0.25 第二次升温 0.20 玻璃化转变: 起始点: 55.0 ℃ 中点: 59.1 ℃ 终止点: 63.3 ℃ 比热变化*: 0.411 J/(g*K) 20 30 40 50 60 温度 /℃ 70 80 90
0.15
0.10
May 2008
NETZSCH Analyzing & Testing
0.10
固化峰: 面积 : 峰值 : 起始点 : 终止点 :
-25.44 J/g 177.8 ℃ 140.7 ℃ 208.0 ℃
0.05
玻璃化转变 : 起始点 : 50.7 ℃ 中点 : 57.8 ℃ 比热变化 *: 0.135 J/(g*K)
第一次升温
0.00
-0.05 60 80 100 120 140 温度 /℃ 160 180 200 220
22
结晶度计算
May 2008
NETZSCH Analyzing & Testing
23
结晶度计算
DSC /(mW/mg) 放热 0.7
PET
0.6 样品称重:17.45mg 升温速率:10k/min 气氛:N2 坩埚:Al 加盖扎孔 面积: -34.03 J/g 峰值: 149.2 ℃ 起始点: 137.6 ℃ 结晶度: 7.34 %
May 2008
NETZSCH Analyzing & Testing
18
玻璃化转变
DSC /(mW/mg) [1.5]
放热
0.45
聚酯 P9520-034
0.40 样品称重:10.60mg 升降温速率:10K/min 气氛:N2 坩埚:Al 加盖扎孔
[1.1]
0.35
0.30
玻璃化转变: 起始点: 57.9 ℃ 中点: 58.2 ℃ 终止点: 59.3 ℃ 比热变化*: 0.452 J/(g*K)
May 2008
NETZSCH Analyzing & Testing
14
非晶态金属(高温DSC)
DSC /(mW/mg) 放热方向
峰值 Ts: 887.6 ℃ 峰值 Tr: 890.9 ℃ 玻璃化转变: 起始点: 446.3 ℃ 中点: 460.3 ℃ 比热变化*: 0.336 J/(g*K)
May 2008
NETZSCH Analyzing & Testing
10
STA 结构示意图
气体:
两路吹扫气,一路保护气 可实现气体的自由切换
保护气:
先经过天平,再经过炉体, 从炉体上端出口出去
水浴:
在天平室周围循环 不经过炉体
垂直顶部装样:
支架坚固耐用 样品放置十分简便 吹扫气方向与产生气体方向一致
△T Q A △X
SDTA(C-DTA) 计算得到△T信号
May 2008
H K Tdt
0
t
NETZSCH Analyzing & Testing
5
May 2008
DSC 信号
根据 DIN 定义的吸热与放热峰
NETZSCH Analyzing & Testing
6
热重(TG)基本原理
热分析原理与测试技巧
于金库 2008年12月10日
DSC 基本原理
在程序温度(升/降/恒温及其组合)过程中,测量样品与参考物 之间的热流差,以表征所有与热效应有关的物理变化和化学变化。
ห้องสมุดไป่ตู้
应用: • • • • • • 玻璃化转变 熔融、结晶 熔融热、结晶热 共熔温度、纯度 物质鉴别 多晶型 • • • • • • 相容性 热稳定性、氧化稳定性 反应动力学 热力学函数 液相、固相比例 比热
高分子材料的二次升温
高分子材料的 DSC 曲线受众多因素影响,往往需要进行二次升温
第一次升温 :
得到迭加了热历史(冷却结晶、应力、固化等)与其他因素 (水分、添加剂等)的原始材料的性质
玻璃化转变在转变区域往往伴随有应力松弛峰 热固性树脂:若未完全固化,第一次升温Tg较低,伴有不可逆的固化放 热峰 部分结晶材料:计算室温下的原始结晶度 吸水量大的样品(如纤维等):往往伴有水分挥发吸热峰,可能掩盖样 品的特征转变
高分子材料的二次升温
冷却过程:
线性冷却 等温结晶 淬冷 单个样品:使用不同的冷却方式,研究冷却条件对结晶度、 玻璃 化转变温度、熔融过程等的影响 横向样品:使用相同的冷却条件(使样品拥有相同的热历史) 比较材料在同等热历史条件下的性能差异
May 2008
NETZSCH Analyzing & Testing
0.1 0.0
吸附水的挥发
起始点 : 90.2 ℃ 中点 : 94.6 ℃ 比热变化 *: 0.177 J/(g*K) PST - 玻璃化转变
部分面积 : 28.05 J/g 218.8 ℃ : 74.653 %
第一次升温
PA6 熔融峰
50
100
温度 /℃
150
200
250
May 2008
NETZSCH Analyzing & Testing
0.5
A1
0.4
0.3
0.2 起始点: 75.1 ℃ 中点: 76.0 ℃ 比热变化*: 0.455 J/(g*K)
21
高分子测试一定需要二次升温吗?
取决于您希望看到什么样的结果 关注样品原始的信息:一次升温 消除热历史或力学历史:二次升温 各样品在相同的起点上进行本身性能的比较:二次升温 热固性材料:第一次和第二次升温都很重要 要注意选择合适的降温条件。
May 2008
NETZSCH Analyzing & Testing
19
固化材料
DSC /(mW/mg) [1.1] 放热
环氧树脂(未完全固化)
0.20
样品称重: 10.44mg 升温速率: 10K/min 气氛: N2 坩埚: Al,加盖扎孔 测试仪器: DSC200PC
第二次升温
0.15
玻璃化转变 : 起始点 : 93.6 ℃ 中点 : 98.9 ℃ 比热变化 *: 0.128 J/(g*K)
17
高分子材料的二次升温
第二次升温:
玻璃化转变:消除了应力松弛峰,曲线形状典型而规整 热固性树脂(未完全固化):玻璃化温度一般会提高。
部分结晶材料:经过特定冷却条件(结晶历史)研究结晶度、晶体熔 程/熔融热焓与结晶历史关系。
易吸水样品:消除了水分的干扰,得到样品的真实转变曲线
横向样品比较,消除了热历史的影响,有利于比较样品的性能差异
TG传感器 测量模式:TG 适合于大体积样品或 气固反应研究,例如 吸附、氧化还原等
May 2008
NETZSCH Analyzing & Testing
12
常规 DSC测量方法
May 2008
NETZSCH Analyzing & Testing
13
玻璃化转变、冷结晶、熔融
PET的典型DSC测量图谱,可以看到玻璃化转变(Tg)、冷结晶和熔融。
在程序温度(升/降/恒温及其组合)过程中,观察样品的质量随 温度或时间的变化过程。
应用: 质量变化 热稳定性 分解温度 组分分析 脱水 腐蚀/氧化 还原 反应动力学
May 2008
NETZSCH Analyzing & Testing