2006年专升本高数一试卷
2006数学一参考答案

2006数学一参考答案2006年的数学一试卷是一份令人挑战的试卷,其中包含了许多复杂的数学问题。
在这篇文章中,我将为大家提供一份参考答案,帮助大家更好地理解和解决这些问题。
第一题是一道关于函数的题目。
题目要求给出一个函数f(x),并且已知f(1)=3,f'(1)=2。
我们需要求出函数f(x)在x=1处的切线方程。
根据题目中给出的信息,我们可以使用导数的定义来求解这道题。
首先,我们可以得到函数f(x)在x=1处的切线斜率为2。
然后,我们可以使用点斜式的公式,将切线斜率和已知点(1,3)代入公式中,求出切线方程为y=2x+1。
第二题是一道关于平面几何的题目。
题目给出了一个正方形ABCD和一个点E,要求证明AE⊥BC。
为了证明这个结论,我们可以使用反证法。
假设AE不垂直于BC,那么根据垂直的定义,我们可以得到AE和BC的斜率乘积为-1。
然而,根据正方形的性质,我们知道AE和BC的斜率相等,因此它们的斜率乘积不可能为-1。
所以,我们可以得出结论AE⊥BC。
第三题是一道关于概率的题目。
题目给出了一个有10个球的盒子,其中有4个红球和6个蓝球。
我们需要从中随机取出3个球,求取出的3个球中至少有2个红球的概率。
为了解决这个问题,我们可以使用组合的方法来计算概率。
首先,我们可以计算出取出3个球的总的可能性,即C(10,3)。
然后,我们可以计算出取出3个球中没有红球的可能性,即C(6,3)。
最后,我们可以用1减去没有红球的概率,得到至少有2个红球的概率为1-C(6,3)/C(10,3)。
第四题是一道关于数列的题目。
题目给出了一个递推数列an=an-1+2n-1,其中a1=1。
我们需要求出数列的通项公式。
为了解决这个问题,我们可以使用数学归纳法。
首先,我们可以验证当n=1时,数列的通项公式成立。
然后,我们假设当n=k时,数列的通项公式也成立。
接下来,我们可以证明当n=k+1时,数列的通项公式也成立。
通过数学归纳法,我们可以得出数列的通项公式为an=n^2。
2006年普通高等学校招生全国统一考试

2006年普通高等学校招生全国统一考试数 学(江苏卷)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项是符合题目要求的。
1. 已知a R ∈,函数()sin ||,f x x a x R =-∈为奇函数,则a =(A )0 (B )1 (C )1- (D )1±2.圆22(1)(1x y -++=的切线方程中有一个是(A )0x y -= (B )0x y += (C )0x = (D )0y =3.某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y ,已知这组数据的平均数为10,方差为2,则||x y -的值为(A )1 (B )2 (C )3 (D )44.为了得到函数2sin(),36x y x R π=+∈的图象,只需把函数2sin ,y x x R =∈的图象上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5.101)3x 的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )66.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为(A )28y x = (B )28y x =- (C )24y x = (D )24y x =-7.若A 、B 、C 为三个集合,A B B C =,则一定有 (A )A C ⊆ (B)C A ⊆ (C)A C ≠(D)A =∅ 8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是A BCD (A )||||||a b a c b c -≤-+- (B )2211a a aa +≥+ (C )1||2ab a b -+≥- (D≤-9.两个相同的正四棱锥组成如图1所示的几何体,可 放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
2006—数一真题、标准答案及解析

2006年全国硕士研究生入学考试数学一真题一、填空题(1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ<(B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. 16 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== . 求: (Ⅰ)证明lim n x x →∞存在,并求之 .(Ⅱ)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. 17 将函数()22xf x x x =+-展开成x 的幂级数.18 设函数()()0,,f u +∞在内具有二阶导数且22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=. (Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 19 设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有0),(),(=-⎰dy y x xf dx y x yf L.20 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解 Ⅰ证明方程组系数矩阵A 的秩()2r A = Ⅱ求,a b 的值及方程组的通解21 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.22 随机变量x 的概率密度为()()21,1021,02,,40,x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩令其他为二维随机变量(X,Y)的分布函数.(Ⅰ)求Y 的概率密度()Y f y (Ⅱ)1,42F ⎛⎫-⎪⎝⎭23 设总体X 的概率密度为()()01,0112010x F X x θθθθ<<⎧⎪=-≤<<<⎨⎪⎩其中是未知参数其它,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,1n x x x 中小于的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=的通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,4502x y z d ++==点(2)到平面3的距离22232412502345d ⨯+⨯====++(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dyf x y dyπθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于222110(C)(,)(D)(,)y y yf x y dxf x y dx --⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a ∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑ 若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DDDxyD x y x y x I dxdyx y xydxdy x yr I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰ 设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴= 设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(,n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim(t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯=10001111((1)(1),132332n n nn n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z z x y ∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I )(22222222zzf x y f x y xyx yx y∂∂''=+=+∂∂++()()22222222222222x x y x y zxf x yf x yxx y xy+-+∂'''=+++∂++()()222222322222x y f x yf x yx y x y '''=+++++()(()22222223222222zy x f x yf x yyx y x y ∂'''=+++∂++同理2222222222()()()0f x y z z f x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+=== 由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y-= 证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y x f xy x∂'=--∂(,)(,)y Pf x y y f xy y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近100%的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0 (22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数.(Ⅰ)求Y 的概率密度;(Ⅱ))4,21(-F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-y yy dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤-=-y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y 这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(-F 212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN =最大θ.。
2006年河南专升本考试高等数学试题和答案

x t sin u 2 du dy 0 8.设 , 则 2 dx y cos t
A. 解:
( C.- t
2
)
t2
B.
2
2t
D. 2t
1 B. [1,1] C. [0,1] 2 解: 0 x 1 1 2 x 1 1 B .
A. [ ,1]
2 2
[ f ( x) g ( x)]dx
a
b
B. D.
[ f ( x) g ( x)]dx
a
b a b
b
23 设 D 为圆周由 x y 2 x 2 y 1 0 围成的闭区域 ,则 A.
dxdy
D
(
)
| f ( x) g ( x) | dx 解:由定积分的几何意义可得 D 的面积为 | f ( x) g ( x) | dx D .
1 dx x
22.函数 z 2 xy 3x 3 y 20 在定义域上内 A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值
2 2
(
)
解:
( 6 x 0, 2 x 6 y 0 ( x, y) (0,0) 2 6, x y x 2 2 z z 6, 2 是极大值 A . 2 xy y
2
D. [1,2]
2.函数 y ln( x 1 x) ( x ) 是 A.奇函数 B. 偶函数 C.非奇非偶函数
2 2
2
( D. 既奇又偶函数
)
解: f ( x) f ( x) ln( x 1 x) ln( x 1 x) ln 1 0 A . 3. 当 x 0 时, x sin x 是 x 的 A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 ( D. 等价无穷小 )
2006年浙江省普通高校“专升本”联考《高等数学(一)》试卷答案解析

dt
dt
dy dy dt 2e2t (sin2t sin t cos t) sin2t sin t cos t dx dx 2e2t (cos2 t sin t cos t) cos2 t sin t cos t
dt
17.解: 原式
sin2 x cos2 x sin2 xcos2 x
F(x)
x f (t)dt
1 f (t)dt
x f (t)dt
1t 2dt
x
1dt
0
0
1
0
1
1
1 3
t3
0
(t) x 1
1 3
(x
1)
x
2 3
,故选项
D
正确
12.C 解析:由图像可知: S = 1 x(x 1)(2 x)dx 2 x(x 1)(2 x)dx ,所以选项 C
a
3
故一阶导数为: S(a) (a 1)2 a2 2a 1
令 S(a) 0 a 1 , S(a) 2 0 ,所以 S( 1) 1 为最小的面积
2
2 12
此图形绕 x 轴旋转一周所得到的几何体的体积:Vx
1
2 y2dx 2
-
1 2
1 2
x4dx
2
x5
1 2
0
5 0 80
四、综合题: 本题共 3 小题,共 20 分。其中第 1 题 8 分,第 2 题 7 分,第 3 题 5 分。
二、选择题: 本大题共 5 小题,每小题 4 分,共 20 分。
题号
9
10
11
12
13
答案
C
D
D
C
B
2006专升本 高数 试卷

2006年专升本《高等数学》试卷一、单项选择题(每小题2分,共计60分) 1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 A.]1,21[ B.]1,1[- C.]1,0[D.]2,1[-2.函数)1ln(2x x y -+=)(+∞<<-∞x 是A .奇函数 B. 偶函数 C.非奇非偶函数 D.既奇又偶函数3. 当0→x 时,x x sin 2-是x 的A.高阶无穷小B.低阶无穷小C.同阶非等价无穷小D.等价无穷小4.极限=+∞→nnn n sin 32lim A.∞ B.2 C.3 D.55.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x xe xf ax ,在0=x 处连续,则 常数=a A. 0 B.1 C 2 D.3 6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim0 A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '7. 若曲线12+=x y 上点M处的切线与直线14+=x y 平行,则点M的坐标A.(2,5) B (-2,5) C (1,2)D (-1,2)8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy A. 2t B.t 2 C.-2t D.t 2- 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n yA.x n x ln )(+B.x 1C.1)!2()1(---n n x n D. 0 10.曲线233222++--=x x x x yA. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线 11.下列函数在给定的区间上满足罗尔定理的条件是 A.]2,0[|,1|-=x y B.]2,0[,)1(132-=x y C.]2,1[,232+-=x x y D.]1,0[,arcsin x x y =12. 函数x e y -=在区间),(+∞-∞内A. 单调递增且图像是凹的曲线B.单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D.单调递减且图像是凸的曲线13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )(A.C e F e x x++--)( B.C e F x +-)( C. C e F e x x +---)( D.C e F x +--)( 14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x fA. C e x +-1221B. C e x ++)1(212 C. C e x ++1221 D. C e x +-)1(212 15. 导数=⎰ba tdt dxd arcsin A.x arcsin B. 0 C. a b arcsin arcsin - D.211x-16.下列广义积分收敛的是 A. ⎰+∞1dx e xB. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为A. ⎰-b adx x g x f )]()([ B. ⎰-badx x g x f )]()([C.⎰-b adx x f x g )]()([ D. ⎰-badx x g x f |)()(|18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n A. 2 B.3 C.4 D.5 19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 A.2 B.1 C.-1 D.-220. 设方程02=-xyz ez确定了函数),(y x f z = ,则xz∂∂ = A.)12(-z x z B.)12(+z x z C.)12(-z x y D.)12(+z x y . 21.设函数xy y x z +=2,则===11y x dzA.dy dx 2+B.dy dx 2-C.dy dx +2D.dy dx -222.函数2033222+--=y x xy z在定义域上内A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值 23设D 为圆周由012222=+--+y x y x围成的闭区域 ,则=⎰⎰DdxdyA. πB. 2πC.4πD. 16π 24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为A. ⎰⎰aydx y x f dy 00),( B.⎰⎰a a ydx y x f dy 0),( C.⎰⎰a a dx y x f dy 0),( D.⎰⎰a yadx y x f dy 0),(25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为A.x y x222≤+ B.222≤+y x C.y y x 222≤+ D.220y y x -≤≤26.设L 为直线1=+y x 上从点到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(A. 2B.1C.-1D. -2.27.下列级数中,绝对收敛的是A .∑∞=1sin n n πB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nnπD .∑∞=1cos n n π28. 设幂级数n n nna x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n naA.绝对收敛B. 条件收敛C.发散D.敛散性不确定29. 微分方程0sincos cos sin =+ydx x ydy x 的通解为A. C y x =cos sinB.C y x =sin cosC. C y x =sin sinD.C y x =cos cos30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为A. x e b ax x y -+=*)(B. x e b ax x y -+=*)(2C. x e b ax y -+=*)(D. x axe y -=*二、填空题(每小题2分,共30分) 31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.32.=--+→xx x x 231lim22=_____________.33.设函数x y 2arctan =,则=dy __________.34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.35.曲线12323-+-=x x x y 的拐点为 __________.36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.37.⎰-=+ππdx x x )sin (32 _________.38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________..39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.40.曲线⎩⎨⎧==022z x y L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 41.设函数y x xy z sin 2+= ,则 =∂∂∂yx z 2_________.42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .43. 函数2)(xe xf -=在00=x 处展开的幂级数是________________.44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________.45.通解为x x e C e C y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.三、计算题(每小题5分,共40分)46.计算 xx e x xx 2sin 1lim3202-→--.47.求函数x x x y 2sin 2)3(+=的导数dxdy .48.求不定积分 ⎰-dx xx 224.49.计算定积分⎰--+102)2()1ln(dx x x .50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yz x z ∂∂∂∂,.51.计算二重积分⎰⎰=Dydxdy x I 2,其中D 由12,===x x y x y 及所围成.52.求幂级数n n nx n∑∞=--+0)1()3(1的收敛区间(不考虑区间端点的情况).53.求微分方程 0)12(2=+-+dy x xy dy x 通解.四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x x C (千元),乙厂月生产成本是3222++=y y C (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.五、证明题(6分) 56.设)(x f 在],[a a -(0>a ,为常数)上连续, 证明: ⎰⎰--+=a aadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .答案 1.B x x ⇒≤-≤-⇒≤≤112110. 201ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒.3. 1sin lim20-=-→xxx x C ⇒. 4. B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5. B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7.A y x x x y ⇒==⇒=⇒='5,2422000. 8. D t tt t dx dy ⇒-=-=2sin sin 222. 9.B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(. 10. A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332.11.由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒.12. C e y e y xx ⇒>=''<-='--0,0. 13.D C e F e d e f dx e f e x x x x x ⇒+-=-=⎰⎰-----)()()()(.14. B C e x f e x f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15.⎰b a xdx arcsin 是常数,所以B xdx dx d ba⇒=⎰0arcsin . 16.C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.由定积分的几何意义可得D 的面积为⎰-badx x g x f |)()(|D ⇒.18. B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{. 19. B x f x x f x ⇒='⇒=1)1,()1,(.20.令xy e F yz F xyz e z y x F z z x z-='-='⇒-=222,),,(A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222.21222xydx xdy dy x xydx dz -++=A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211. 22. ,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒.23有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24. 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D≤≤≤≤=≤≤≤≤=B ⇒.25.在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26. L :,1⎩⎨⎧-==xy xx x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L .27. ⇒<22sin n n ππ∑∞=π12sin n n 收敛C ⇒.28.∑∞=0n nnxa在2-=x收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n nn a 绝对收敛A ⇒.29. dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C y x C x y xxd y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30. -1不是微分方程的特征根,x 为一次多项式,可设xe b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分) 31. 1)(sin 1|sin |=⇒≤x f x .32. =++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim2222x x x x x x x x x x x x 123341==. 33.:dx x dy 2412+= . 34. b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a . 35. )1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .362)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37. 3202sin )sin (3023232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38. ⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xt x . 39. 3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a .40.把x y 22=中的2y 换成22y z +,即得所求曲面方程x y z 222=+.41.⇒+=∂∂y x y x z sin 2y x y x z cos 212+=∂∂∂. 42.⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44. ∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n n n n n n n n n x n x n x n x ,)22(≤<-x . 45.x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46.20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x e x xx ex x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim 22000-=-=-=-→-→x x x x e x xe .47.取对数得 :)3ln(2sin ln 2x x x y+=,两边对x 求导得:x x x x x x x y y 2sin 332)3ln(2cos 2122++++=' 所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++=' x x x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdx x x t x t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 22.49. ⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x ⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x . 50. x vv g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2(),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.积分区域如图06-1所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==10222xxDydy x dx ydxdy x I10323)2(10510421022====⎰⎰x dx x y dx x xx 52.令t x =-1,级数化为nn n t n ∑∞=-+0)3(1,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim 1)3(1)3(1lim lim11=--+-=+⋅-+-+==∞→+∞→+∞→nn n n n n nn n n n a a ρ,故级数n n n ∑∞=-+0)3(1的收敛半径3ρ,即级数收敛区间为(-3,3). 对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.微分方程0)12(2=+-+dx x xy dy x可化为 212xx y x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xC y =. 设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得 C x x x C x x C +-=⇒-='2)(1)(2. 故所求方程的通解为2211x C x y +-=.四、应用题(每小题7分,共计14分)54.由题意可知:总成本8222221++-+=+=y x y x C C C, 约束条件为8=+y x . 问题转化为在8=+y x 条件下求总成本C 的最小值 .把8=+y x 代入目标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C .xx故 5=x是唯一极值点且为极小值,即最小值点.此时有38,3==C y .所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元. 55平面图形如图06-2所示,此立体可看作X 型区域绕y 轴旋转一周而得到。
2006年江苏专转本高等数学真题

2006年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、若21)2(li m=→x x f x ,则=→)3(limx f xx ( ) A 、21 B 、2 C 、3D 、31 2、函数⎪⎩⎪⎨⎧=≠=001sin )(2x x xx x f 在=x 处( )A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续 3、下列函数在[]1,1-上满足罗尔定理条件的是( ) A 、xe y = B 、x y +=1C 、21x y -= D 、xy 11-= 4、已知C e dx x f x +=⎰2)(,则=-⎰dx x f )('( )A 、C ex+-22B 、C e x +-221 C 、C e x +--22D 、C e x +--2215、设∑∞=1n nu为正项级数,如下说法正确的是 ( )A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛 B 、如果l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛 C 、如果∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D 、如果∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛6、设对一切x 有),(),(y x f y x f -=-,}0,1|),{(22≥≤+=y y x y x D ,=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则⎰⎰=D dxdy y x f ),(( )A 、0B 、⎰⎰1),(D dxdy y x f C 、2⎰⎰1),(D dxdy y x f D 、4⎰⎰1),(D dxdy y x f二、填空题(本大题共6小题,每小题4分,满分24分)7、已知0→x 时,)cos 1(x a -与x x sin 是等级无穷小,则=a 8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,⎰=13)(dx x f ,则⎰=1')(dx x xf10、设1=a ,b a ⊥,则=+⋅)(b a a11、设x e u xysin =,=∂∂xu12、=⎰⎰Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.三、解答题(本大题共8小题,每小题8分,满分64分)13、计算11lim31--→x x x .14、若函数)(x y y =是由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx yd . 15、计算⎰+dx x xln 1. 16、计算dx x x ⎰202cos π.17、求微分方程2'2y xy y x -=的通解.18、将函数)1ln()(x x x f +=展开为x 的幂函数(要求指出收敛区间).19、求过点)2,1,3(-M 且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.20、设),(2xy x xf z =其中),(v u f 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.四、证明题(本题满分8分).21、证明:当2≤x 时,233≤-x x .五、综合题(本大题共3小题,每小题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程.23、已知一平面图形由抛物线2x y =、82+-=x y 围成. (1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.24、设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续. (1)求a 的值使得)(t g 连续; (2)求)('t g .2006年江苏省普通高校“专转本”统一考试高等数学参考答案1、C2、B3、C4、C5、C6、A7、28、)(0x f9、1- 10、111、)cos sin (x x y e xy + 12、113、原式322131lim 21341==--→x xx 14、21211122''t t t t x y dx dy t t =++-==,t t t t x dx dy dx y d t 411221)(22''22+=+== 15、原式C x x d x ++=++=⎰23)ln 1(32)ln 1(ln 116、原式x d x dx x x xx x d x cos 24sin 2sin sin 20220202202⎰⎰⎰+=-==πππππ24cos 2cos 24220202-=-+=⎰ππππxdx x x17、方程变形为2'⎪⎭⎫⎝⎛-=x y x y y ,令x y p =则''xp p y +=,代入得:2'p xp -=,分离变量得:dx x dp p ⎰⎰=-112,故C x p +=ln 1,C x x y +=ln . 18、令)1ln()(x x g +=,0)0(=g ,200'1)1()1()(+∞=∞=∑∑+-=-=n n n n nnx n dx x x g ,故201)1()(+∞=∑+-=n n n x n x f ,11<<-x .19、{}1,1,11-n 、{}1,3,42-n ,k j i kj in n l ++=--=⨯=3213411321直线方程为123123+=-=-z y x .20、'22f x y z =∂∂,''222''213'2''22''212'2222)2(2yf x f x xf y f x f x xf x y z ++=⋅+⋅+=∂∂∂. 21、令33)(x x x f -=,[]2,2-∈x ,033)(2'=-=x x f ,1±=x ,2)1(-=-f ,2)1(=f , 2)2(-=f ,2)2(=-f ;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即233≤-x x .22、y x y +=2',0)0(=y通解为x Ce x y +--=)22(,由0)0(=y 得2=C ,故x e x y 222+--=. 23、(1)364)8(2222=--=⎰-dx x x S (2)πππ16)8()(28424=-+=⎰⎰dy y dy y V24、dx x f t dy x f dx dxdy x f tttD t⎰⎰⎰⎰⎰==0)()()(⎪⎩⎪⎨⎧=≠=⎰00)()(0t at x f t g t(1)0)(lim)(lim 000==⎰→→dx x f t g tt t ,由)(t g 的连续性可知0)(lim )0(0===→t g g a t(2)当0≠t 时,)()('t f t g =,当0=t 时,)0()(lim )(lim )0()(lim)0(0000'f h f hdx x f h g h g g h hh h ===-=→→→⎰ 综上,)()('t f t g =.。
2006年河南专升本高数真题及答案.doc

2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小解: 1sin lim 20-=-→xxx x C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5解:B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim .5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim 0( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim2007. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dxdy( )A. 2tB. t 2C.-2tD. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ( )A.x n x ln )(+B. x 1C.1)!2()1(---n n x n D. 0解:B xy x y x x y n n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332. 11.下列函数在给定的区间上满足罗尔定理的条件是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒. 12. 函数x e y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C e y e y x x ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C e F e x x ++--)( B. C e F x +-)( C. C e F e x x +---)( D. C e F x +--)( 解:D C e F e d e f dx e f e x x x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C ex ++)1(212 C. C e x ++1221 D. C e x +-)1(212 解:B C e x f ex f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. 导数=⎰batdt dx d arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D. 211x-解:⎰b a xdx arcsin 是常数,所以 B xdx dx d ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( )A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-ba dx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(| 解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(.20. 设方程02=-xyz e z 确定了函数),(y x f z = ,则xz∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令xy e F yz F xyz e z y x F z z x z -='-='⇒-=222,),,(A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222. 21.设函数xyy x z +=2 ,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2解:222x ydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x y z x y x z ⇒=∂∂∂-=∂∂2,6222y x zyz 是极大值A ⇒. 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为( )A. ⎰⎰aydx y x f dy 00),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤= B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπ B .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n nn πD .∑∞=1cos n n π解: ⇒<22sinn n ππ∑∞=π12sinn n 收敛C ⇒. 28. 设幂级数n n n n a x a (0∑∞=为常数Λ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cosC. C y x =sin sinD. C y x =cos cos解:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程x xe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. x e b ax x y -+=*)(2C. x e b ax y -+=*)(D. x axe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xx x x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππdx x x )sin (32 _________.解:3202sin )sin (323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 向量}1,1,2{}2,1,1{-==b a ρρ与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a ρρρρρρρρ .40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y 22=中的2y 换成22y z +,即得所求曲面方程x y z 222=+.41.设函数y x xy z sin 2+= ,则=∂∂∂yx z2_________. 解:⇒+=∂∂y x y xzsin 2y x y x z cos 212+=∂∂∂. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.设 ,其中 ,则下面结论中正确的是
4.曲线 与 轴所围图形的面积可表示为
5.设 为非零向量,且 ,则必有
得分
阅卷人
三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共10个小题,每小题7分,共70分)
1.计算 。
2.设 ,求 。
3.设函数 ,求 。
1. 。
2.函数 的间断点是 。
3.若 在 处连续,则
。
4.设 ,则 。
5. 。
6.设 ,交换积分次序后
。(超纲,去掉)
7.已知 则 (超纲,去掉)
8.微分方程 的通解
。
得分
阅卷人
二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)
1.函数 的定义域为 ,则函数 的定义域是
4.计算不定积分 .
5.计算定积分 。
6.求微分方程 满足 的特解。
7.求过直线 ,且垂直于已知平面 的平面方程。
8.将函数 展开成 的幂级数,并指出收敛半径。
9.计算 ,其中 由直线 和双曲线 所围成的封闭图形。(超纲,去掉)
10.当 为何值时,抛物线 与三直线 所围成的图形面积最小,求将此图形绕 轴旋转一周所得到的几何体的体积。
得分
阅卷人
四.综合题: (本题共3个小题,共20分)
1.(本题8分)设函数 在 上连续,且 ,证明方程 在 内有且仅有一实根。
2.(本题7分)证明:若 ,则 。
3.(本题5分)设 是连续函数,求证积分
。
2006年浙江省普通高校“专升本”联考《高等数学(一)》试卷
题 号
一
二
三
四
总 分
得 分
考试说明:
1、考试时间为150分钟;
2、满分为150分;
3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
4、密封线左边各项要求填写清楚完整。
得分
阅卷人
一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)