新导数与数列求和01

合集下载

导数应用与数列求和

导数应用与数列求和

导数应用与数列求和作者:王大成来源:《神州》2011年第31期高中引入了导数概念,给出了导数的定义,讲清楚了导数的几何意义及物理意义,在应用方面也给出了一些例题,主要是解决函数单调性、最值、不等式证明等问题。

但是在数列求和方面的应用基本上还没有涉及到,因此我仅以本文来为导数的应用开辟一条新的途径。

问题一:数列(an)的通项公式an=n×2n-1(n∈N*),求数列(an)的前项和Sn.1.错位相减法:Sn=1×20+2×21+3×22+...+n×2n-1 (1)2Sn=1×21+2×22+...+(n-1)×2n-1+n×2n (2)由(1)-(2)得,-Sn=1+21+22+…+2n-1-n×2n,有-Sn=1+(n-1)×2(n∈N*)2.导数法:令f(x)=x+x2+x3+…xn(x≠0,x≠1)f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(2),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因为f(x)=[1-(n-1)xn](1-x)+(x-xn-1)/(1-x)2有Sn=f(2)=1+(n-1)×2n定理1:数列(an)的通项公式an=n×pn-1(p≠0,p≠1,n∈N*),其前项n和为Sn,则Sn=1+[(p-1)n-1]pn/(1-p)2。

证明:令f(x)=x+x2+x3+…+xn(x≠0,x≠1),所以,f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(p),f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因為f(x)=[1-(n+1)xn](1-x)+(x-xn-1)/(1-x)2有Sn=f(p)=1+[(p-1)n-1]pn/(1-p)2,证毕。

问题二:数列(cn)的通项公式cn=anbn(n∈N*),其中,an=pn+q(p,q是常数),bn=r·sn-1(rs≠0),求数列(an)前项和Tn。

2021高三数学专题 数列求和的基本方法和技巧

2021高三数学专题 数列求和的基本方法和技巧

2021高三数学专题数列求和的基本方法和技巧2021高三数学专题数列求和的基本方法和技巧数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、使用通用求和公式利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:s(a1?an)n(n?n?n2?na1)1?2d?na1(q?1)2、等比数列求和公式:s??ann??1(1?q)a1?anq?1?q?1?q(q?1)nn3、s1n(n?1)4、s21n??KNK12? Kn(n1)(2n1)k?16n5、s3n??K[1n(n?1)]2k?12[例1]已知日志?13x?日志,x?x2?x3xn前23项的总和。

日志13x?log3?日志log13x?32? 十、二2由等比数列求和公式得sn?x?x2?x3xn1n(11=x(1?x)2?2n)1?x==1-11? 12n2[例2]设sn=1+2+3+…+n,n∈n*,求f(n)?sn(n?32)s的最大值.N1解决方案:s1n是从算术序列的求和公式中获得的?2n(n?1),s1n?2(n?1)(n?2)∴f(n)?snn(n?32)s=2n?1n?34n?64一(利用常用公式)(利用常用公式)=1n?34? 64n=(n?18n?)2?50150∴当N18,也就是说,当n=8时,f(n)max?508二、错位相减法求和该方法用于推导等比序列的前n项和公式。

该方法主要用于求序列{anbn}的前n项之和,其中{an},{BN}分别是等差序列和等比序列[例3]求和:sn?1?3x?5x2?7x3(2n?1)xn?1………………………①解决方案:从这个问题可以看出,{(2n?1)xn?1}的通项是等差序列{2n-1}的通项和等比序列{xn?1}的通项的乘积设xsn?1x?3x2?5x3?7x4(2n?1)xn……………………….②(设制错位)①-②得(1?x)sn?1?2x?2x2?2x3?2x42xn?1?(2n?1)xn(错位相减)1.xn?1.(2n?1)xn然后使用等比序列的求和公式来获得:(1?X)Sn?1.2倍?1.x(2n?1)xn?1.(2n?1)xn?(1?x)∴sn?2(1?X)[例4]找到序列2462n,2,3,,n,前n项的和.22222n1解:由题可知,{n}的通项是等差数列{2n}的通项与等比数列{n}的通项之积222462n套序列号??2.3.n、…………………………………①222212462nsn?2?3?4n?1………………………………②(设制错位)222221222222n①-②得(1?)sn??2?3?4n?n?1(错位相减)22222212N?2.N1.N一22n?2∴sn?4?n?1二三、反序相加法求和这是用来推导算术序列的前n项和公式的方法,也就是说,将一个序列倒置(按相反顺序),然后将其与原始序列进行比较2当序列被添加时,可以得到n(A1?An)012n[例5]求证:cn?3cn?5cn(2n?1)cn?(n?1)2n012n证明:设置序列号?中国…………………………。

高中数学人教A版必修五-2021届高考数列求和的方法讲解(Word版可编辑)

高中数学人教A版必修五-2021届高考数列求和的方法讲解(Word版可编辑)

数列求和的方法总结和练习方法概述:1.求数列的前n项和的方法(1)公式法①等差数列的前n项和公式S n =()21naan+=na1+()dnn21-.②等比数列的前n项和公式(Ⅰ)当q=1时,S n=na1;(Ⅱ)当q≠1时,S n=()qqa n--111=a1-a n q1-q.③常见的数列的前n项和:123+++……+n=(1)2n n+, 1+3+5+……+(2n-1)=2n2222 123+++……+n=(1)(21)6n n n++,3333123+++……+n=2(1)2n n+⎡⎤⎢⎥⎣⎦等(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法这是推导等差数列前n项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(5)错位相减法这是推导等比数列的前n项和公式时所用的方法,主要用于求{a n·b n}的前n项和,其中{an}和{b n}分别是等差数列和等比数列.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.2. 常见的裂项公式 (1)()11+n n =1n -1n +1;(2)()k n n +1=1k (1n -1n +k);(3)()()12121+-n n =12(12n -1-12n +1);(4)()()211++n n n =12()()()⎥⎦⎤⎢⎣⎡++-+21111n n n n ; (5)1n +n +k =1k(n +k -n ).(6)设等差数列{a n }的公差为d ,则1a n a n +1=1d (1a n -1a n +1).数列求和题型考点一 公式法求和1.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.2.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.变式训练1.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为T n ,求T n .2.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .考点二 错位相减法1.已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n .2.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.变式训练1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .2.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .3.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n .4.设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .5.已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .6.设数列{a n}的前n项和为S n,已知a1=1,a2=2,且a n+2=3S n-S n+1+3, n∈N*.(1)证明:a n+2=3a n;(2)求S n.考点三分组求和法1.在等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=22 n a+n,求b1+b2+b3+…+b10的值.2.已知数列{a n}的前n项和S n=n2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=n a2+(-1)n a n,求数列{b n}的前2n项和.变式训练1.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n -a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.考点四 裂项相消法1.S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.2.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.3.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=an+1SnSn+1,求数列{b n}的前n项和T n.变式训练1.正项数列{a n}满足:a2n-(2n-1)a n-2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=1(n+1)a n,求数列{b n}的前n项和T n.2.等差数列{a n }中,a 7=4,a 19=2a 9.(1)求{a n }的通项公式;(2)设b n =1na n,求数列{b n }的前n 项和S n .3.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12. (1)求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n .考点五 倒序相加法1.已知函数f (x )=14x+2(x ∈R ).(1)证明:f (x )+f (1-x )=12;(2)若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.变式训练1.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.考点六 并项求和1.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.2.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =()21+n n a ,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .。

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明(一)》导学案例2:已知:x x <+)1ln(2,(1)求证:)*2222()21...(81)41)(21(N n e n ∈<+⎪⎭⎫ ⎝⎛+++(2)求证:*2()311)...(8111)(911(N n e n ∈<+++)(3)求证:(1+421)(1+431)…(1+41n)<e )211ln(......)411ln()211ln()]211)...(411)(211ln[()1ln(12222222n n x x ++++++=+++∴<+ )(e n n n n <+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++++<)211)...(411)(211(12112112112121 (814121222),)311)...(8111)(911(21311213113113131......3131)311ln(......)8111ln()911()]311)...(8111)(911ln[(2212222e e n n n n n n =<+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++<++++++=+++∴)( (3)ln[(1+421)(1+431)……(1+41n )]=ln[(1+421)(1+431)+…ln (1+41n )<221+231+…+21n<)1(1321211-+⨯+⨯n n =1-21+21-31+…+n n 111--=1-n 1<1∴(1+421)(1+431)……(1+41n )<e 例3:设曲线y = f (x ) =cx bx x a ++23213在点x 处的切线斜率为k (x ),且k (-1) = 0.对一切实数x ,不等式).0()1(21)(2≠+≤≤a x x k x 恒成立(1)求f (1)的值;(2)求函数k (x )的表达式;(3)设数列)(1n k 的前n 项和为S n ,求证22+>n nS n解:(1)04)1(,0,00)(222≤--≤∆>∴≥-++++=ac b a x c bx ax c bx ax x k ①0)21)(21(4,0,021,02121222≤---≤∆<-∴≤--++c a b a x c bx ax ②又,4)1(1)1(),11(21)1(12a cb a k k k =++==∴+≤≤ 又1270)1(41=∴=∴f a(2))0()(2≠++='=a c bx ax y x k ,由0)1(,1)1(=-=k k 得⎩⎨⎧=+-=++01c b a c b a 得⎪⎩⎪⎨⎧==+2121b c a 又)1(21)(2+≤≤x x k x 恒成立,则由)0(0212≠≥+-a c x ax 恒成立得410402141==⇒⎪⎩⎪⎨⎧=+≤-=∆>c a c a ac a 同理由02121)21(2≥-++-c x x a 恒成立得41==c a 综上,21,41===b c a 412141)(2++=∴x x k(3)∑=+++⨯+⨯>+++=ni n n n i k 122])2)(1(1431321[41])1(121[41)(1 22]2121[41+=+-=n n n 法二:和式代换,要证22+>n n S n ,即也证()1121+->-n n S n ,只需证:()()()21411222++=+--+>n n n n n n a n ,只需()()()21414)(12++>+=n n n n k ,且()322121114211=+>=+==S a ,故22+>n n S n。

导数在数列求和中的应用

导数在数列求和中的应用

导数在数列求和中的应用导数进入中学数学教材,给传统的中学数学内容注入了新的生机与活力,怎样利用导数这个工具重新认识原中学课程中求函数的极值和判断函数的单调性的问题,并为其研究提供新的途径和方法,是当今中学数学中的新的课题之一,纵观目前各类刊物,对导数的研究多数停留在函数,解析几何等内容上,而对其他方面关注较少,本文则从一个侧面介绍导数在一类数列求和问题中的应用,以开阔学生视野,拓宽解决这类问题的方法。

高中数学教材必修5有一个习题:求1+2x+3x2+…+nx(n-1)的和Sn。

编者的本意是分三种情况进行求和:①x=0;②x=1;③x≠0且x≠1。

其中第③种情况要用错位相减的方法求。

现在就用导数的方法进行求解。

因为,(xn)’=nxn-1,而且x+x2+x3+…+xn=x(1-xn)/1-x (1)对(1)式两边进行求导数运算,就有:Sn=1+2x+3x2+…+nx(n-1)=(x+x2+x3+…+xn)’=[x(1-xn)/1-x]’=1/(1-x)2[1-(n+1)xn+nxn+1]所以,用上面的方法就可以求通项为(xn+y)qn-1(x、y、q、为常数,其中q≠0且q≠1,x≠0,y≠0)的数列的前n项的和Sn。

因为,(xn+y)qn-1=xnqn-1+yqn-1;所以只需分别求数列{xnqn-1}与{yqn-1}的和,再相加就可以得Sn。

而数列{yq(n-1)}为等比数列,用公式求即可。

设数列{xnqn-1}与{yqn-1}的前n项的和分别为Tn和Dn,则Sn=Tn+Dn,其中Dn=y(1-qn)/1-q。

现在就形如{xnqn-1}的数列用导数运算的方法求其前项的n和Tn。

Tn=x(q0+2q1+3q2+4q3+…nqn-1)=x(q1+q2+q3+…qn)’=x[q(1-qn)/1-q]’=x/(1-q)2[1-(n+1)qn+nqn+1]。

所以Sn=x/(1-q)2[1-(n+1)qn+nqn+1]+y(1-qn)/1-q (2)下面就三个具体的数列进行求和运用。

高一数学数列求和的七大方法和技巧

高一数学数列求和的七大方法和技巧

数列求和的七大方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:2、等比数列求和公式:3、4、5、[例1]已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得,(利用常用公式)∴===∴当,即n=8时,二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设………………………. ②(设制错位)①-②得(错位相减)再利用等比数列的求和公式得:∴[例4]求数列前n项的和.解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{的通项之积设…………………………………①………………………………②(设制错位)①-②得(错位相减)∴三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5]求证:证明:设………………………….. ①把①式右边倒转过来得(反序)又由可得…………..…….. ②①+②得(反序相加)∴[例6]求的值解:设…………. ①将①式右边反序得…………..②(反序)又因为①+②得(反序相加)=89∴ S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=[例8]求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得S n=(分组)==(分组求和)=五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9] 求数列的前n项和.解:设(裂项)则(裂项求和)==[例10]在数列{a n}中,,又,求数列{b n}的前n项的和.解:∵∴(裂项)∴数列{b n}的前n项和(裂项求和)==[例11] 求证:解:设∵(裂项)∴(裂项求和)===∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n.[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵(找特殊性质项)∴S n=(cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90°(合并求和)= 0[例13] 数列{a n}:,求S2002.解:设S2002=由可得……∵(找特殊性质项)∴S2002=(合并求和)====5[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)和对数的运算性质得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(找通项及特征)∴=(分组求和)===[例16] 已知数列{a n}:的值.解:∵(找通项及特征)=(设制分组)=(裂项)∴项求和)==。

运用导数巧求数列和

运用导数巧求数列和

运用导数巧求数列和数列是数学中的基础概念,是一系列按特定顺序排列的数的集合。

数列求和是指对数列中的所有数进行求和运算。

在数学中,比较常见的数列有等差数列和等比数列。

在一些情况下,为了方便计算数列的和,可以运用导数的巧妙方法,通过对数列进行求导和积分等运算,将求和问题转化为其他数学运算问题。

一、等差数列求和等差数列是指数列中相邻两项之间的差值是一个常数的数列。

在等差数列中,如果已知首项a1、末项aN和项数n,我们需要求解的就是数列的和Sn,即1+2+3+…+n的和。

对于等差数列,我们可以运用导数的巧妙方法进行求和。

步骤:1. 首先,假设原等差数列的首项为a1,公差为d,那么原数列的通项公式为an = a1 + (n-1)d。

2. 对于数列的和Sn = a1+a2+a3+…+an,我们将其视为n的函数Sn,即Sn = Sn(n)。

3.接下来,我们对数列的和Sn进行求导,得到导数Sn’(n)。

4.然后,我们对Sn’(n)进行积分,得到Sn(n),即数列的和。

举例:以等差数列1 + 2 + 3 + … + n为例,首项a1为1,公差d为1,通项公式为an = 1 + (n-1)1 = n。

1.对数列的和Sn进行求导,得到导数Sn’(n):Sn’(n) = d/dn(1 + 2 + 3 + … + n) = d/dn(n(n+1)/2) = (2n +1)/22.对Sn’(n)进行积分,得到Sn(n):Sn(n) = ∫[(2n + 1)/2]dn = (n^2 + n)/2所以,数列1+2+3+…+n的和为Sn(n)=(n^2+n)/2、通过运用导数的巧妙方法,我们成功地求解了等差数列1+2+3+…+n的和。

二、等比数列求和等比数列是指数列中相邻两项之间的比值是一个常数的数列。

在等比数列中,如果已知首项a1、末项aN和公比q,我们需要求解的就是数列的和Sn,即a1 + a2 + a3 + … + an的和。

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1) ; x 1 2 ln x 1 1 ⑧ 2 2 ( x 0) ; x 2 2x 可以用“数形结合”的方法记忆。 一、公式①的应用: ln x x 1( x 0) (仅当 x=1 时取“=” ) ,y=lnx 在(1,0)处的切线方程为 y=x-1.
* ,证明:b1+b2+…+bn<1+ln2(n∈N ,n≥2).
lnx≤x-1(当 x=1,时等号成立) ,
令 x=n+1,则 ln(n+1)≤n. ln n 1 n 1 ∴n≥2 时,bn= < 3 2 3 n n n 1 1 1 < , n(n 1) n 1 n
1 1 1 1 1 1 ( )( )+ ( ) ∴b1+b2+…+bn<b1+ 1 2 2 3 n 1 n 1 ln2 ( 1 ) <1+ln2. n

ln2 ln3 lnn n2 1 , 2 2 2 2 3 n 2 n 1 4 ln 2 ln3 lnn n2 1 2 2 < 。 2 2 3 n 2 n 1 4
∴对于任意 n∈N,n≥2 有:
(3)设 bn=
ln n 1 n3
*
即有 n∈N 时,n(n+1)≤2
1 en . 1 e
ln 2 ln3 lnn n2 1 < . (2)求证:对于任意 n∈N,n≥2 有: 2 2 32 n2 2 n 1 4
证明:lnx≤x-1(当 x=1,时等号成立) ,令 x=n (n∈N ,n≥2),
2 2 则 lnn <n -1, 2 *

lnn2 n2 1 1 1 1 1 < 2 =1- 2 <1 1 , 2 n n n n n 1 n n 1

ln22 ln32 lnn2 22 32 n2 1 1 1 1 1 1 <( 1 )( 1 ) ( 1 ) 2 3 3 4 n n 1 n 1 1 1 n2 1 , 2 n 1 n 1 2
证明:证明:lnx≤x-1(当 x=1,时等号成立) ,
(11)求证:
ln 2 ln 3 ln 4 ln n 1 < , (n≥2,n∈N*). 2 3 4 n n
(12)求证:
1 1 1 >ln2 ,(n∈N*) n 1 n 2 n n 1
证明:证明:lnx≤x-1(当 x=1,时等号成立) ,

n n 1 ) 2 (1)求证:n∈N 时, (
*
en 1 . e 1
证明:lnx≤x-1(当 x=1,时等号成立) ,
n-1 * 取 x=n,n∈N ,则 n-1≥lnn,即有 n≤e . n-1 2 即有 1+2+…+n≤1+e+e +…+e .
则有
1 1 en n(n+1)≤ , 2 1 e
(8)求证: (1
1 1 1 )(1 2 )(1 2 )<e ,其中 n≥2,n∈N*. 22 3 n
证明:证明:lnx≤x-1(当 x=1,时等号成立) ,
( (9)求证: ln
n 1 1 )< ,(n∈N+) n n
证明:证明:ln(x+1)≤x(当 x=0,时等号成立) ,
1 n 1 . (10)证明对任意的 n∈N*都有 ln(1 ) < n
(6)求证:当 n∈N+时, e1 2 3 ... n>n 1 .
, 证明:lnx≤x-1(当 x=1,时等号成立)
1 1
1
(7)设各项为正数的数列{an}满足 a1=1,an+1=lnan+an+2(n∈N*),求证:an≤2n-1.
证明:lnx≤x-1(当 x=1,时等号成立) , 由已知条件 an>0, 令 x=an,则 ln an≤an -1, ∴an+1=lnan+an+2≤an-1+an+2=2an+1,
m
(4)当 m>n>1(m,n∈Z)时,证明:
证明:当 m>n>1, (m.n∈Z)时,
n m
n

n . m
(5)求证:对任意的 n∈N ,
*
n 1
n
n!
<e ,(e 为自然对数的底数.e≈2.71828)。
证明:因为 lnx≤x-1(当 x=1,时等号成立) , 所以 ln(1+x)≤x(当 x=0 时等号成立) ,
新导数与数列求和 01
以下不等式需要记住,这些公式经常结合数列进行命题,前 5 个需牢记! ,① ln x x 1( x 0) (仅当 x=1 时取“=” ) ,y=lnx 在(1,0)处的切线方程为 y=x-1. ② ln( x 1) x( x 1) (仅当 x=0 时取“=” ) , y=ln(x+1)在(0,0)处的切线方程为 y=x. x x ③ e 1 x ,y=e 在(0,1)处的切线方程为 y=x+1. -x ④ e x 1 x ,y=e 在(0,-1)处的切线方程为 y=-x+1. ⑤ sinx<x<tanx, x (0, ) ; 2 ⑥ ln( x2 1) x( x 0) ;
相关文档
最新文档