塞曼效应实验报告

合集下载

塞曼效应实验的报告完整版

塞曼效应实验的报告完整版

塞曼效应实验的报告完整版 .doc
报告标题:塞曼效应实验
I.实验目的
本实验旨在通过模拟和观察塞曼效应,以加深对其机理的理解。

II.实验原理
塞曼效应是一种电磁学效应,能够在一个可逆的非线性系统中产生特殊的振荡行为,并可以在实验中得到观察。

该效应的本质是由于振子实体和振子系统之间存在耦合、反馈所致。

III.实验装置
本实验采用塞曼效应实验装置,由振子、激励电路、检测电路及检测仪组成。

IV.实验步骤
1. 用激励电路给振子施以外力,使振子振荡起来,检测电路会检测振子的振幅和频率,并将数据显示在检测仪上;
2. 逐渐增大激励电路的电流,观察振子振幅和频率的变化;
3. 逐渐减小激励电路的电流,观察振子振幅和频率的变化;
4. 重复上述步骤,观察塞曼效应的变化。

V.实验结果
随着激励电路的电流的增加,振子的振幅和频率也会随之增大,当电流达到一定程度时,振子的振幅和频率开始急剧减小,甚至几乎停止振动,然后再慢慢回升,这正是塞曼效应的表现。

VI.实验总结
本实验通过模拟和观察塞曼效应,加深了对其机理的理解。

实验结果表明,在激励电路的电流达到一定程度时,振子的振幅和频率开始急剧减小,甚至几乎停止振动,然后再慢慢回升,这正是塞曼效应的表现。

塞曼效应实验报告

塞曼效应实验报告

图 汞绿线的塞曼效应及谱线强度分布 由图可见,上下能级在外磁场中分别分裂为三个和五个子能级。

在能级图上画出了选择规则允许的九种跃迁。

在能级图下方画出了与各跃迁相应的谱线在频谱上的位置,它们的波数从左到右增加,并且是等距的。

三、实验装置1. J 为光源,本实验用笔型汞灯作为光源。

2. N,S 为电磁铁的磁极,用配套稳流源供电。

电流与磁场的关系可用高斯计进行测量。

3. 0L 、1L 为会聚透镜,使通过标准具的光强增强。

4. P 为偏振片,在垂直于磁场方向观察用以鉴别σ成分和π成分;在沿着磁场方向观察时,结合1/4波片的使用,用以鉴别左旋或右旋圆偏振光。

5. F-P 为法布里-伯罗标准具。

6. 3L 和4L 分别为显微镜的物镜和目镜,在沿磁场方向观察时用它观察干涉图样。

四、实验内容1、参照使用说明书,调节好直读式塞曼效应实验仪。

(1) 调节各光学元件与光源(汞灯)等高,共轴(注意纵向塞曼效应中光源高度)。

(2) 调节标准具和显微镜的位置,使视场内照明均匀,并使干涉圆环清晰可见。

(3) 标准具的调整。

调节标准具的三个螺丝,使得产生的干涉圆环清晰明亮,并使得圆环与目镜划线间无视差(这步骤调节好后,不必再乱调)。

2、 横向塞曼分裂垂直磁场方向观察(横效应)。

调节电流由零至1.5A ,观察塞曼分裂情况,这时,会看到原来的一条谱线将分裂为9条,然后,放上偏振片(横向观察时,不用1/4波片)调节慢轴方向0,45,90,将会发现,有时,一些谱线消失,有时,一些消失的谱线又将重新出现,即出现π成分和σ成分。

3、用特斯拉计测量磁感应强度值。

4、干涉圆环直径测量和计算裂距∆λ及e/m :)(42212,2,kk a k b k D D D D dB c m e --=-π。

塞曼效应实验报告(完整版)

塞曼效应实验报告(完整版)

南昌大学物理实验报告学生姓名: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:塞曼效应一、实验目的1.观察塞曼效应现象,把实验结果与理论结果进行比较。

2.学习观测塞曼效应的实验方法。

3.计算电子核质比。

二、实验仪器WPZ —Ⅲ型塞曼效应实验仪三、实验原理塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。

垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。

按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ∆,由于原子的磁矩J μ与总角动量J P 的关系为 2J J egP mμ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。

因此,cos cos 2J J eE B g P B mμαα∆=-=-(2) 其中α是磁矩与外加磁场的夹角。

又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J hP MM J J J απ-==--(3)南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。

设:4B hemμπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+∆=+(4)由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量耦合方式其表达式和数值完全不同。

在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为(1),222L L e e hP L L m m μπ==+(5)(1),2S S e e hP S S m m μπ==+(6)设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系:2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S JJ J eP P mP P P P P P e m P P P P P e P P m e gP mμμαμααα=+=++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8)由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:外磁场作用下将会分裂为(2J +1)个能级,相邻两能级间隔为B g B μ。

塞曼效应标准报告

塞曼效应标准报告

塞曼效应标准报告一、实验目的1. 利用高分辨光谱仪器法布里—珀罗(Fabry —Perot )标准具研究汞546.1nm 光谱线的塞曼(Zeeman )效应,并测量塞曼分裂的波长差; 2. 学习用光谱学的方法,测定电子比荷m e 的值。

二、实验原理1. 原子的总磁矩与总角动量的关系 原子的总磁矩为J J P g m egB e 2μμ-=⋅-= ()()()()121111++++-++=J J S S L L J J g ,它表征了原子总磁矩与总角动量的关系,也决定了分裂后的能级在磁场中的裂距。

2. 磁矩在外磁场B中的能量原子总磁矩在外磁场中受力矩B L J ⨯=μ的作用,使J μ绕磁场方向作进动。

引起的附加能量为:B Mg B B B E z J J B cos μμαμμ=-=⋅-=⋅-=∆,J J J M --=,,, 1,说明由于磁场的作用,使原来的一个能级,分裂成12+J 个间隔为B g B μ的能级,因为g 因子对不同能级有不同的值,则不同原能级分裂出的子能级间隔也不相同。

3. 塞曼效应无外磁场时,设频率为ν的光谱线是由原子的上能级2E 跃迁到下能级1E 所产生,则有12E E h -=ν在外磁场的作用下,上下两能级各获得附加能量12E E ∆∆、,上下两个子能级之间的跃迁,将发出频率为ν'的谱线,则有:()()()B g M g M h E E E E h B 11221122μνν-+=∆+-∆+='所以分裂后的谱线与原谱线的频率差为:()()e m eBg M g M h B g M g M πμννν4/1122B 1122-=-=-'=∆ 用波数cνλν==1~来表示,则有:()cm eBg M g M e πννν4~~~1122-=-'=∆cm eBL e π4=为裂距的单位,称为洛伦兹单位,是正常塞曼效应所分裂的裂距。

4. 汞绿线的塞曼效应汞绿线是从13S (6s7s )到23P (6s6p )跃迁而产生三、实验装置图绿汞线塞曼分裂后的能级跃迁图2 3 1 3/2 0 0 -1 -3/2 -2-32M22g M1M11g M1 2 0 0 -1 -20>B3S 3P 100 7575 75 7537.5 37.512.5 12.5 πσ 塞曼效应实验装置滤光片偏振片四、数据处理1、实验现象图2、波长差表一:测量两光的波长差表中2212222kk akbk D D D D d --⋅=∆-λλmm d 2= nm 1.546=λ3、计算荷质比:111818292kg C 106780.105.11038101.5461000697.08---⋅⨯=⨯⨯⨯⨯⨯=⋅∆=ππλλB c m e e 理论值()111e kg C 107588.1/-⋅⨯=理m e所以相对不确定度:%6.4%1007588.16780.17588.1=⨯-=E4、实验误差原因分析误差的产生主要在现象图的清晰与否,故认真调整好光路是关键。

塞曼效应的实验报告

塞曼效应的实验报告

塞曼效应一、实验目的1、研究塞曼分裂谱的特征2、学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。

二、实验原理对于多电子原子,角动量之间的相互作用有LS耦合模型和JJ耦合某型。

对于LS耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。

原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。

总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为二E 二Mg」B B ( 1)其中M为磁量子数,卩B为玻尔磁子,B为磁感应强度,g是朗德因子。

朗德因子g表征原子的总磁矩和总角动量的关系,定义为g =1 . J(J T)-L(L 1) S(S 1)- 2J(J 1)其中L为总轨道角动量量子数,S为总自旋角动量量子数,J为总角动量量子数。

磁量子数M只能取J, J-1,J-2,…,-J,共(2J+1)个值,也即AE有(2J+1 )个可能值。

这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。

由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B以及朗德因子g。

能级E1和E2之间的跃迁产生频率为v的光,其中hv = E2 - E1在磁场中,若上、下能级都发生分裂,新谱线的频率v '满足hv'=(E2址2)-匕.迟)=库2 -巳)(汨2 - EJ = hv (M2g2 -皿鸟广皐即分裂后谱线与原谱线的频率差为* 4B B:v =v - v' = (M 2g2 - Mj)二(3)h代入玻尔磁子% =空,得到4血e:v = (M 2g 2 -M ⑼) B4rm等式两边同除以c ,可将式(4)表示为波数差的形式e.■:二-(M 2g 2 - M i g i )4兀meeB 4 二 me其中L 称为洛伦兹单位,且 L =0.467B 塞曼跃迁的选择定则为:M =0,_1当AM =0,为n 成分,是振动方向平行于磁场的线偏振光,只在垂直于磁 场的方向上才能观察到,平行于磁场的方向上观察不到,但当J = 0时,M 2 =0 到M i = 0的跃迁被禁止;当1,为c 成分,垂直于磁场观察时为振动垂直于磁场的线偏振光, 沿磁场正向观察时,M = 1为右旋圆偏振光,厶M 二_1为左旋圆偏振光。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验一、 实验目的1、理解塞曼效应的相关理论,观察汞546.1nm 谱线在磁场中分裂的情况,加深对原子结构的认识。

2、掌握法布里—珀罗(F P -)标准具的干涉原理及其调整方法。

3、测量汞谱线在磁场中分裂的裂距,并计算出电子荷质比e/m 的值。

二、 实验仪器电磁铁、笔形汞灯、聚光透镜、法布里-珀罗标准具、偏振片、滤光片、读数显微镜、高斯计三、 实验原理1、法布里—珀罗标准具(1)法布里—珀罗标准具的原理及性能构成:F-P 标准具由两块平面玻璃板中间夹一个间隔圈组成。

平面玻璃内表面有高反射膜,间隔圈精加工成一定厚度使两玻璃板平行。

原理:单色光在F-P 标准具中产生干涉,光程差2cos l nd θ∆= 。

所有的平行光束都在透镜焦平面上形成干涉条纹,形成干涉极大亮条纹条件2cos d k θλ=性能:不同的K 对应不同的θ。

如果采用扩展光源照明,F P -标准具产生等倾干涉,花纹是一组同心圆环。

(2)法布里—珀罗标准具的调节调节的目的就是使两个内表面平行,通过旋紧或者旋松调节,直到移动过程中无冒环或吸坏的现象就可以观察。

2、原理解释加入外磁场后,系统总能量增加朗德因子与J 、S 、 L 有关,一个J 对应着M=J,J-1,...,-J,所以磁场中每个能12341'2'3'4'图6.1级分裂为2J+1个子能级。

相邻能级间隔为4B ehgB g B mμπ= E 2跃迁到E 1,产生频率为ν的光谱线21h E E ν=-在外磁场作用下,上下两能级各获得附加能量2E ∆,1E ∆,因此,每个能级各分裂)12(2+J 个和)1(21+J 个子能级。

用F P -标准具求波数差,根据图6.4几何关系可得22cos 18D fθ=-将上式带入式( 6.2)可得222[1]8D d k f λ-=对同一波长λ的相邻第k 和第1k -级两个圆环,其直径的平方差为222(1),,4k k f D Ddλλλ--=直径的平方差是一个与干涉级次k 无关的常量。

塞曼效应实验报告清华

塞曼效应实验报告清华

一、实验目的1. 观察塞曼效应,理解其产生机理。

2. 通过实验测量电子的荷质比。

3. 学习应用塞曼效应测量磁感应强度。

二、实验原理塞曼效应是指在外磁场作用下,原子或分子的光谱线发生分裂的现象。

根据量子力学理论,当原子处于外磁场中时,其能级会发生分裂,导致光谱线分裂成多条偏振的谱线。

实验中,我们使用Fabry-Perot(F-P)标准具观察汞原子的546.1nm谱线的塞曼效应。

F-P标准具是一种高反射率的光学元件,可以用来产生干涉条纹。

当一束光通过F-P标准具时,会在两块平行玻璃板之间多次反射,形成干涉条纹。

根据塞曼效应的原理,当外磁场存在时,汞原子的能级发生分裂,导致光谱线分裂成多条偏振的谱线。

这些谱线在F-P标准具中会产生干涉,形成干涉条纹。

三、实验仪器1. 笔形汞灯2. 电磁铁装置3. 聚光透镜4. 偏振片5. 546nm滤光片6. F-P标准具(标准具间距d=2mm)7. 成像物镜与测微目镜组合而成的测量望远镜四、实验步骤1. 将笔形汞灯置于电磁铁装置中,调整电磁铁的电流,产生所需的外磁场。

2. 将F-P标准具放置在测量望远镜的光路上,调整标准具的间距,使干涉条纹清晰可见。

3. 通过偏振片观察干涉条纹,记录下干涉条纹的形状和位置。

4. 改变电磁铁的电流,观察干涉条纹的变化,记录下不同磁场强度下的干涉条纹数据。

五、实验结果与分析1. 实验结果表明,在外磁场作用下,汞原子的546.1nm谱线发生了分裂,形成多条偏振的谱线。

这些谱线在F-P标准具中产生干涉,形成干涉条纹。

2. 通过分析干涉条纹的形状和位置,可以计算出外磁场的强度。

3. 根据实验数据,我们可以计算出电子的荷质比。

六、实验结论1. 塞曼效应是原子在外磁场作用下能级分裂的现象,其机理可以用量子力学理论解释。

2. 通过实验,我们成功观察到了塞曼效应,并测量了外磁场的强度。

3. 通过计算,我们得到了电子的荷质比,验证了量子力学理论。

七、实验注意事项1. 实验过程中,注意安全,避免触电。

(完整word版)塞曼效应实验报告

(完整word版)塞曼效应实验报告

1、前言和实验目的1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。

2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。

3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。

2、实验原理处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。

下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。

总磁矩为J μ 的原子体系,在外磁场为B 中具有的附加能为:E ∆= -J μ*B由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。

则我们有:E ∆= -z μB =B g m B J J μ其中z μ为J μ在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ=em ehπ4称为玻尔磁子,J g 为朗德因子,其值为 J g =)1(2)1()1()1(1++++-++J J S S L L J J由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。

当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=∆j m 。

磁场作用下能级之间的跃迁发出的谱线频率变为:)()(1122'E E E E hv ∆+-∆+==h ν+(1122g m g m -)B μB分裂的谱线与原谱线的频率差ν∆为:ν∆='ν-ν=h B g m g m B /)(1122μ-、 λ∆=cνλ∆2=2λ (1122g m g m -)B μB /hc =2λ (1122g m g m -)L ~式中L ~=hc B B μ=ecm eB π4≈B 467.0称为洛仑兹单位(裂距单位)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、前言和实验目的
1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。

2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。

3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。

2、实验原理
处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。

下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。

总磁矩为J μ 的原子体系,在外磁场为B 中具有的附加能为:
E ∆= -J μ
*B
由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。

则我们有:
E ∆= -z μB =B g m B J J μ
其中z μ为J μ
在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,
B μ=
e
m eh
π4称为玻尔磁子,J g 为朗德因子,其值为 J g =)
1(2)
1()1()1(1++++-++
J J S S L L J J
由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。

当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=∆j m 。

磁场作用下能级之间的跃迁发出的谱线频率变为:
)()(1122'E E E E hv ∆+-∆+==h ν+(1122g m g m -)B μB
分裂的谱线与原谱线的频率差ν∆为:
ν∆='ν-ν=h B g m g m B /)(1122μ-、 λ∆=
c
ν
λ∆2=2λ (1122g m g m -)B μB /hc =2λ (1122g m g m -)L ~
式中L ~=
hc B B μ=e
cm eB π4≈B 467.0称为洛仑兹单位(裂距单位)。

所以电子的荷质比:
e m e =B c π4 ·11221
g m g m -·2λ
λ∆ 塞曼能级跃迁的选择定则和偏振定则:
本实验使用的汞绿光nm 1.546()667621P P S S S S →,我们以式(1—5)及能级跃迁的选择定则来分析此反常塞曼效应。

能级分裂如下图所示:
Hg nm 1.546谱线是由1376S S S 到2366P P S 跃迁而产生,表2列出13S 和23P 能级的各量子
数L 、S 、J 、m 、g 与mg 的值。

如图(1—3)上部分表示能级分裂后可能发生的跃迁,下部分画出分裂谱线的裂距与强度,按裂距间隔排列将π成分的谱线画在线上,σ成分画在线下,各线的相对强度,如以原线强度为100,则其它线约为75,37.5,12.5等。

汞nm 1.546谱线分裂为9条等间距的谱线相邻两谱线的间距都是21个洛仑兹单位。

图(1—3) nm 1.546谱线的塞曼分裂
从横向角度观察,原nm 1.546光谱线将分裂成9条彼此靠近的光谱线,如图(1-3)所示,其中包括3条π分量线(中心3条)和6条σ分量线。

这些条纹互相迭合而使观察困难。

由于这两种成份偏振光的偏振方向是正交的,因此我们可利用偏振片将σ分量的6条条纹滤去,只让π分量条纹留下来。

由于相邻谱线之间的间距非常小,例如汞的绿光nm 1.546=λ,T B 20.1=, 相邻
谱线裂距21洛仑兹单位,则相邻谱线波长差为λ∆=c
m eB e πλ82
≈8.33
10-⨯nm =nm 0083.0,
3、实验器材
如图所示,本实验仪器由:WPZ-Ⅲ型塞曼效应仪装置,计算机、特斯拉计组成。

其中WPZ-Ⅲ型塞曼效应仪装置的光路部分由以下部件构成: 1. 聚光镜。

汞灯源经过聚光镜均匀的射到F-P 标准具上。

2. 干涉滤光片。

其作用是滤掉Hg 原子发出的其他谱线,只允许nm 1.546通过 ,透射带宽
nm 10≤,从而得到近似单色光。

3. 偏振片。

在垂直于磁场方向观察时用以鉴别方法π成分和σ成分。

4. 法布里-珀罗标准具,利用干涉原理分离不同频率的光产生分裂的谱线。

5. 会聚透镜(调节CCD摄像的光圈和焦距)。

使F-P标准具的干涉花样成像在会聚透镜的焦平面
上。

4、注意事项
1.调整的时候要细心,没有调整好后面得不到好的图样
2.要注意保护实验仪器,避免仪器跌落损坏
3.注意图样的变化,避免把六条分裂当成两个三条分裂
4.取点画圆时要注意点要取的适当分开些,最好都成120º左右
5、实验数据、实验数据处理、计算结果和估算不确定度等
实验开始B=0时得到的未分裂图样如图一所示:
图一.B=0时未分裂图样图二.B>0时3条分裂图样
图三.B>0时6条分裂图样
由于U盘中毒导致①B>0时9条分裂图样不能打开,②第二次分析结果图片打开却没有图像。

以下是利用提供的软件对B>0时3条分裂图样进行分析计算得到的实验结果图(第一、三次):
图四.第一次分析结果
图五.第三次分析结果图
第二次分析得到的结果为:1.75。

故三次的平均值为:1.81,单位为10^11 库仑/千克,即1.81*10^11 库仑/千克
而查找资料得电子荷质比标准值为:1.76*10^11 库仑/千克
故相对误差为:2.84%,在误差允许范围之内。

6、分析实验结果和不确定度的来源及谈谈心得和改进方法
本实验采用了高精度的F-P标准具,而且光学实验仪器精确度都是比较高的,但最后得到的结果并不是很理想,只能得到两位的精度,这个相对于采用的实验仪器精度而言有点用宰牛刀杀鸡的意味了。

通过操作实验发现本实验有以下地方会带来较大误差值得改进:
1.标准具高度的调节较为困难,由于其重量较大,采用用手托的办法改变高度效果不理想。

可以改用升降螺旋之类器件代替手托升降。

2.用眼观察是否调整光路完毕较为困难且主观误差较大,建议采用软件判断的办法辅助判断如何调节F-P标准具螺旋(可计算其偏心率及圆环厚度的不同加以判断)。

3.软件处理画圆时较为麻烦且精度偏低,建议提高软件的实用性,可让程序自行判断圆环并计算,直接给出结果。

总之,本实验有很大的改进空间,可以使之变的更为精确,且操作更为简便。

7、思考题
1.调整法布里-珀罗标准具时,如何判别标准具的两个内平面是严格平行的?标准具调整不好会产生怎样的后果?
答:可通过B=0时得到的图样进行判断,严格平行时得到厚度均匀的同心圆,而不严格平行时将得到椭圆且厚度不均还会图样模糊。

2.要观察频率间隔范围为GHz 5.1的Ne He -纵模,l 该多大为好? 答:l
m c f S FSR 21
52
==∆≈
∆=∆λλ
,所以l=0.1m
3.实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?
答:调节检偏器,出现三条图样的为π成分,出现六条图样的即为σ成分
4.设nm 6.589=λ 时,假设相邻谱线裂距1洛仑兹单位(即11122=-g m g m ),T B 00.1=,相邻谱线波长差是多少 答:0.016nm
5.试分析本实验引起不确定度的因素? 答:1、光路元器件的损坏 2、光路调整主观性强 3、结果处理软件有待改进
还有其他一些因素,详见误差分析部分。

相关文档
最新文档