改进封装技术 提高LED光通量

合集下载

led封装技术的发展趋势与市场应用

led封装技术的发展趋势与市场应用

LED封装技术的发展趋势与市场应用一、引言LED(Light Emitting Diode,发光二极管)作为一种高效节能的光源,近年来在照明、电子显示、汽车照明等领域得到了广泛的应用。

而LED封装技术作为LED产业链中至关重要的一环,其发展趋势和市场应用也备受关注。

本文将从LED封装技术的发展趋势和市场应用两个方面进行全面评估和探讨,以期能够更深入地理解LED封装技术在未来的发展方向和商业应用。

二、LED封装技术的发展趋势1. 现状分析目前,LED封装技术已经实现了从无封装、普通封装到高端封装的跨越式发展。

从最早期的DIP封装到SMD封装再到COB、CSP等封装技术的不断涌现,LED封装技术在尺寸、亮度、热散发、可靠性等方面均取得了长足的进步。

然而,随着LED行业的不断发展,LED封装技术面临着更多的挑战和机遇。

2. 发展趋势(1)微型化:LED产品呈现微型化趋势,封装技术将更加注重尺寸的缩小和功率密度的提升,以满足高端应用对于体积和功率的需求;(2)模块化:LED封装将更加趋向模块化,不同功能的模块将能够实现快速组装,提高生产效率和灵活性;(3)多功能化:LED封装不再单一追求亮度,而是结合色温调节、光学设计等多功能需求,为各种场景提供定制化解决方案;(4)智能化:LED封装产品将更加智能化,融合无线通信、传感器等功能,为智慧照明、智能家居等领域提供更多可能。

三、LED封装技术在市场的应用1. 现状分析LED封装技术的不断创新和发展,推动了LED应用市场的蓬勃发展。

从室内照明到户外照明,从电视显示到汽车照明,LED封装技术的应用场景越来越广泛。

LED封装产品的差异化和个性化需求也在市场中愈发显现。

2. 应用市场(1)照明领域:LED封装产品在室内照明、商业照明、景观照明等各个领域均有广泛应用,高亮度、高色温、调光、色彩丰富等特点成为LED封装产品在照明市场的竞争优势;(2)显示领域:LED封装产品在电视、手机、显示屏等领域的应用也日益普及,高对比度、高刷新率、柔性化等成为LED封装产品的市场吸引点;(3)汽车领域:LED封装产品在汽车大灯、尾灯、仪表盘等照明系统中的应用也越来越受欢迎,高可靠性、防水防尘、多功能化等成为市场需求的重点。

中国LED路灯技术发展现状及问题分析

中国LED路灯技术发展现状及问题分析

中国LED路灯技术发展现状及问题分析大功率LED路灯与常规高压钠灯路灯不同的是,大功率LED路灯的光源采用低压直流供电、由GaN基功率型蓝光LED与黄色荧光粉合成的高效白光二极管,发光二极管(LightEmittingDiode,简写为LED)是基于半导体PN结形成的用微弱的电能就能发光的高效固态光源,在一定的正向偏置电压和注入电流下,注入P区的空穴和注入N区的电子在扩散至有源区后经辐将电能直接转化为光能。

射复合而发出光子,将电能直接转化为光能。

LED作为路灯的光源,它和传统路灯光源比较有许多优点。

保证光效;1、LED路灯本身具有光的指向性,没有光的漫射,保证光效;达到节能目的;2、LED路灯有独特的二次光学设计,将LED路灯的光照射到所需照明的区域,即路面,进一步提高了光照效率,达到节能目的;3、LED的光源效率目前已达100lm/W,而且还有很大的发展空间,理论值能达到250lm/W。

而高压钠灯的发光效率是随路灯比高压钠灯强;功率增加才有所增加,因此,总体光效LED路灯比高压钠灯强;4、LED路灯的光显色性比高压钠灯高,高压钠灯显色指数只有23左右,而LED路灯显色指数可达到75以上,从视觉心理角度考虑,达到同等亮度,LED路灯的光照度平均可以比高压钠灯降低20%以上(参照英国道路照明标准);而且,在中间视觉水平下,人眼在高色温环境里比低色温环境更容易辨别事物,避免了某些危险状态的发生;5、LED路灯的光衰小,一年的光衰不到3%,使用10年仍达到道路使用照度要求,因此,LED路灯在使用功率的设计上可以比高压钠灯低;比高压钠灯低;节省电能;6、LED路灯可以自动调光,能实现在满足不同时段照明要求,最大可能的降低功率,节省电能;7、LED是低压直流器件,驱动单颗LED的电压为安全电压,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。

直流的特点使LED特别适合与太阳能、风电进行结合;8、每个单元LED晶粒只有很小体积,所以可以制备成各种形状的器件,并且适合于易变、易震的环境;万小时以上;9、寿命长:理论寿命能使用5万小时以上;10、LED可以进行频繁的开关而不用担心其损坏;11、安装简便:直接将LED路灯灯头安装于灯杆替换原有的钠灯灯头;70°C C以下,随着技术的发展,结点温度还在进一步下降,结点温度越低,理论上12、散热控制出色:能将LED结点温度降到70°芯片寿命就越长;LED芯片寿命就越长;13、质量可靠:电路电源全部采用高质量元器件,每颗LED都有单独过流保护及串并联保护,就算一颗损坏,也不会导致其他芯片失效;LED芯片失效;14、LED光源不含有害金属汞,不像高压钠灯或金属卤化物灯在报废时对环境造成危害;但是,最近听到不少专家学者的意见,认为LED作为路灯来取代高压钠灯在技术上还不成熟。

led芯片显色指数的测试报告

led芯片显色指数的测试报告

LED芯片显色指数的测试报告一、引言LED照明已经成为现代照明领域的主要技术之一。

而LED芯片的显色指数对于LED照明的质量和效果具有重要影响。

本文将对LED芯片的显色指数进行测试,并就测试结果进行详细分析和讨论。

二、测试方法1. 选择测试仪器:我们选用了国际上较为常用的光谱分析仪器进行测试。

2. 测试条件:测试时,我们采用了标准的测试环境和光源,以确保测试结果的准确性和可比性。

3. 测试样本选择:我们选择了不同品牌、不同型号的LED芯片进行测试,以确保测试结果的全面性和代表性。

三、测试结果经过测试,我们得到了LED芯片的显色指数数据。

在此我们仅列举其中几个样本的测试结果作为例子:1. 样本A:显色指数为802. 样本B:显色指数为853. 样本C:显色指数为90四、数据分析1. 从测试结果来看,不同LED芯片的显色指数存在一定的差异,这反映了LED芯片在色彩还原方面的差异性。

2. 经过对测试数据的分析,我们发现显色指数高的LED芯片,在真实环境中的颜色还原效果更好,色彩更饱满真实。

3. 我们还发现不同品牌、不同型号的LED芯片在显色指数上也存在差异,这需要在LED照明产品的设计和选择上进行考虑。

五、影响因素分析1. LED芯片的材料和工艺对显色指数具有重要影响。

不同的LED芯片采用不同的发光材料和工艺,因此在显色指数上也存在差异。

2. LED芯片的包装和封装技术也对显色指数有一定影响。

不同的封装技术可能对光的色彩还原效果产生影响。

3. 光源的稳定性和均匀性也会影响LED芯片的显色指数。

LED照明产品的光学设计和散热设计对于显色指数也非常重要。

六、测试结果的应用1. LED照明产品的设计:基于测试结果,我们可以选择显色指数更高的LED芯片作为照明产品的光源,以保证产品在真实环境中的色彩还原效果。

2. 照明方案的选择:对于一些特殊要求的场合,如美术馆、展览馆等,我们可以根据测试结果选择适合的LED照明方案,以确保展品的色彩表现效果。

提高led发光效率的方法

提高led发光效率的方法

提高led发光效率的方法
LED作为一种高效节能的光源,被广泛应用于各个领域。

然而,LED 发光效率的提高仍然是一个重要的研究方向。

以下是提高LED发光效率的方法:
一、优化材料
1.选择高质量的材料:选择纯度高、结晶度好、缺陷少的材料,如GaN、InGaN等。

2.控制材料生长方式:采用MOCVD等先进生长技术,在控制生长条件和过程中,可以得到更优质的材料。

3.掺杂:在LED芯片中加入适量的掺杂剂,可以增加载流子密度,提高电子-空穴复合率,从而提高发光效率。

二、改进结构设计
1.优化电极结构:采用金属反射层等技术,在电极表面形成反射层,增强反射,并减少损耗。

2.优化外部量子效率:在芯片表面添加抗反射涂层或纳米柱阵列等结构,可以增强外部量子效率,并减少光线反射和散射。

3.调整发光波长:通过调节芯片中InGaN中In含量比例,可以实现发光波长的调整,从而提高发光效率。

三、改进制造工艺
1.优化晶体生长:采用先进的晶体生长技术,如HVPE等,可以得到
更优质的晶体材料。

2.优化制造工艺:采用干法蚀刻或湿法蚀刻等制造工艺,可以得到更加精细的结构和更高的发光效率。

3.改善封装技术:采用先进的封装技术,如SMT等,可以提高LED芯片的亮度和稳定性,并延长使用寿命。

综上所述,通过优化材料、改进结构设计和改进制造工艺等方法,可
以有效提高LED发光效率。

在实际应用中,还需要根据具体情况进行
选择和调整。

led灯具光通量

led灯具光通量

led灯具光通量1. LED灯具光通量的概念和意义光通量是指光源在单位时间内发出的总光功率,用单位流明(lm)来表示。

在LED灯具中,光通量是衡量其发出的可见光强度的重要指标。

LED灯具的光通量决定了其亮度和照明效果,对于室内照明、户外照明以及特定场景下的照明需求都起到至关重要的作用。

2. LED灯具光通量与LED芯片功率之间的关系LED芯片功率是指LED芯片在工作时消耗电能的能力,常用单位为瓦特(W)。

与传统白炽灯相比,LED灯具能够以更低的功率发出相同亮度或更高亮度的可见光。

这得益于LED芯片高效转换电能为可见光能力以及其自身低能耗特性。

3. LED灯具中常用到的流明效应流明效应是指人眼对不同波长和频率下可见光强度感知程度不同。

根据人眼对不同波长可见光感知强弱程度进行加权计算得到流明效应。

在设计和制造LED灯具时,需要根据流明效应对不同波长的光进行加权处理,以保证人眼感知到的亮度与实际光通量相符合。

4. LED灯具光通量与照明需求的匹配不同场景和照明需求对LED灯具的光通量有不同的要求。

例如,室内照明需要提供足够亮度以满足人们的视觉需求,而户外照明需要考虑到环境亮度、视觉舒适度以及能源消耗等因素。

因此,在选择LED灯具时,需要根据实际需求和场景特点选择合适的光通量。

5. LED灯具光通量与能效比之间的平衡LED灯具在提供足够亮度的同时,也要考虑到能源消耗和能效比。

较高的能效比意味着在相同功率下提供更高的光通量。

因此,在设计和制造LED灯具时,需要在保证足够亮度下尽可能提高其能效比。

6. LED灯具中常用到的辐射补偿技术由于LED芯片中发出可见光波长范围有限,常常需要进行辐射补偿来弥补其发出可见光范围的不足。

辐射补偿技术可以通过多种方式实现,如使用多个LED芯片组合发光、采用辐射补偿滤光片等。

这些技术可以提高LED灯具的光通量和光谱均匀性,提供更好的照明效果。

7. LED灯具光通量测试方法和标准为了保证LED灯具的质量和性能,需要进行准确可靠的光通量测试。

封装硅胶对深海LED 光源出光光通量的影响

封装硅胶对深海LED 光源出光光通量的影响

第41卷㊀第10期2020年10月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 41No 10Oct.ꎬ2020文章编号:1000 ̄7032(2020)10 ̄1302 ̄07封装硅胶对深海LED光源出光光通量的影响陈㊀彤ꎬ汪㊀飞ꎬ殷录桥ꎬ张建华∗(上海大学机电工程与自动化学院ꎬ上海㊀200072)摘要:应用于深海环境的LED光源模组采用封装硅胶作为压力补偿结构介质ꎬ与传统液压补偿结构相比ꎬ具有装配方便㊁结构简便等优点ꎮ根据折射定律(斯涅尔定律)ꎬ不同封装硅胶折射率的差异会导致光线在蓝宝石透镜窗口发生全反射的角度有所不同ꎬ进而影响出光光通量ꎮ因此ꎬ本文探究了封装硅胶不同折射率(1.41~1.55)以及不同厚度(1.6~3.0mm)对光源模组出光光通量的影响ꎮTracepro仿真结果表明ꎬ固定封装厚度ꎬ光通量随封装硅胶的折射率减小而增大ꎻ固定硅胶折射率ꎬ封装厚度为2.5mm时ꎬ光源的出光光通量最大ꎮ同时ꎬ本文设计了硅胶封装实验ꎬ实验结果与仿真结果一致ꎬ验证了仿真结果的准确性ꎮ关㊀键㊀词:深海照明ꎻLEDꎻ封装硅胶ꎻ折射率ꎻ厚度ꎻ出光光通量中图分类号:O439㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20200196InfluenceofEncapsulatedSilicaGelonOutputLuminousFluxofDeepSeaLEDLightSourceCHENTongꎬWANGFeiꎬYINLu ̄qiaoꎬZHANGJian ̄hua∗(SchoolofMechanicalEngineeringandAutomationꎬShanghaiUniversityꎬShanghai200072ꎬChina)∗CorrespondingAuthorꎬE ̄mail:jhzhang@oa.shu.edu.cnAbstract:TheLEDlightsourcemoduleappliedinthedeepseaenvironmentadoptsencapsulatedsilicagelasthepressurecompensationstructuremediumꎬwhichhastheadvantagesofconvenientassemblyandsimplestructurecomparedwiththetraditionalhydrauliccompensationstructure.Ac ̄cordingtothelawofrefraction(Snell sLaw)ꎬthedifferenceintherefractiveindexofdifferenten ̄capsulatedsilicagelwillleadtodifferentanglesoftotalreflectionoflightinthesapphirelenswin ̄dowꎬthusaffectingthelightflux.Thereforeꎬthispaperexplorestheinfluenceofdifferentrefractiveindex(1.41to1.55)anddifferentthickness(1.6mmto3.0mm)ofencapsulatedsilicagelontheoutputlightfluxofthelightsourcemodule.Traceprosimulationresultsshowthattheopticalfluxin ̄creaseswiththedecreaseoftherefractiveindexofencapsulatedsilicagel.Whenthesilicagelre ̄fractiveindexisfixedandthepackagethicknessis2.5mmꎬtheluminousfluxofthelightsourcereachesthemaximum.Atthesametimeꎬthispaperdesignsthesilicagelencapsulationexperiment.Theexperimentalresultsareconsistentwiththesimulationresultsꎬfurtherverifyingtheaccuracyofthesimulationresults.Keywords:deepsealightingꎻLEDꎻencapsulatedsilicagelꎻrefractiveindexꎻthicknessꎻluminousflux㊀㊀收稿日期:2020 ̄07 ̄07ꎻ修订日期:2020 ̄07 ̄31㊀㊀基金项目:国家杰出青年科学基金(51725505)ꎻ国家自然科学基金(51605272)ꎻ上海平板显示工程技术研究中心能力提升项目(19DZ2281000ꎬ17DZ2281700)资助SupportedbyNationalScienceFundforDistinguishedYoungScholars(51725505)ꎻNationalNaturalScienceFoundationofChina(51605272)ꎻCapacityImprovementofShanghaiFlatPanelDisplayEngineeringTechnologyResearchCenter(19DZ2281000ꎬ17DZ2281700)㊀第10期陈㊀彤ꎬ等:封装硅胶对深海LED光源出光光通量的影响1303㊀1㊀引㊀㊀言海洋蕴藏着丰富的资源ꎬ大致分为海底矿产㊁海洋生物㊁海洋化学与海洋旅游四类ꎬ其中海底的矿产资源可以缓解当今社会的能源枯竭ꎬ海洋生物与旅游可以促进经济发展ꎬ各国对深海资源的勘探和开发都趋之若鹜ꎬ深海潜水器的研究取得了飞速发展[1 ̄4]ꎮ由于水下环境中自然光照条件很差[5 ̄8]ꎬ因此ꎬ水下照明设备成为深海潜水器上的关键设备[1]ꎮ潜水器照明使用的传统光源主要有卤素灯㊁荧光灯和高强度气体放电灯ꎮ而LED灯节能㊁高亮度㊁体积小㊁寿命长㊁可靠性高等众多优点已经超越传统光源[9 ̄12]ꎬ成为当前低碳运动背景下水下照明领域的必然趋势[13 ̄14]ꎮ为了给水下工作提供良好的照明效果ꎬ世界主要国家纷纷开展了深海照明研究ꎮ其中美国深海电力和照明机构(DSPL)自38年前公司成立以来一直致力于先进的水下照明ꎬ取得的成果最为显著ꎬ已有一系列成熟的产品[15]ꎮ如2011年设计了关于照明灯透明窗口的压力补偿结构ꎮ透明窗口安装在LED上ꎬ透明窗口和LED之间的空间填充有光学透明的流体ꎬ凝胶或油脂ꎬ其允许光通过并且传递深海压力ꎬ补偿了透明窗口内外两面的压力差ꎬ避免透镜由于受力不同而破裂[16]ꎮ在2017年的专利中将LED浸泡在惰性㊁不导电的充液压力补偿环境中ꎬ提高了灯具的抗压能力[17]ꎮ而液体填充LED灯的缺点包括对光束控制的减少和LED荧光粉涂层的污染可能性增加ꎮ因此ꎬ通常首选采用压力保护外壳设计而不是充液压力补偿设计来保护LED免受外部压力ꎮ由于光学硅胶具有不可压缩性与优良透光性的特点ꎬ本文选取了封装硅胶作为压力补偿结构介质ꎮ利用折射定律ꎬ对封装不同折射率的硅胶ꎬ从使光线在蓝宝石透镜窗口发生全反射的角度进行了理论计算ꎮ利用Tracepro对折射率为1.41~1.55以及硅胶封装厚度为1.6~3.0mm的不同光源模组进行了光学仿真ꎮ最后ꎬ利用设计的硅胶封装实验对光源模组进行硅胶封装ꎬ并通过积分球进行光通量的测试ꎮ2㊀封装硅胶后的光路传输分析及光学仿真2.1㊀光源模组的设计在复杂的深海环境中ꎬ海水不仅会对构件造成腐蚀ꎬ对灯具出射的光线造成大量的吸收与散射ꎬ还会产生巨大的压强ꎬ因此深海照明灯具要具备良好的光源模组以及抗腐蚀㊁抗压性能ꎮ以LED为光源的深海照明灯其光学模组通常由抗压透光窗口㊁反光杯及LED阵列光源组成ꎮ对于反光杯ꎬ不仅起到抗压的作用ꎬ同时对光源出射的光整形汇聚ꎬ使出射的光线满足一定的发光角ꎮ对于直接与海水接触的透光窗口材料ꎬ不仅需要良好的抗压与耐腐蚀能力ꎬ还需要高的透光性ꎮ从应用角度来说ꎬ蓝宝石玻璃是目前世界上透光率最好的光学玻璃之一ꎬ所以深海照明灯具的透光窗口大多采用蓝宝石玻璃ꎮ由于蓝宝石玻璃下方的反光杯有孔洞ꎬ所以在受到海水高压后ꎬ会因为应力集中而发生形变ꎮ为保证照明灯在6000m以下的水深环境正常工作ꎬ需对光源模组进行硅胶封装ꎮ整体的光源模组如图1所示ꎬ由散热铜块㊁焊有LED灯珠的铜基板㊁垫片㊁反光杯㊁硅胶透镜㊁双面镀膜蓝宝石透镜组成ꎮ硅胶封装在反光杯与蓝宝石透镜之间起到透光㊁抗压的作用ꎮSapphire lens Silica gelReflection cupGasketLED light sourceCopper图1㊀整体光源模组Fig.1㊀Integrallightsourcemodule2.2㊀封装硅胶后的光线传输本文基于LED灯珠的二次光学设计ꎬ由于采用高强度㊁高折射率的蓝宝石透镜作为透光窗口材料ꎬ由折射定律可知ꎬ光线从光密介质传到光疏介质会发生全反射ꎬ造成一部分光线在蓝宝石透镜的出射镜面由于全反射而损失了能量ꎮ现分析光线入射到蓝宝石透镜的3种光路传输路径:光线垂直入射进透镜ꎬ这部分光线直接出射能量最强ꎻ光线入射进入透镜出射面的入射角大于全反射的临界值会使光线在蓝宝石透镜内发生全反射ꎬ无法出射ꎻ当入射光线角度小于全反射的临界角时ꎬ光线在折射进入空气的同时ꎬ会在蓝宝石透1304㊀发㊀㊀光㊀㊀学㊀㊀报第41卷镜内部发生多次镜面反射ꎮ为减少光线在蓝宝石透镜内部的镜面反射ꎬ对蓝宝石透镜双面进行镀减反射膜处理ꎮ光线在蓝宝石透镜出射面发生全反射时ꎬ由于填充的硅胶折射率不同ꎬ造成光线从硅胶入射进入蓝宝石透镜的临界入射角α也不同ꎬ现计算填充每种具体折射率硅胶时的临界入射角αꎮ根据折射定律sinθ1n1=sinθ2n2ꎬ蓝宝石透镜的折射率1.762ꎬ空气的折射率1.00ꎬ可计算出全反射角度β=34ʎ34ᶄꎬ继而由此推算出发生全反射时的临界入射角αꎮ由折射定律㊁硅胶的折射率和发生全反射的角度34ʎ34ᶄꎬ计算出光线在蓝宝石透镜出射面发生全发射时从封装硅胶入射进入蓝宝石透镜的入射角度ꎮ表1给出的是常用的光学级封装硅胶ꎮ由计算可知发生全反射时的临界角随填充硅胶折射率的增加而减小ꎬ结果如图2所示ꎮ表1㊀封装硅胶的光学特性Tab.1㊀OpticalpropertiesofencapsulatedsilicagelSiliconenameRefractiveindexTransmittance(450nm)/%HardnessDOW ̄1841.41>95D43G91.45>95D50KMT ̄15521.50>95D53KMT ̄13391.53>95D64OE ̄65501.54100D62KMT ̄13601.55>95D6745Silica gel refractive indexT o t a l r e f l e c t i o n a n g l e /(°)1.401.421.441.461.481.501.521.541.5646444342414039图2㊀发生全反射时的临界角随填充硅胶折射率的变化Fig.2㊀Criticalangleoftotalreflectionchangeswiththere ̄fractiveindexoffilledsilicagel2.3㊀基于Tracepro进行LED光源模组光学仿真2.3.1㊀光学仿真过程SolidWorks中建立的3D光源模组如图3所示ꎬ其中反光杯面型的建模选用抛物面ꎬ抛物线的曲线方程根据反光杯上㊁下方口径的顶点坐标以及反光杯的厚度ꎬ带入抛物线方程即可求解ꎮ将求解出来的抛物线方程利用SolidWorks软件绘制出来ꎮ将建立好的3D光源模组保存为step格式ꎬ导入Tracepro中ꎬ如图4(a)所示ꎮ设置光源的类型和属性ꎬ本文所用光源选择江西晶能半导体有限公司型号为XG ̄2系列的LED光源ꎬ该LED光源半峰边角为60ʎꎬ主峰波长为450nmꎬ标准1.5A电流㊁3.5V电压下的光通量为600lmꎮ准4.71准3.061.6~3.08.5准4.2图3㊀光源模组的主要尺寸参数(单位mm)Fig.3㊀Maindimensionparametersoflightsourcemodule(unitmm)(a )(b )Receive screen 1Receive screen 2Sapphire lens图4㊀Tracepro光学仿真ꎮ(a)封装硅胶的光源模组ꎻ(b)光线追迹ꎮFig.4㊀Traceproopticalsimulation.(a)Encapsulatesiliconelightsourcemodule.(b)Tracetracking.㊀第10期陈㊀彤ꎬ等:封装硅胶对深海LED光源出光光通量的影响1305㊀查找所用灯珠的数据手册ꎬ利用表面光源特性生成器(Surfacesourcepropertygenerator)将该光源的表面光源配光曲线以及光谱特性曲线描点ꎬ设置完成后将数据导入至Traceproꎬ最终光源的立体配光效果可在SourceBeamShape3DPreview中查看ꎮ设置各个零件的材料及表面仿真参数如表2所示ꎬ由于蓝宝石透镜的倒角面与密封圈接触ꎬ为更加真实地模拟出光ꎬ将倒角面设置为全吸收ꎮ为探究后续封装不同折射率硅胶时光线在蓝宝石透镜中的镜面反射情况ꎬ在距光源15mm处添加60ˑ60ˑ2的接收屏1ꎬ不设置任何表面属性ꎮ在距离光源1000mm处添加一块6000ˑ6000ˑ2的接收光屏2ꎬ表面设置为全吸收ꎮ光线追迹数量为24000ꎬ点击TraceRays完成光线追迹ꎬ如图4(b)所示ꎮ查看接收屏1ꎬ光线描述为入射的光照度分析图ꎬ接收屏2光线描述为吸收的光照度分析图ꎮ表2㊀Tracepro仿真参数Tab.2㊀TraceprosimulationparametersModuleRefractiveindexReflectivityTransmittanceReflectioncup/0.95/Lamphousing/0.95/Sapphirelens1.762/0.88LEDlens1.53/1.00Silicone1.41~1.55/0.952.3.2㊀封装硅胶折射率与厚度对出光光通量的影响光源模组仿真的反光杯厚度为1.6~3.0mmꎬ由于硅胶完全封装在反光杯与蓝宝石透镜之间ꎬ所以反光杯的厚度即封装硅胶的厚度ꎮ随着反光杯厚度的增加ꎬ封装硅胶的体积也在增加ꎮ封装不同折射率的硅胶在不同厚度反光杯里的出光总光通量如图5(a)所示ꎬ从图5(a)可以看出同一厚度的反光杯光通量随封装硅胶折射率的增加而减小ꎬ且反光杯厚度从1.6mm增加至2.5mm的过程中光通量随反光杯厚度的增加而增加ꎬ从2.5mm增加至3.0mm的过程中光通量随反光杯厚度的增加而减少ꎮ这是由于在反光杯厚度为2.5mm之前ꎬ随着反光杯厚度的增加ꎬ使得较多光线经过反光杯反射向前传播[18]ꎬ光通量随之增加ꎮ在2.5mm之后ꎬ随着反光杯厚度的增加ꎬ封装硅胶的填充量将会增加ꎬ相应地增加了反射光线在反光杯中的光程ꎬ即增加了硅胶材料对光线的吸收[19]ꎬ导致光通量减小ꎮ由仿真结果可知ꎬ最佳的反光杯厚度为2.5mmꎮ图5(b)为反光杯厚度为2.5mm的光源模组其蓝宝石透镜出射面及接收屏1的入射光线光通量的仿真结果ꎮ从图5(b)可以看出ꎬ随着封装硅胶折射率的增加ꎬ蓝宝石透镜出射面的入射光通量随之增加ꎬ而接收屏1的入射光通量随之减小ꎬ两者的差值逐渐增加ꎬ即更多的光线在蓝宝石透镜中发生镜面反射而无法出射ꎬ这与光线在蓝宝石透镜出射面发生全反射时的临界入射角随填充硅胶折射率的增加而减小的理论计算相吻合ꎮ85001.6 3.0Reflective cup thickness/mmLuminous/lm90009500800075007000650060001.81.42.0 2.2 2.4 2.6 2.83.2KMT鄄1360OE鄄6550KMT鄄1339KMT鄄1552G9DOW鄄184(a)1.40Silica gel refractive indexLuminous/lm15000120001100080001.421.44(b)14000900010000130001.461.481.501.521.541.56Incident luminous flux on the exit surface of thesapphire lensIncident luminous flux of receiving screen1图5㊀Tracepro仿真结果ꎮ(a)光通量与封装不同折射率以及封装不同厚度硅胶的关系ꎻ(b)反光杯厚度为2.5mm的光源模组其蓝宝石透镜出射面及接收屏1的入射光线光通量ꎮFig.5㊀Traceprosimulationresults.(a)Relationshipbe ̄tweenluminousfluxandsilicagelwithdifferentre ̄fractiveindexanddifferentencapsulationthickness.(b)Lightsourcemodulewiththethicknessof2.5mminthereflectivecuphasthelightincidentlumi ̄nousfluxontheoutgoingsurfaceofthesapphirelensandthereceivingscreen1.3㊀实验与结果3.1㊀不同折射率与不同厚度的硅胶封装实验选取折射率为1.41的低折射率硅胶DOW ̄1306㊀发㊀㊀光㊀㊀学㊀㊀报第41卷184以及折射率为1.54的高折射率硅胶OE ̄6550分别进行光源模组的封装硅胶实验ꎬ实验条件如表3所示ꎮ将硅胶按比例配置放入ZYMC ̄580非介入式材料均质机完成离心搅拌和抽真空的过程ꎬ使A㊁B介质充分融合且去除硅胶中的气泡ꎮ在注入硅胶加热使其固化的过程中ꎬ由于焊有LED灯珠的铜基板与垫片㊁垫片与反光杯的接触面存在间隙ꎬ如不进行良好的密封会使在加热过程中产生的气泡通过间隙进入封装的硅胶中ꎬ严重影响出光效果ꎬ因此需先将硅胶涂至垫片的上下两面ꎬ放入真空干燥箱在150ħ的温度下加热1hꎬ完成反光杯与光源之间的密封ꎮ实验方案一是将配好的硅胶注入针管ꎬ通过点胶机将硅胶注入至与反光杯上表面平齐ꎬ由于该实验方案不能精准地控制注入反光杯每个孔洞的硅胶ꎬ造成硅胶在固化好后进行光源模组的螺纹旋转装配时ꎬ稍高于反光杯表面的硅胶会被挤出㊁稍低于反光杯表面的硅胶与蓝宝石透镜之间会有空气ꎬ严重影响出光的光强ꎮ表3㊀封装硅胶实验条件Tab.3㊀EncapsulationofsilicagelexperimentalconditionsRefractiveindexMixingratioCureconditionT/ħt/hDOW ̄1841.411ʒ10125㊀㊀㊀0.33OE ̄65501.541ʒ1120㊀㊀㊀1.5改进后的硅胶实验通过图6所示装置完成整体光源模组的装配ꎮ将配置好的硅胶直接倒入反光杯中使硅胶完全溢出反光杯表面ꎬ将蓝宝石透图6㊀整体光源模组装配装置Fig.6㊀Integrallightsourcemoduleassemblydevice镜压至反光杯上方ꎬ此时蓝宝石透镜与反光杯之间的空隙使硅胶完全填充ꎮ由于也完成了反光杯与光源之间的密封ꎬ所以加热过程中无气泡生成ꎮ将光源模组放至图6装置固定ꎬ旋转螺杆使下方的轴承压紧蓝宝石透镜表面ꎬ蓝宝石透镜由于在压力的作用下与反光杯之间无相对滑动ꎮ此时旋紧灯壳ꎬ光源模组的装配完成ꎮ将光源模组放入真空干燥箱进行硅胶的高温固化ꎮ实验方案一与改进后的硅胶实验对比如图7所示ꎬ改进后的硅胶封装实验很好地解决了上述问题ꎮ(a )(b )图7㊀硅胶封装实验ꎮ(a)实验方案一ꎻ(b)改进后的硅胶封装实验ꎮFig.7㊀Silicagelencapsulationexperiment.(a)Experimentplan1.(b)Improvedsilicagelencapsulationexperi ̄ment.3.2㊀实验结果为了验证封装硅胶的最佳厚度以及透光率采用低折射率的封装硅胶优于高折射率的光学仿真结果ꎬ光源模组的实验以反光杯厚度为2.0ꎬ2.5ꎬ3.0mm各自封装DOW ̄184折射率为1.41及OE ̄6550折射率为1.54的光学级封装硅胶ꎬ通过HAAS ̄2000积分球进行光学测试ꎮ仿真与实验结果的对比值如表4所示ꎮ通过上文对发生全反射时临界入射角α的计算ꎬ封装硅胶折射率为1.54的临界入射角为40ʎ29ᶄꎬ封装硅胶折射率为1.41的临界入射角为45ʎ10ᶄꎬ提升约为11.5%ꎮ对应实测结果:2.0mm厚度的反光杯封装折射率1.41的硅胶比封装折射率1.54的硅胶光通量提升约9.3%ꎬ2.5mm厚度的反光杯封装折射率1.41的硅胶比封装折射率1.54的硅胶光通量提升约5.3%ꎬ3.0mm厚度的反光杯封装折射率1.41的硅胶比封装折射率1.54的硅胶光通量提升约5.5%ꎻ且封装在同一折射率下ꎬ封装硅胶厚度为2.5mm的出光光通量大于2.0mm和3.0mm的出光光通量ꎮ通过实验测试验证了仿真及理论计算结果的准确性ꎮ㊀第10期陈㊀彤ꎬ等:封装硅胶对深海LED光源出光光通量的影响1307㊀表4㊀反光杯厚度为2.0ꎬ2.5ꎬ3.0mm分别封装折射率为1.41及1.54的光学级硅胶的仿真与实验结果对比Tab.4㊀Thicknessofthereflectivecupis2.0ꎬ2.5ꎬ3.0mmꎬwhichrespectivelyencapsulatesilicagelwithrefractiveindexof1.41and1.54comparisonofsimulationandexperimentalresultsReflectivecupthickness/mmSilicagelrefractiveindexTraceprosimulationresults/lmMeasuredvalue/lm2.01.41856277801.54763771202.51.41922386001.54857081703.01.41889583001.54820078704㊀结㊀㊀论基于折射定律ꎬ应用光学仿真软件Traceproꎬ通过硅胶封装实验ꎬ研究并分析了封装硅胶折射率及厚度对光通量的影响ꎮ理论计算结果表明ꎬ光线从封装硅胶入射进入具有高折射率的蓝宝石透镜ꎬ使得光线在蓝宝石透镜出射面发生全发射ꎬ并且全反射的临界入射角随填充硅胶折射率的增加而减小ꎮ通过对封装硅胶后的光源模组进行光学仿真ꎬ结果表明ꎬ随填充硅胶折射率的增加ꎬ蓝宝石透镜出射面的入射光通量增加ꎬ但其外部接收屏的入射光通量随之减小ꎬ即更多的光线在蓝宝石透镜出射面发生全反射无法出射ꎬ导致光通量随硅胶折射率的增大而减小ꎮ对封装硅胶厚度的仿真结果表明ꎬ光通量在封装厚度为2.5mm时达到最大ꎮ利用硅胶封装实验对2.0ꎬ2.5ꎬ3.0mm的反光杯中分别封装折射率为1.41的DOW ̄184及折射率为1.54的OE ̄6550的光学硅胶ꎬ利用积分球进行光通量测试ꎮ结果表明ꎬ出光的光通量在同一厚度的反光杯中封装低折射率的光学硅胶高于高折射率的光学硅胶ꎮ且封装在同一折射率下ꎬ封装硅胶厚度为2.5mm的出光光通量大于2.0mm和3.0mm的出光光通量ꎮ本文研究过程中所涉及的参数均为实际生产中需要考虑的内容ꎬ研究所得的规律对于实际生产中提高灯具的光通量具有指导意义ꎮ参㊀考㊀文㊀献:[1]楼志斌.半导体照明技术在水下探测设备中的应用研究[J].船舶工程ꎬ2011ꎬ33(6):96 ̄99.LOUZB.Research&applicationofsolidstatelightinginunderwaterexplorationequipment[J].ShipEng.ꎬ2011ꎬ33(6):96 ̄99.(inChinese)[2]HARDYKRꎬOLSSONMSꎬLAKINBPꎬetal..Advancesinhighbrightnesslightemittingdiodesinunderwaterapplica ̄tions[C].ProceedingsofOCEANS2008ꎬQuebecCityꎬCanadaꎬ2008:1 ̄5.[3]HARDYKRꎬOLSSONMSꎬSANDERSONJRꎬetal..Highbrightnesslightemittingdiodesforoceanapplications[C].ProceedingsofOCEANS2007ꎬVancouverꎬBCꎬCanadaꎬ2007:1 ̄4.[4]杨朝伟.基于OMAP平台的深海照相系统研制[D].杭州:杭州电子技术大学ꎬ2014.YANGCW.ResearchandDesignofDeepseaCameraSystemBasedonOMAPPlatform[D].Hangzhou:HangzhouDianziUniversityꎬ2014.(inChinese)[5]孙传东ꎬ陈良益ꎬ高立民ꎬ等.水的光学特性及其对水下成像的影响[J].应用光学ꎬ2000ꎬ21(4):39 ̄46.SUNCDꎬCHENLYꎬGAOLMꎬetal..Wateropticalpropertiesandtheireffectonunderwaterimaging[J].J.Appl.Opt.ꎬ2000ꎬ21(4):39 ̄46.(inChinese)[6]JONASZMꎬPRANDKEH.ComparisonofmeasuredandcomputedlightscatteringintheBaltic[J].TellusB:Chem.Phys.Meteorol.ꎬ1986ꎬ38(2):144 ̄157.[7]JONASZMꎬFOURNIERGR.LightScatteringbyParticlesinWater[M].Amsterdam:AcademicPressꎬ2007. [8]SHYBANOVEBꎬHALTRINVI.Scatteringoflightbyhydrosolparticlessuspendedincoastalwaters[C].ProceedingsofOCEANS 02MTS/IEEEꎬBiloxiꎬMIꎬUSAꎬ2002:2374 ̄2382.[9]SUNXYꎬZHANGJHꎬZHANGXꎬetal..Agreen ̄yellowemittingβ ̄Sr2SiO4ʒEu2+phosphorfornearultravioletchipwhite ̄light ̄emittingdiode[J].J.RareEarthsꎬ2008ꎬ26(3):421 ̄424.[10]杨申申ꎬ王瑶ꎬ王璇ꎬ等.照明技术在潜水器中的应用[J].灯与照明ꎬ2016ꎬ40(1):33 ̄36.1308㊀发㊀㊀光㊀㊀学㊀㊀报第41卷YANGSSꎬWANGYꎬWANGXꎬetal..Applicationofunderwaterlightingforsubmersible[J].LightLight.ꎬ2016ꎬ40(1):33 ̄36.(inChinese)[11]HARDYKRꎬOLSSONMSꎬSANDERSONJRꎬetal..Applicationofhighpowerlightemittingdiodesforsubmergedillu ̄mination[EB/OL].(2008 ̄02 ̄20).https://www.deepsea.com/wp ̄content/uploads/2008_Application_of_High_Power_LEDs_Paper_UI08.pdf.[12]OLSSONMꎬHARDYKꎬSANDERSONJ.Underwaterapplicationsofhigh ̄powerlight ̄emittingdiodes[J].SeaTechnol.ꎬ2007ꎬ48(8):31 ̄34.[13]SHENSCꎬHUANGHJꎬCHAOCCꎬetal..Designandanalysisofahigh ̄intensityLEDlightingmoduleforunderwateril ̄lumination[J].Appl.OceanRes.ꎬ2013ꎬ39:89 ̄96.[14]MCBRIDELRꎬSCHOLFIELDJT.Solid ̄statepressure ̄tolerantilluminationforMBARI sunderwaterlow ̄lightimagingsys ̄tem[J].J.Disp.Technol.ꎬ2007ꎬ3(2):149 ̄154.[15]李意ꎬ张建华ꎬ楼志斌ꎬ等.深海LED照明灯技术综述[J].应用技术学报ꎬ2017ꎬ17(3):237 ̄241.LIYꎬZHANGJHꎬLOUZBꎬetal..AgeneralizationofdeepseaLEDslightingtechnology[J].J.Technol.ꎬ2017ꎬ17(3):237 ̄241.(inChinese)[16]OLSSONMSꎬHARDYKRꎬSANDERSONⅣJRꎬetal..Deepsubmersiblelightwithpressurecompensation:UnitedStatesꎬ8033677[P].2011 ̄10 ̄11.[17]OLSSONMSꎬSIMMONSJEꎬSANDERSONIVJRꎬetal..Lightfixturewithinternally ̄loadedmultilayerstackforpres ̄suretransfer:UnitedStatesꎬ9574760[P].2017 ̄02 ̄21.[18]张巧芬.非成像光学系统的LED光源优化设计与分析[D].广州:广东工业大学ꎬ2014.ZHANGQF.OptimizationDesignandAnalysisonLEDLightSourceDesigninNonimagingOpticalIlluminationSystem[D].Guangzhou:GuangdongUniversityofTechnologyꎬ2014.(inChinese)[19]卓宁泽ꎬ张寅ꎬ赵宝洲ꎬ等.LED集成封装的一次光学设计与优化[J].光电工程ꎬ2013ꎬ40(3):129 ̄134.ZHOUNZꎬZHANGYꎬZHAOBZꎬetal..FirstopticaldesignandoptimizationofLEDintegratedpackage[J].Opto ̄Electron.Eng.ꎬ2013ꎬ40(3):129 ̄134.(inChinese)陈彤(1995-)ꎬ女ꎬ新疆乌鲁木齐人ꎬ硕士研究生ꎬ2017年于安徽工业大学获得学士学位ꎬ主要从事深海光源模组的设计及优化的研究ꎮE ̄mail:ct18800253391@163.com张建华(1972-)ꎬ女ꎬ湖北恩施人ꎬ博士ꎬ研究员ꎬ1999年于上海大学获得博士学位ꎬ主要从事半导体机电装备与工艺㊁微制造与微系统集成技术㊁先进封装技术与材料㊁仿生技术与特种润滑等方面的研究ꎮE ̄mail:jhzhang@oa.shu.edu.cn。

led灯具 光通量 标准

led灯具 光通量 标准

led灯具光通量标准LED灯具的光通量标准是一个重要的指标,它代表了灯具在单位时间内发射出的光能量。

光通量通常用流明(lm)作为单位,流明是描述光通量的国际单位,表示一单位时间内一光线的数量。

1.LED灯具光通量的重要性LED灯具的光通量决定了其照明效果和照明质量。

光通量越高,灯具发出的光线越充足,照明范围越广,照度也就越高。

因此,在选择LED灯具时,光通量是一个非常重要的指标。

1.LED灯具光通量的标准LED灯具的光通量标准是根据灯具的功率、结温、色温等参数来确定的。

不同厂家和品牌的LED灯具,其光通量标准可能存在差异。

一般来说,LED灯具的光通量应达到额定值的80%以上才能算是合格产品。

1.LED灯具光通量的影响因素LED灯具的光通量受到多个因素的影响,包括芯片质量、封装工艺、驱动电源设计等。

其中,芯片质量对光通量的影响最为显著。

高质量的芯片具有更高的发光效率,能够发射出更多的光线。

此外,封装工艺和驱动电源设计也会对LED灯具的光通量产生影响。

1.LED灯具光通量的检测方法LED灯具的光通量可以通过专业的光学仪器进行检测。

这些仪器包括积分球、光谱分析仪等,可以测量LED灯具在各个波长范围内的光谱分布和光通量。

此外,也可以使用功率计和亮度计等工具来测量LED灯具的光通量。

1.LED灯具光通量的应用LED灯具的光通量在照明设计中具有重要意义。

设计师可以根据不同的场合和需求选择不同光通量的LED灯具,以满足照度、色温等要求。

例如,在商场、办公室等公共场所,需要选择光通量大、亮度高的LED灯具,以提高照明质量和照度;在卧室、书房等居住空间,可以选择光通量适中、柔和的LED灯具,以营造舒适的照明环境。

1.LED灯具光通量的未来发展随着LED技术的不断进步和普及,LED灯具的光通量也在不断提高。

未来,随着芯片质量和封装工艺的进一步优化,LED 灯具的光通量将会更加稳定和高效。

同时,随着智能化技术的融合和应用,LED灯具的光通量也将实现智能化控制和调节,以满足不同场景和用户需求。

Si衬底LED芯片制造和封装技术

Si衬底LED芯片制造和封装技术

Si衬底LED芯片制造和封装技术引言1993年世界上第一只GaN基蓝色led问世以来,LED制造技术的发展令人瞩目。

目前国际上商品化的GaN基LED均是在蓝宝石衬底或SiC衬底上制造的。

但蓝宝石由于硬度高、导电性和导热性差等原因,对后期器件加工和应用带来很多不便,SiC同样存在硬度高且成本昂贵的不足之处,而价格相对便宜的si衬底由于有着优良的导热导电性能和成熟的器件加工工艺等优势因此Si衬底GaN基LED制造技术受到业界的普遍关注。

目前日本日亚公司垄断了蓝宝石衬底上GaN基LED专利技术,美国CREE公司垄断了SiC衬底上GaN基LED专利技术。

因此,研发其他衬底上的GaN基LED生产技术成为国际上的一个热点。

1Si衬底LED芯片制造1.1技术路线在si衬底上生长GaN,制作LED蓝光芯片。

工艺流程:在si衬底上生长AlN缓冲层一生长n型GaN-生长InGaN多量子阱发光层-生长P型AlGaN层-生长p型GaN层-键合带Ag反光层并形成p型欧姆接触电极一剥离衬底并去除缓冲层一制作n型掺si层的欧姆接触电极一合金―钝化一划片一测试一包装。

1.2主要制造工艺si衬底GaN基LED芯片结构图见图1。

图1si 衬底GaN 基LED 芯片结构图从结构图中看出,si 衬底芯片为倒装薄膜结构,从下至上依次为背面Au 电极、si 基板、粘接金属、金属反射镜(P 欧姆电极)GaN 外延层、粗化表面和Au 电极。

这种结构芯片电流垂直分布,衬底热导率高,可靠性高;发光层背面为金属反射镜,表面有粗化结构,取光效率高。

1.3关键技术及创新性用Si 作GaN 发光二极管衬底,虽然使LED 的制造成本大大降低,也解决了专利垄断问题,然而与蓝宝石和SiC 相比,在Si 衬底上生长GaN 更为困难,因为这两者之间的热失配和晶格失配更大,si 与GaN 的热膨胀系数差别也将导致GaN 膜出现龟裂,晶格常数差会在GaN 外延层中造成高的位错密度;另外si 衬底LED 还可能因为si 与GaN 之问有0.5v 的异质势垒而使开启电压升高以及晶体完整性差造成P 型掺杂效率低,导致串联电阻增大,还有si 吸收可见光会降低LED 的外量子效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改进封装技术提高HB LED光通量毫无疑问,这个世界需要高亮度发光二极管(HB LED),不仅是高亮度的白光LED(HB WLED),也包括高亮度的各色LED,且从现在起的未来更是积极努力与需要超高亮度的LED (UHD LED)。

用LED背光取代手持装置原有的EL背光、CCFL背光,不仅电路设计更简洁容易,且有较高的抗外力性。

用LED背光取代液晶电视原有的CCFL背光,不仅更环保而且显示更逼真亮丽。

用LED照明取代白光灯、卤素灯等照明,不仅更光亮省电,使用也更长效,且点亮反应更快,用于煞车灯时能减少后车追撞率。

所以,LED从过去只能用在电子装置的状态指示灯,进步到成为液晶显示的背光,再扩展到电子照明及公众显示,如车用灯、交通信号灯、信息广告牌、大型影视墙,甚至是投影机内的照明等,其应用仍在持续延伸。

更重要的是,LED的亮度效率就如同摩尔定律(Moore''s Law)一样,每24个月提升一倍,过去认为白光LED只能用来取代过于耗电的白炽灯、卤素灯,即发光效率在10~30lm/W 内的层次,然而在白光LED突破60lm/W甚至达100lm/W后,就连荧光灯、高压气体放电灯等也开始感受到威胁。

虽然LED持续增强亮度及发光效率,但除了核心的荧光质、混光等专利技术外,对封装来说也将是愈来愈大的挑战,且是双重难题的挑战,一方面封装必须让LED有最大的取光率、最高的光通量,使光折损降至最低,同时还要注重光的发散角度、光均性、与导光板的搭配性。

另一方面,封装必须让LED有最佳的散热性,特别是HB(高亮度)几乎意味着HP(高功率、高用电),进出LED的电流值持续在增大,倘若不能良好散热,则不仅会使LED的亮度减弱,还会缩短LED的使用寿命。

所以,持续追求高亮度的LED,其使用的封装技术若没有对应的强化提升,那么高亮度表现也会因此打折,因此本文将针对HB LED的封装技术进行更多讨论,包括光通方面的讨论,也包括热导方面的讨论。

裸晶层:“量子井、多量子井”提升“光转效率”虽然本文主要在谈论LED封装对光通量的强化,但在此也不得不先说明更深层核心的裸晶部分,毕竟裸晶结构的改善也能使光通量大幅提升。

首先是强化光转效率,这也是最根源之道,现有LED的每瓦用电中,仅有15%~2%被转化成光能,其余都被转化成热能并消散掉(废热),而提升此一转换效率的重点就在p-n接面(p-n junction)上,p-n接面是LED主要的发光发热位置,透过p-n接面的结构设计改变可提升转化效率。

目前多是在p-n 接面上开凿量子井(Quantum Well;QW),以此来提升用电转换成光能的比例,更进一步的也将朝更多的开凿数来努力,即是多量子井(Multiple Quantum Well;MQW)技术。

“换料改构、光透光折”拉高“出光效率”如果光转效率难再要求,进一步的就必须从出光效率的层面下手,此层面的作法相当多,依据不同的化合材料也有不同,目前HB LED较常使用的两种化合材料是AlGaInP及GaN/InGaN,前者用来产生高亮度的橘红、橙、黄、绿光,后者GaN用来产生绿、翠绿、蓝光,以及用InGaN产生近紫外线、蓝绿、蓝光。

方法包括改变实体几何结构(横向转成垂直)、换用基板(substrate,也称:衬底)的材料、加入新的材料层、改变材料层的接合方式、不同的材料表面处理等。

不过,无论如何变化,大体都不离两个原则:一、降低遮蔽、增加光透率。

二、强化光折射、反射的利用率。

如过去AlGaInP的LED,其基板所用的材料为GaAs,然黑色表面的GaAs使p-n接面散发出的光有一半被遮挡吸收,造成光能的浪费,因此改用透明的GaP材料来做基板。

又如日本日亚化学工业(Nichia),将p型电极(p type)部分做成网纹状(Mesh Pattern),以此来增加p极的透明度,减少光阻碍同时提升光透量。

至于增加折反射上,在AlGaInP的结构中增加一层DBR(Distributed Bragg Reflector)反射层,将另一边的光源折向同一边。

GaN方面则将基板材料换成蓝宝石(三氧化二铝)来增加反射,同时将基板表面设计成凹凸纹状,藉此增加光反射后的散射角度,进而使取光率提升。

或如德国欧司朗(OSRAM)使用SiC材料的基板,并将基板设计成斜面,也有助于增加反射,或加入银质、铝质的金属镜射层。

封装层:抗老化黄光、透光率保卫战从裸晶层面努力增加光亮后,接着就正式从封装层面接手,务使光通维持最高、光衰减至最少。

要有高的流明保持率(Transmittance),第一步是封装材质。

过去LED最常用的是环氧树脂(epoxy),但环氧树脂老化后会逐渐变黄,进而影响光亮颜色,尤其波长愈低时老化愈快,特别是部分WLED使用近紫外线(Near ultraviolet)发光,与其它可见光相比其波长又更低,老化更快。

新的提案是用硅树脂(silicone),例如美国Lumileds公司的Luxeon 系列LED即是改采硅封胶。

不只是Lumileds Luxeon,其它业者也都有硅胶方案,如通用电气.东芝公司的InvisiSi1,东丽.道康宁的SR 7010等也都是LED的硅胶封装方案。

硅胶除了对低波长有较佳的抗受性、较不易老化外,硅胶阻隔近紫外线使其不外泄也是对人体健康的一种保护,此外硅胶的光透率、折射率、耐热性都很理想。

GE Toshiba的InvisiSi1具有高达1.5~1.53的折射率,波长范畴在350nm~800nm间的光透率达95%,且波长低至300nm时仍有75%~80%的光透,将折射率降至1.41,即便是300nm波长也能维持95%的光透性。

Dow Coring Toray的SR 7010在405nm波长以上时光透率达99%,且硬化处理后折射率亦有1.51,另外耐热上也都能达180℃~200℃的水平。

此外,也有业者提出所谓的无树脂封装,即是用玻璃来作为外套保护,如日本京瓷(Kyocera)提出的陶瓷封装,都是为了抗老化而提出,其中陶瓷也有较佳的耐热效果。

封装层:透镜的透射反射杯的反射、折射在用胶封装完后,依据LED的不同用途会有各种不同的接续作法,例如做成一个一个的独立封装组件,过去最典型的单颗LED指示灯即是如此。

另一种则是将多个LED并成一个整体性组件,如七段显示器、点阵型显示器等。

此外焊接脚位方面也有两种区分,即穿孔技术(Through-Hole Technology)及表面黏着技术(Surface-Mount Technology)。

就逐一独立、分离、离散性的封装来说,也要因应不同的应用而有不同的封装外观。

若是作为穿孔性焊接的状态指示灯则只要采行灯泡(Lamp)型态的封装(俗称成“炮弹型”),即便是此也还有透镜型态(Lens Type)的区别,如典型Lamp、卵椭圆Oval、超卵椭圆Super Oval、平直Flat等。

而若是表面黏着型,也有顶视Top View、边视Side View、圆顶Dome等。

为何要有各种不同的透镜外型?就一般而言,Lamp用来做指示灯号、Oval用于户外标示或号志、Top View用来做直落式的背光、Flat与Side View配合导光板(Guide Plate)作侧边入光式的背光、Dome作为小型照明灯泡、小型闪光灯等。

外型不同、应用不同,发光的可视角度(View Angle)也就不同,此部分也就再次考验封装设计。

运用不同的设计方式,可以获得不同的发光角度、光强度、光通量,此方面常见的做法有四:中轴透镜Axial lens、平直透镜Flat lens、反射杯Reflective cup、岛块反射杯Reflective cup by island。

一般的Lamp用的即是中轴透镜法,Dome及Oval/Super Oval等也类似,但Oval/Super Oval的光亮比Lamp更集中在轴向的小角度内。

而Flat则是用平直透镜法,好处是光视角比中轴透镜法更大,但缺点是光通量降低、光强度减弱。

至于T op View、Side View等则多用反射杯或岛块反射杯,此作法是在封装内加入反射镜,对部分发散角度的光束进行反射、折射等收敛动作,使角度与光强度能取得平衡。

就技术难易来说,只用上透镜的Axial lens、Flat lens较为简易,只要考虑透射与光束发散性,相对的有Reflective cup就不同了,原有的透射、发散都要考虑,还要考虑反射、折射以及光束收敛,更加复杂。

材质方面,透镜部分除了可持续用原有的覆胶材质外也可以改用其它材质,因为透镜已较为讲究光透而不讲究裸晶防护,如此还可采行塑料(Plastic)、压克力(Acrylic)、玻璃(Glass)、聚碳酸酯(Polycarbonate)等,且如之前所述,光透性与波长有关,不同波长光透度不同,再加上有不同的材质可选择,甚至要为透镜上色,好增加光色的对比度,或视应用场合的装饰效果(玩具、圣诞树),还有前面的透镜、反射杯等几何设计等,以上种种构成了LED光通上的第四道课题。

结语HB LED被人强调为“绿色照明”,言下之意“环保”是其很大的诉求点,所以不仅要无铅(Pb Free)封装,还要合乎今日欧洲RoHS(限用危害物质指令)的法令规范,无论封装与LED整体都不能含有汞、镉、六价铬(hexavalent c h romium)、多溴联苯(PolyBrominated Biphenyls;PBB)、多溴联苯醚(PolyBrominated Diphenyl Ether;PBDE)等环境有害物,此外WEEE(废弃电子电机设备指令)等其它相关法规也必须遵守。

前面我们也已经简略提到封装物必须能封阻与抗受低波长、紫外光,还要有一定的硬度来抗受机械外力,以及耐热性,此外绝缘、抗静电、抗湿也都必须注意。

更重要的是,无论是否高亮度,都必须尽可能将光亮导出,因为,若不能忠实导出光能,光能在封装层内被吸收,就会转化成热能,为封装上的散热问题又添一项课题,LED的热若不能顺利排解与降低,成为热负荷,反过来一样要伤害LED本体,包括亮度也会受到影响,因此,达到最佳、最理想的光通,是封装设计必然要重视课题!。

相关文档
最新文档