数字图像处理论文

合集下载

数字图像处理相关论文

数字图像处理相关论文

数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。

并且,现代多媒体计算机中又广泛采用了数字图像处理技术。

下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。

关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。

(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。

[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。

数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。

随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。

面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。

为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。

经过两年半的教学改革与实践,取得了一定的教学效果。

二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。

近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。

数字图像处理课程论文

数字图像处理课程论文

彩色图像处理【摘要】本文主要介绍了彩色图像处理中的全彩色处理,包括三色成像的原理,常见的三种颜色模型——RGB模型、CMY模型和HSI模型,并给出描述颜色空间的转换关系的算法,还介绍了基于彩色增强以及彩色图像复原的滤波,并在Matlab上进行仿真。

【关键字】RGB模型滤波彩色增强图像复原1 引言大千世界五彩斑斓,大多数物体都具有丰富的色彩。

彩色图像提供了比灰度图像更多的信息,伴随信息技术的发展,彩色图像的处理已成为一个重要的研究领域。

由于彩色图像处理的研究范围非常广泛,因此,本文只对几个方面进行了综述性的介绍。

2 彩色基础人眼最内层是视网膜,其表面分布着大量的光敏细胞。

按照形状,光敏细胞可以分为锥状细胞和杆状细胞。

大部分的锥状细胞集中在视轴线和视网膜的交界处,即中央凹区。

中央凹区对光有较高的分辨力,能识别图像的细节。

锥状细胞将电磁光谱的可见部分分成三个波段:红、绿和蓝。

所以,这三种颜色被称为人类视觉的三原色。

三色成像的原理如下:物体的颜色是由该物体所反射的光的波长来决定的,由于物体对光的吸收和反射的属性不同,所以表现出不同的颜色。

电磁波波长范围很大,但是只有波长在400~760nm范围内的电磁波,使人产生视觉,感觉到明亮和颜色。

这个波长范围内的电磁波叫可见光。

人眼的锥状细胞将可见光分成红、绿、蓝三色。

自然界中常见的各种色光都可以用这三原色按照不同比例混合得到。

同样,绝大多数色光也可以分解成红、绿、蓝三种色光,这就是三原色原理。

该原理是T.Young在1802年提出的,其基本内容是:任何颜色都可以用3种不同的基本颜色按不同的比例混合得到,即321cC bC aC C ++=, a,b,c ≥0 (1) 其中1C 、2C 、3C 为三原色(又称为三基色),而a 、b 、c 为三种原色的权值(即三原色的比例或浓度),C 为所合成的颜色,可为任意颜色。

三原色原理指出:1)自然界中的可见颜色都可以用三种原色按一定的比例混合得到;反之,任意一种颜色都可以分解为三种原色。

数字图像处理技术的浅析论文(2)

数字图像处理技术的浅析论文(2)

数字图像处理技术的浅析论文(2)数字图像处理技术的浅析论文篇二《数字图像处理技术的应用前景探索》【摘要】数字图像处理技术是指将图像信号转换成数字信号并利用电脑对信号进行处理的一种技术手段。

本文对数字图像的优点、数字图像处理的特点、数字图像处理的应用等方面进行了研究,对应用前景进行了深入的分析。

【关键词】数字图像技术数字图像处理应用一、数字图像的优点(一)再现性好。

数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。

只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现[2] 。

(二)处理精度高。

按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。

现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。

对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。

换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。

回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。

(三)适用面宽。

图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。

从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。

这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像(彩色图像也是由灰度图像组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。

即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。

(四)灵活性高。

图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。

数字图像处理论文

数字图像处理论文

数字图像处理论文数字图像处理在计算机视觉和图像分析领域中扮演着重要角色。

随着数字图像处理算法的不断发展和改进,对于图像的处理和分析有了更深入的理解。

本篇论文主要介绍了数字图像处理的一些基础概念、方法和应用。

首先,数字图像处理是基于计算机的图像处理技术,旨在改善图像的质量、增强图像的特征以及从图像中提取有用的信息。

数字图像处理的基本步骤包括图像获取、预处理、特征提取和图像重建等。

在图像获取的阶段,通过传感器或数码相机等设备获取图像的原始数据。

在预处理的阶段,对图像进行去噪、平滑和增加对比度等操作,以消除图像中的噪声和提高图像的视觉效果。

在特征提取的阶段,根据图像的特定特征,如边缘、纹理和颜色等,进行特征的提取和描述。

在图像重建的阶段,利用图像处理算法对图像进行重建和恢复。

常见的图像处理算法包括滤波、变换和编码等。

滤波算法主要用于图像平滑和去噪,如均值滤波、中值滤波和高斯滤波等。

变换算法主要用于提取图像的频域特征,如傅里叶变换和小波变换等。

编码算法主要用于图像的压缩和存储,如JPEG、PNG和GIF等。

除了基本的图像处理方法,数字图像处理还有许多应用领域。

其中之一是医学图像处理,包括医学图像的分割、配准和识别等。

另一个应用是遥感图像处理,用于地理信息系统和环境监测等领域。

此外,数字图像处理还在安全和认证、图像检索和图像合成等领域发挥重要作用。

总之,数字图像处理是一门研究如何使用计算机技术对图像进行处理和分析的学科。

通过了解数字图像处理的基本概念、方法和应用,可以更好地理解图像的特性和结构,提高图像处理的效果和精度,并在各个领域中发挥重要作用。

数字图像计算机处理技术论文范文

数字图像计算机处理技术论文范文

数字图像计算机处理技术论文范文推荐文章无人机应用技术论文优秀范文热度:物联网传感知识技术论文范文热度:维修电工技术论文范文大全热度:无人驾驶技术原理论文优秀范文热度:现代教育技术论文范文热度:数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。

小编整理了数字图像处理技术论文,欢迎阅读! 数字图像处理技术论文篇一浅谈数字图像处理技术摘要:本文针对目前广泛应用数字图像识别处理技术国内外研究现状进行了分析,阐述了数字图像处理技术的应用前景。

关键词:数字图像图像处理数字技术应用一、数字图像处理综述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,数字图像处理作为一门学科大约形成于20世纪60年代初期,早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

首次获得实际成功应用的是美国喷气推进实验室(JPL),他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

在以后的宇航空间技术,医学技术中数字图像处理技术都发挥了巨大的作用。

从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。

数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文

数字图像处理技术的探究论文_数字图像处理课程论文数字图像处理技术的探究论文篇一《数字图像处理技术的探究》【摘要】目前,图像处理技术得到较好的发展,本文以数字图像处理技术为研究对象,对其发展与应用现状进行简述,并对此技术的优缺点以及制约因素进行系统的分析,概述了此项技术在日后发展中的应用范围。

通过对数字图像处理技术的分析,让我们更深入的了解此项技术,为日后的研究提供一定的理论基础。

【关键词】数字图像处理技术发展就图像处理技术而言,可分为模拟图像与数字图像处理两大类。

数字图像处理技术在发展的过程中,涉及多门学科,其中包括生物学、计算机、信息科学等。

因此,数理与边缘学科与图像处理技术的关系越来越密切。

在最近几年中,数字图像处理技术逐步趋于完善,在遥感、人工智能等多个领域中被广泛使用,并促进相关学科得到较好的发展。

1数字图像处理技术的发展与应用在上世纪六十年代,随着VLS与计算机的发展产生了数字图像处理技术,并不断完善、成熟的一项新技术。

不管是在理论还是实际方面,都取得了较好的进步。

在早期,图像处理主要是为了使图片的质量更加完善。

输入图像的质量较低,而输出图片的质量较高,通常采用复原、压缩等方式进行处理。

此项技术首次应用成功是在美国的喷气推进实验室中。

此后,在航空领域中得到很好的应用,促进了此门学科的发展。

除此之外,数字图像处理技术在医学上也得到了很好的应用。

自上世纪七十年代中期之后,计算机与智能化得到很好的发展,也促进了图像处理技术的进步。

人们开始研究怎样通过计算机,对图像进行系统的解释,这被称作计算机视觉或图像理解。

上世纪几十年代,数字图像处理技术得到大力发展。

截止目前,此项技术在医疗设备、地理信息系统等多个领域中被广泛使用。

2数字图像处理技术的特点2.1优点(1)再现性较好。

数字图像处理技术不会因为各种变换操作而造成图片出现质量退化的现象,始终确保图像可以真实的再现。

(2)处理精度高。

根据当前技术,基本上能够把一副模拟的图像通过数字化做各种二维数组,与图像数字化设备能力有直接的关系。

数字图像处理论文

数字图像处理论文

数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。

图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。

本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。

此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。

最后,对数字图像增强技术的发展趋势进行了展望。

关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。

随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。

图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。

图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。

2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。

其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。

直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。

3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。

常用的滤波方法有均值滤波、中值滤波和高斯滤波等。

均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。

中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。

高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。

4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。

常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。

拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。

Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。

数字图像处理结课论文

数字图像处理结课论文

数字图像处理结课作业--数字图像频域增强方法及在matlab中的实现学生姓名:学号:学院:理学院班级:电科班指导教师:摘要:图像增强的目的是使处理后的图像更适合于具体的应用,即指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。

从总体上可以分为两大类:空域增强和频域增强。

频域处理时将原定义空间中的图像以某种形式转换到其他空间中,利用该空间的特有性质方便的进行图像处理。

而空域增强是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。

本文主要从空域展开图像增强技术,重点阐明数字图像增强处理的基本方法,介绍几种空域图像增强方法。

关键词:图像增强 MATLAB 空域增强锐化空间滤波平滑空间滤波目录:1、何为数字图像处理及MATLAB的历史2、空间域图像增强技术研究的目的和意义3、空间域的增强3.1 背景知识3.2 空间域滤波和频域滤波之间的对应关系3.3 锐化滤波3.4 平滑滤波4、结论1、何为数字图像处理及MATLAB的历史数字图像处理(digital image processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。

例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。

总的来说,数字图像处理包括运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。

目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。

MATLAB是由美国Math Works公司推出的软件产品。

MATLAB是“Matric Laboratory”的缩写,意及“矩阵实验室”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏科技大学数字图像处理本科生课程论文论文题目:图像增强方法综述与matlab实现完成时间:___2016年6月2日________ 所在专业:____软件工程____________ ____ 所在年级:____13419042___________ __图像增强方法综述与matlab实现软件工程专业 1341904222 陆建伟摘要:本文介绍图像增强的内容,并就内部几种方法进行更深一步的探索,利用matlab 使得算法实现并对比。

关键词:图像增强;数字图像处理;灰度变换;直方图;matlab;一、研究背景1.1研究目的经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降。

光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。

总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题。

通过本课题的研究能够使图像有更好的视觉感受效果,更能够满足社会生活和生产的需要是本文的最终目的。

1.2研究现状计算机图像处理的发展历史并不长,但是引起了人们的足够重视。

总体来说,图像处理技术的发展大致经历了初创期、发展期、普及期和实用化期4 个阶段。

随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。

图像作为自然界景物的客观反映是人类感知世界的视觉基础也是人类获取信息、表达信息和传递信息的重要手段。

二、主要理论概况图像增强是指根据特定的需要突出图像中的重要信息同时减弱或去除不需要的信息。

从不同的途径获取的图像通过进行适当的增强处理可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域从而更加容易对图像中感兴趣的目标进行检测和测量。

处理后的图像是否保持原状已经是无关紧要的了不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。

图像增强的目的是增强图像的视觉效果将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。

它一般要借助人眼的视觉特性以取得看起来较好地视觉效果很少涉及客观和统一的评价标准。

图像增强的方法可以大致分为两类,一类是空域处理方法,一类是频域的处理法1三、研究的主要内容图像增强的主要内容如图1.1图1.1本本主要研究的是点运算的两种方法,即灰度变换法、直方图修正法。

再加上Retinex 法。

3.1 图像增强方法3.1.1灰度变换灰度变换是在图像采集系统中对图像像素进行修正,是图像增强的重要手段。

灰度变换主要分为两种:一种是全域线性变换,一种是分段线性变换。

1.全域线性变换假设原图像的灰度范围为[a,b],希望变换后图像g(x,y)的灰度范围扩展至[c,d],则线性变换的表示式为:此关系如图3.1如果图像中大部分像素的灰度级分布在区域[a,b]之间,小部分灰度级超出了此区域,为了改善增强效果,可以用如下所示的变换关系:此关系图可用3.2表示:图3.1 图3.22.分段线性变换在图像增强中,为了突出感兴趣的目标或灰度区间,相对抑制那些不感兴趣的灰度区间,可以采用分段性变换,常用的方法是分三段线性变换,如图 3.3所示,设原图像在[0,Mf],感兴趣目标所在灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为图3.33.灰度非线性变换当用某些非线性函数,例如对数函数作为图像的映射函数时,可实现图像灰度的非线性变换,对数变换的一般形式为:式中a、b、c是为了便于调整曲线的位置和形状而引入的参数,他使低灰度范围的f得以扩展而高灰度范围的f得到压缩,以使图像分布,与人的视觉特性相匹配。

图像的对数变换关系如图3.4所示:图3.4指数变换的一般形式为:式中,a、b、c三个参数同样是用来调整曲线的位置和形状。

但他的效果与对数变换相反。

这种变换能对图像的高灰度区给予较大的拉伸。

图像的指数变换关系如图3.5所示:图3.53.2.2直方图修正法直方图均衡化方法的基本思想就是把原始图像的直方图变换成均匀分布的形式,这样就增加了图像灰度值的动态范围2。

当图像的直方图均匀分布时,图像包含的信息量最大,图像看起来就显得清晰。

灰度直方图是表示一幅图像灰度分布情况的统计图表。

直方图的横坐标是灰度级,一般用r表示,纵坐标是具有该灰度级的像素个数或出现这个灰度级的概率P()。

已知式中,N为一幅图像中像素的总数;表示灰度值为k的灰度级;为第级灰度的像素数;P()表示该灰度级出现的概率。

1.直方图均衡化对于获得的图像,如果其视觉效果不理想,可以通过直方图均衡化技术对其直方图作适当修改,实现增强图像对比度的目的。

这种方法的基本思想是对原始图像中的像素灰度作某种映射变换,使变换后的图像灰度的概率密度是均匀分布的,即变换后图像是一幅灰度级均匀分布的图像。

为讨论方便起见,设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。

即。

在[0,1]区间内的任一个r值,都可产生一个s值,且s=T(r)。

T(r)作为变换函数,满足下列条件:①在0≤r≤1内为单调递增函数,保证灰度级从黑到白的次序不变;②在0≤r≤1内,有0≤T(r)≤1,确保映射后的像素灰度在允许的范围内;反变换关系为r=(s),T-1(s)对s同样满足上述两个条件。

由概率论理论可知,如果已知随机变量r的概率密度为pr(r),而随机变量s是r的函数,则s 的概率密度ps(s)可以由pr(r)求出。

假定随机变量s的分布函数用Fs(s) 表示,根据分布函数定义利用密度函数是分布函数的导数的关系,等式两边对s求导,有:可见,输出图像的概率密度函数可以通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改善图像的灰度层次,这就是直方图修改技术的基础。

从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉上该图像比较协调。

因此要求将原直方图通过T(r)调整为均匀分布的.然后反过来按均衡化的直方图去调整原图像,以满足人眼视觉要求的目的。

因为归一化假定,由密度函数则有,两边积分得, 上式表明,当变换函数为r的累积分布函数时,能达到直方图均衡化的目的。

对于离散的数字图像,用频率来代替概率,则变换函数T(rk)的离散形式可表示为:上式表明,均衡后各像素的灰度值sk可直接由原图像的直方图算出。

一幅图像同之间的关系称为该图像的累积灰度直方图。

如图3.6所示,图3.62.直方图规定化直方图均衡化的优点是能自动地调整整个图像的对比度,但具体的增强效果不易控制,处理的结果总是得到全局均衡化的直方图。

而直方图规定划可以有选择的增强某个灰度值范围内的对比度。

设(r)和分别代表原始图像和规定化后处理的图像,分别对原始图像和规定化处理后的图像的直方图均衡化处理,则有:处理后得到的直方图如图3.7所示:原图规定直方图图3.73.2.3 Retinex法Retinex理论是从生理学角度出发,根据人眼视觉系统对色彩的感知特性而产生的,根据Retinex理论,图像主要由两部分构成,分别是入射光和反射物体,图像由下式表示:S(x,y)=R(x,y)*L(x,y),其中,入射光L(x,y)直接决定来了一副图像中像素能达到的动态范围,反射物体R(x,y)决定了一副图像的内在性质,retinex理论的实际就是从图像中获得物体的反射性质R,即抛开入射光的性质来获得物体的本来面貌。

3Retinex算法公式如下:其中I(x,y)表示输入图像:*表示卷积运算:R(x,y)表示经Retinex理论处理后的输出图像;F(x,y)为高斯函数。

从公式中可以看出,高斯函数滤波器只有唯一的参数,此参数在图像处理过程过程中起了关键作用,直接决定了处理结果。

当越小时,算法动态压缩能力越强,就越能更好的突出图像的细节部分,但随之输出图像颜色失真情况比较严重;反之越大,输出图像的颜色保真度越好,但动态压缩能力也同时减弱。

Retinex的算法思想如下:1.分析输入图像S(i,j),将图像中各像素点的灰度值得数据类型由BYTE型转为double型。

2.变换到对数域中进行处理,利用取对数的方式将照射光分量和反射光分量分离;LogS(x,y)=log[R(x,y)*L(x,y)]=logR(x,y)+logL(x,y)3.用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像,在对数域中用图像减去低通滤波后的图像,得到高频增强后的图像,然后对其去反对数,得到增强后的图像。

3.2图像增强实验代码及效果图3.2.1 负相变换1、实验代码f=imread('D:/tt.jpg');[M,N]=size(f);g=zeros(M,N);g=double(g);for i=1:Mfor j=1:Ng(i,j)=255-f(i,j);endendfigure;subplot(2,2,1);imshow(f,[]);subplot(2,2,2);imshow(g,[]);2、实验结果3.2.2分段线性变换1、实验代码X1=imread('D:tt.jpg');figure,imshow(X1)f0=0;g0=0; %对图像灰度进行分段的点f1=20;g1=10;f2=180;g2=230;f3=255;g3=255;figure,plot([f0,f1,f2,f3],[g0,g1,g2,g3]) axis tight,xlabel('f'),ylabel('g')title('图线'); %绘制变换曲线r1=(g1-g0)/(f1-f0);b1=g0-r1*f0;r2=(g2-g1)/(f2-f1);b2=g1-r2*f1;r3=(g3-g2)/(f3-f2);b3=g2-r3*f2;[m,n]=size(X1);X2=double(X1);for i=1:mfor j=1:nf=X2(i,j);g(i,j)=0;if(f>=f1)&(f<=f2)g(i,j)=r1*f+b2;elseif(f>=f2)&(f<=f3)g(i,j)=r3*f+b3;endendendfigure,imshow(mat2gray(g))2、实验结果原图直方图分段线性变换之后的图3.2.3 灰度非线性变换(对数变换)1、实验代码I=imread('D:/tt.jpg');x=0:255;c=255/log(256);y=c*log(x+1);figure,subplot(2,2,1),plot(y),title('对数变换直方图'),axis tight,axis squareI_log=uint8(y(I+1));subplot(2,2,2);imshow(I);title('原图')subplot(2,2,3);imshow(I_log);title('图像调整')I_br=imadd(I,100);subplot(2,2,4);imshow(I_br);title('原始图像缩放')2、实验结果3.2.4直方图均衡化1、实验代码clear all;I=imread('D:/tt.jpg'); %读入JPG彩色图像文件subplot(2,2,1);imshow(I) %显示出来title('输入的彩色JPG图像')I_gray = rgb2gray(I); %灰度化后的数据存入数组imwrite(I_gray,'1_gray.bmp'); %保存灰度图像subplot(2,2,2);imshow(I_gray);title('灰度图')[height,width]=size(I_gray); %测量图像尺寸参数p=zeros(1,256); %预创建存放灰度出现概率的向量for i=1:heightfor j=1:widthp(I_gray(i,j) + 1) = p(I_gray(i,j) + 1) + 1;endends=zeros(1,256);s(1)=p(1);for i=2:256s(i)=p(i) + s(i-1); %统计图像中<每个灰度级像素的累积个数,s(i):0,1,```,i-1endfor i=1:256s(i) = s(i)*256/(width*height); %求灰度映射函数if s(i) > 256s(i) = 256;endend%图像均衡化I_equal = I;for i=1:heightfor j=1:widthI_equal(i,j) = s( I(i,j) + 1);endendsubplot(2,2,3);imshow(I_equal) %显示均衡化后的图像title('均衡化后图像')2、实验结果3.2.5 Retinex法1、实验代码Img = imread('D:/tt.jpg');hsvImg = rgb2hsv(Img);V=hsvImg(:,:,3);[height,width]=size(V);V = uint8(V*255);NumPixel = zeros(1,256);for i = 1:heightfor j = 1: widthNumPixel(V(i,j) + 1) = NumPixel(V(i,j) + 1) + 1;endendProbPixel = zeros(1,256);for i = 1:256ProbPixel(i) = NumPixel(i) / (height * width * 1.0); endCumuPixel = cumsum(ProbPixel);CumuPixel = uint8(255 .* CumuPixel + 0.5);for i = 1:heightfor j = 1: widthV(i,j) = CumuPixel(V(i,j));endendV = im2double(V);hsvImg(:,:,3) = V;outputImg = hsv2rgb(hsvImg);subplot(2,1,1);imshow(Img);title('原图像');subplot(2,1,2);imshow(outputImg);title('retinex处理');2、实验结果四、小结从本文的试验以及结果可以分析出,院图像动态范围较小,整体较暗,并且过于集中在某一灰度范围内,经过灰度变换后,图像变亮,可以看到更多细节;针对原图像直方图高度集中,重叠现象严重,且灰度值分布不均匀,均衡化后图像直方图分布平衡,细节比原来清晰,对比度高于原图像。

相关文档
最新文档