数学必修4第三章章末检测卷含答案解析
数学必修四第三章试卷(含答案).

必修四第三章姓名:___________班级:___________考号:___________一、单选题 1.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .432.计算212sin 22.5-︒的结果等于( )A .12B .2C D 3.已知1(0,),sin cos ,cos 22απααα∈+=且则的值为( ) )A .±B C D .-344.13cos80-的值为( ) A .2B .4C .6D .85.若3sin 5α=,,22ππα⎛⎫∈- ⎪⎝⎭,则5cos 4πα⎛⎫+= ⎪⎝⎭( )A .10-B .10C .10-D .106.若tan θ+1tan θ=4,则sin2θ= A .15 B .14C .13D .12—A .2πB .C .πD .4π 8.已知函数22()3cos sin 3f x x x =-+,则函数( ) A .()f x 的最小正周期为π,最大值为5B .()f x 的最小正周期为π,最大值为6C .()f x 的最小正周期为2π,最大值为5D .()f x 的最小正周期为2π,最大值为69.若1 s in 3α=,则2 c os +24απ⎛⎫= ⎪⎝⎭( ) A .23B .12C .13D .0}10.已知,则( )A .B .C .D .11.若α,β均是锐角,且αβ<,已知()3cos 5αβ+=,()12sin ,13αβ-=-,则sin 2α=( )A .1665-B .5665C .5665或1665D .5665或1665-12.若sinθcosθ=12,则tanθ+cosθsinθ的值是( )1二、填空题 13.已知1sin 23α=,则2cos ()4πα-= _ . @14.已知tan 3α=,则2sin sin 2αα-=______.15.如果tanα+tanβ=2, tan(α+β)=4,那么tanαtanβ等于_______.16.已知1tan 2α=,()2tan 5αβ-=-,则()tan 2βα-=____________.三、解答题17.已知函数23()cos()cos()2f x x x x ππ=+-+. (I )求()f x 的最小正周期和最大值; (II )求()f x 在2[,]63ππ上的单调递增区间. [18.已知3sin cos 0x x +=,求下列各式的值, (1)3cos 5sin sin cos x xx x+-;(2)22sin 2sin cos 3cos x x x x +-.\19.已知,2παπ⎛⎫∈⎪⎝⎭,且1sin 3α=..1)求sin 2α的值;(2)若()3sin 5αβ+=-.0,2πβ⎛⎫∈ ⎪⎝⎭,求sin β的值.]20.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.~21.已知函数2(cos cos f x x x x +. "(Ⅰ)求()f x 的最小正周期.(Ⅰ)求()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.—22.设函数f(x)=2cosx(cosx+√3sinx)(x∈R). (1)求函数y=f(x)的周期和单调递增区间;#]时,求函数f(x)的最大值.(2)当x∈[0,π2参考答案1.B 【解析】试题分析:sin cos tan 11,tan 3sin cos tan 12ααααααα++===---,22tan 63tan 21tan 84ααα-===--. 考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系. 2.B 【解析】 【分析】由余弦的二倍角公式可得结果. 【详解】由余弦的二倍角公式得 212sin 22.5cos 452-︒=︒=故选:B 【点睛】本题考查余弦二倍角公式的应用,属于简单题. 3.C 【解析】 【详解】试题分析:1sin cos 2αα+=,(0,)απ∈,3,24ππα⎛⎫∴∈ ⎪⎝⎭32,2παπ⎛⎫∴∈ ⎪⎝⎭,sin 44πα⎛⎫+= ⎪⎝⎭,cos 44πα⎛⎫∴+=- ⎪⎝⎭cos 2sin 22sin cos 224444πππαααα⎛⎛⎫⎛⎫⎛⎫=+=++=⨯-= ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭考点:二倍角公式的运用,同角三角函数间的关系. 4.B 【解析】 【分析】利用诱导公式、两角差的正弦公式和二倍角公式进行化简,求得表达式的值. 【详解】13cos80-13sin10=-cos103sin10-=()2sin 3010sin10cos10-=2sin 2041sin 202==. 故选:B 【点睛】本小题主要考查三角恒等变换,主要是诱导公式、两角差的正弦公式和二倍角公式的应用,考查化归与转化的数学思想方法,属于基础题.5.A 【解析】 【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据两角和的余弦函数公式,特殊角的三角函数值即可计算得解. 【详解】解:3sin 5α=, ,22ππα⎛⎫∈- ⎪⎝⎭,4cos 5α∴==,)5cos cos sin 4210πααα⎛⎫∴+=--=- ⎪⎝⎭. 故选:A . 【点睛】本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 6.D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等 7.A 【解析】 【分析】把三角函数式整理变形,变为()()sin f x A x =+ωϕ的形式,再用周期公式求出最小正周期. 【详解】()sin cos f x x x =+sin 22x x ⎫=+⎪⎪⎭4x π⎛⎫=+ ⎪⎝⎭,2T π∴=.故选:A. 【点睛】本小题主要考查辅助角公式,考查三角函数最小正周期的求法,属于基础题. 8.B 【解析】 【分析】利用降次公式化简()f x ,由此求出函数的最小正周期和最大值. 【详解】 依题意()1cos 21cos 2332cos 2422x x f x x +-=⨯-+=+,故最小正周期为2ππ2T ==,最大值为246+=,所以本小题选B. 【点睛】本小题主要考查降次公式,考查三角函数的最小正周期,考查三角函数的最大值的求法,属于基础题. 9.C 【解析】 【分析】直接利用降幂公式和诱导公式化简求值. 【详解】2cos +24απ⎛⎫= ⎪⎝⎭21cos()1sin 1322223παα++-===.故答案为:C. 【点睛】(1)本题主要考查降幂公式和诱导公式,意在考查学生对这些知识的掌握水平.(2)降幂公式:221cos 1cos sin ,cos 2222αααα-+==,这两个公式要记准,不要记错了. 10.C 【解析】分析:利用余弦的差角公式将cos 6x π⎛⎫-= ⎪⎝⎭展开,1sin 2x x += ,将cos cos 3x x π⎛⎫+-⎪⎝⎭展开合并化简,即可求出值.详解:∵cos 63x π⎛⎫-= ⎪⎝⎭1sin 2x x +=∵3cos cos cos 32x x x x π⎛⎫+-= ⎪⎝⎭1cos sin 22x x ⎫=+⎪⎪⎭13⎛⎫=-=- ⎪ ⎪⎝⎭所以选C点睛:本题考查了余弦差角公式的应用,主要注意符号的变化,属于简单题. 11.A 【解析】 【分析】根据α,β的范围,得到αβ+和αβ-的范围,结合条件,得到()sin αβ+和()cos αβ-,由()()sin2sin ααβαβ⎡⎤=++-⎣⎦,根据两角和的正弦公式,得到答案. 【详解】α,β均是锐角,且αβ<()0,αβπ∴+∈,,02παβ⎛⎫-∈- ⎪⎝⎭()3cos 5αβ+=, ()4sin 5αβ∴+==,()12sin 13αβ-=-,()5cos 13αβ∴-==, ∴()()sin2sin ααβαβ⎡⎤=++-⎣⎦()()()()sin cos cos sin αβαβαβαβ=+-++-45312513513⎛⎫=⨯+⨯- ⎪⎝⎭1665=-故选:A. 【点睛】本题考查同角三角函数关系,两角和的正弦公式,属于简单题. 12.B 【解析】依题意有:tanθ+cosθsinθ=1sinθcosθ=2.点睛:本题主要考查:同角三角函数的基本关系,是个简单题,主要要熟记两个同角三角函数的基本关系,即:tanθ=sinθcosθ和sin 2θ+cos 2θ=1.在运算过程中,主要采用的是切化弦的方法,即遇到正切,一般情况下是化为正弦和余弦来化简,化简过程中要注意通分和合并同类项,有时候还要结合二倍角公式来考虑. 13.23【解析】试题分析:21cos 21cos 21sin 2222cos 42223ππααπαα⎛⎫⎛⎫+-+- ⎪ ⎪+⎛⎫⎝⎭⎝⎭-==== ⎪⎝⎭.考点:1余弦的二倍角公式;2诱导公式. 14.310【解析】 【分析】利用二倍角公式将sin 2α化简,再把分母看做22sin cos αα+,分子分母同时除以2cos α,即可求得. 【详解】tan 3α=,22sin sin 2sin 2cos sin ααααα-=-222sin 2cos sin cos sin ααααα-=+ 22tan 2tan tan 1ααα-=+ 9691-=+ 310=. 故答案为:310. 【点睛】本题主要考查的是二倍角正弦公式的应用,以及同角三角函数基本关系式的应用,熟练掌握和应用这些公式是解决本题的关键,是基础题.15.【解析】 【分析】 由tan(α+β)=tanα+tanβ1−tanαtanβ可得tanαtanβ=1−tanα+tanβtan(α+β),从而可得结果.【详解】 因为tan(α+β)=tanα+tanβ1−tanαtanβ,tanα+tanβ=2, tan(α+β)=4,所以tanαtanβ=1−tanα+tanβtan(α+β)=1−24=12,故答案为12.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16.112-【解析】()25tan αβ-=-,()25tan βα∴-=()()()()211522tan 21112152tan tan tan tan tan βααβαβααβαα---⎡⎤-=--===-⎣⎦+-⨯+⨯ 17.(I )()f x 的最小正周期为π,最大值为1;(II )5[,]612ππ.【解析】试题分析:(I )利用三角恒等变换的公式,化简()sin(2)3f x x π=-,即可求解()f x 的最小正周期和最大值;(II )由()f x 递增时,求得51212k x k ππππ-≤≤+()k Z ∈,即可得到()f x 在5[,]612ππ上递增.试题解析:1cos 2()-cos )(sin )2x f x x x +=⋅-+(1sin 22sin(2)23x x x π==- (I )()f x 的最小正周期为π,最大值为1; (II ) 当()f x 递增时,222? ()232k x k k Z πππππ-≤-≤+∈,即51212k x k ππππ-≤≤+()k Z ∈, 所以,()f x 在5[,]612ππ上递增 即()f x 在2[,]63ππ上的单调递增区间是5[,]612ππ 考点:三角函数的图象与性质. 18.(1)-1;(2)165- 【解析】 【分析】(1)由题意可得1tan 3x =-,将原式化为含tan x 的表达式,代入可得答案;(2)将原式化为含tan x 的表达式,代入1tan 3x =-可得答案. 【详解】解:由题意得:3sin cos 0x x +=,可得1tan 3x =-,可得(1)533cos 5sin 35tan 311sin cos tan 113x x x x x x -++===-----; (2)222222sin 2sin cos 3cos sin 2sin cos 3cos sin cos x x x xx x x x x x+-+-=+222211()2()3tan 2tan 316331tan 15()13x x x -+⨯--+-===-+-+【点睛】本题主要考查三角恒等变化,相对简单,得出1tan 3x =-代入各式子是解题的关键.19.(1) .. 【解析】 【详解】分析:(1)根据正弦的二倍角公式求解即可;(2)由()βαβα=+-,然后两边取正弦计算即可.详解:(Ⅰ)2(,)παπ∈,且1sin 3α=,cos α∴=,-------2分于是 sin22sin cos 9ααα==-; (Ⅱ),2παπ⎛⎫∈⎪⎝⎭,02πβ∈(,),322(,)παβπ∴+∈,结合()3sin 5αβ+=-得:()4cos 5αβ+=-, 于是()()()sin sin sin cos cos sin βαβααβααβα⎡⎤=+-=+-+⎣⎦3414535315⎛+⎛⎫=-⋅---⋅= ⎪ ⎝⎭⎝⎭. 点睛:考查二倍角公式,同角三角函数关系,三角凑角计算,对于()βαβα=+-的配凑是解第二问的关键,属于中档题.20.(1)122f π⎛⎫=-⎪⎝⎭(2)(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【解析】 【分析】先根据诱导公式及降幂公式化简得()f x cos2x =-;(1)代入求值即可;(2)由222,k x k k Z πππ≤≤+∈即可解出答案. 【详解】解:()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭22sin cos x x =-cos2x =-;(1)cos 1262f ππ⎛⎫=-=-⎪⎝⎭; (2)由222,k x k k Z πππ≤≤+∈得,,2k x k k Z πππ≤≤+∈,∴函数()f x 的单调递增区间是(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【点睛】本题主要考查三角函数的化简与性质,属于基础题. 21.(Ⅰ)π(Ⅰ)最大值和最小值分别是32,0. 【解析】试题分析:(1)将()2cos cos f x x x x =+通过降幂公式、辅助角公式化简为()π1sin 262f x x ⎛⎫=++ ⎪⎝⎭,得到周期;(2)通过整体思想,得到ππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦,求得π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以最大值和最小值分别是32,0. 试题解析:解:(Ⅰ)()2cos cos f x x x x +1cos22xx +=+π1sin 262x ⎛⎫=++ ⎪⎝⎭.(Ⅰ)Ⅰππ,63x ⎡⎤∈-⎢⎥⎣⎦, Ⅰππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦, Ⅰπ1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, Ⅰ()30,2f x ⎧⎫∈⎨⎬⎩⎭,Ⅰ()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值分别是32,0.点睛:三角函数的化简需要对三角函数的二倍角公式(降幂公式)、辅助角公式熟悉应用,三角函数的性质考察通常利用整体思想解题,然后通过()sin f x x =的原始性质进行解题,得到对应的解。
高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。
第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。
高中数学人教a高一必修4章末综合测评(第三章)_word版含解析

高中数学人教a高一必修4章末综合测评(第三章)_word版含解析章末综合测评(三)三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为()A.12B.13C.14D.16【解析】由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=1 3,所以cos αcos β=1 6.【答案】 D2.已知tan(π+α)=2,则1sin αcos α等于()A.52B.75C.-52D.-75【解析】由tan(π+α)=2,得tan α=2,∴1sin αcos α=sin2α+cos2αsin αcos α=tan2α+1tan α=52.【答案】 A3.若tan α=2tan π5,则cos⎝⎛⎭⎪⎫α-3π10sin⎝⎛⎭⎪⎫α-π5=()【导学号:00680080】A.1 B.2C .3D .4【解析】 ∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5,∴原式=sin ⎝⎛⎭⎪⎫α+π5sin ⎝⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsinπ5=tan α+tanπ5tan α-tanπ5.又∵tan α=2tan π5,∴原式=2tanπ5+tan π52tan π5-tanπ5=3.【答案】 C 4.2cos 10°-sin 20°cos 20°的值为( )A . 3B .62C .1D .12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A 5.cos 4π8-sin 4π8等于( ) A .0 B .22C .1D .-22【解析】 原式=⎝ ⎛⎭⎪⎫cos 2π8-sin 2π8⎝⎛⎭⎪⎫cos 2π8+sin 2π8=cos 2π8-sin 2π8=cos π4=22. 【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝ ⎛⎭⎪⎫π12,0,则φ的值可以是( ) A .-π6B .π6C .-π12D .π12【解析】 由题得tan ⎝ ⎛⎭⎪⎫2×π12+φ=0,即tan ⎝ ⎛⎭⎪⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z , 当k =0时,φ=-π6,故选A .【答案】 A7.若θ∈⎝⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A .32 B .-32C .±32D .±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝⎛⎭⎪⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π, 因此,cos 2θ=-32,故选B .【答案】 B8.已知sin ⎝ ⎛⎭⎪⎫π4-x =45,则sin 2x 的值为( ) A .1925B .725C .1425D .-725【解析】 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos 2⎝ ⎛⎭⎪⎫π4-x=1-2sin 2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫452=-725.【答案】 D9.已知cos ⎝⎛⎭⎪⎫x +π6=35,x ∈(0,π),则sin x 的值为( )A .-43-310B .43-310C .12D .32【解析】 由cos ⎝⎛⎭⎪⎫x +π6=35,且0<x <π,得π6<x +π6<π2, 所以sin ⎝⎛⎭⎪⎫x +π6=45,所以sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π6 =sin ⎝ ⎛⎭⎪⎫x +π6cos π6-cos ⎝⎛⎭⎪⎫x +π6sin π6=45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值是( ) A .2- 2 B .2+ 2 C .3D .1【解析】 由y =2sin ⎝ ⎛⎭⎪⎫x +π4+2,且0≤x ≤π2,所以π4≤x +π4≤34π,所以22≤sin ⎝⎛⎭⎪⎫x +π4≤1,所以3≤y ≤2+2. 【答案】 C11.已知函数f (x )=3sin w x +cos w x (w >0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A .π2B .2π3C .πD .2π【解析】 由曲线f (x )=2sin ⎝ ⎛⎭⎪⎫w x +π6与y =1交点中相邻交点最小值为π3正好等于f (x )的周期的13倍,设f (x )的最小正周期为T ,则13T =π3,故有T =π.【答案】 C12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4=( ) A .17B .-17C .27D .-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝⎛⎭⎪⎫0,π2,所以sin α=35,cos α=45,tan α=34,所以tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=34-11+34=-17.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________.【解析】 因为f (x )=2sin ⎝⎛⎭⎪⎫x -π3,所以f (x )=2sin ⎝⎛⎭⎪⎫x -π3的最小正周期为T =2π,最大值为2.【答案】 2π 2 14.tan ⎝⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θ·tan ⎝ ⎛⎭⎪⎫π6+θ的值是________. 【解析】 ∵tan π3=tan ⎝ ⎛⎭⎪⎫π6-θ+π6+θ=tan ⎝⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ1-tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ=3,∴3=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+ 3tan ⎝⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ.【答案】 315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________.【解析】 因为tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,② 由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0,又∵0<C <π2,∴π2<A +B +C <32π, ∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. 【解】 (1)因为f (x )=sin x +3cos x -3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3. 18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β,所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β. 19.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 【解】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x=cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值. 【解】 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12. 21.(本小题满分12分)陵中学第四次模拟)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值; (2)若π2<α<π,0<β<π2,求α+β. 【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.又由三角函数线知sin β=210,∵β为第一象限角,∴tan β=17,∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4. 22.(本小题满分12分)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间. 【解】 法一:(1)f ⎝⎛⎭⎪⎫5π4第11页 共11页 =2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4 =-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2. (2)因为f (x )=2sin x cos x +2cos 2 x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1, 所以T =2π2=π,故函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z . 法二:f (x )=2sin x cos x +2cos 2 x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1)f ⎝ ⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)因为T =2π2=π,所以函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .。
高一数学必修4第三章综合检测题

第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。
高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
北师大版高中数学必修四:第三章综合测试题(含答案)

阶段性测试题四(第三章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.函数f (x )=sin x cos x 的最小值是( ) A .-1 B .-12C .12D .1[答案] B[解析] f (x )=sin x cos x =12sin2x ,∴f (x )min =-12.2.cos67°cos7°+sin67°sin7°等于( ) A .12B .22 C .32D .1[答案] A[解析] cos67°cos7°+sin67°sin7° =cos(67°-7°)=cos60°=12.3.若x =π8,则sin 4x -cos 4x 的值为( )A .12B .-12C .-22D .22[答案] C[解析] sin 4x -cos 4x =(sin 2x +cos 2x )·(sin 2x -cos 2x )=sin 2x -cos 2x =-cos2x , ∴x =π8时,-cos2x =-cos π4=-22.4.(2014·山东德州高一期末测试)下列各式中值为22的是( ) A .sin45°cos15°+cos45°sin15° B .sin45°cos15°-cos45°sin15° C .cos75°cos30°+sin75°sin30°D .tan60°-tan30°1+tan60°tan30°[答案] C[解析] cos75°cos30°+sin75°sin30°=cos(75°-30°)=cos45°=22. 5.1-sin20°=( ) A .cos10° B .sin10°-cos10° C .2sin35° D .±(sin10°-cos10°)[答案] C[解析] 1-sin20°=1-cos70°=2sin 235°, ∴1-sin20°=2sin35°.6.已知cos2α=14,则sin 2α=( )A .12B .34C .58D .38[答案] D[解析] ∵cos2α=1-2sin 2α=14,∴sin 2α=38.7.若函数f (x )=sin2x -2sin 2x ·sin2x (x ∈R ),则f (x )是( ) A .最小正周期为π的偶函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π2的奇函数[答案] D[解析] f (x )=sin2x (1-2sin 2x )=sin2x ·cos2x =12sin4x (x ∈R ), ∴函数f (x )是最小正周期为π2的奇函数.8.若sin θ<0,cos2θ<0,则在(0,2π)内θ的取值范围是( ) A .π<θ<3π2B .5π4<θ<7π4C .3π2<θ<2πD .π4<θ<3π4[答案] B[解析] ∵cos2θ<0,得1-2sin 2θ<0, 即sin θ>22或sin θ<-22, 又已知sin θ<0,∴-1≤sin θ<-22,由正弦曲线得满足条件的θ取值为5π4<θ<7π4.9.若0<α<β<π4,sin α+cos α=a ,sin β+cos β=b ,则( )A .a <bB .a >bC .ab <1D .不确定[答案] A[解析] ∵a =2sin ⎝⎛⎭⎫α+π4,b =2sin ⎝⎛⎭⎫β+π4, 又0<α<β<π4,∴π4<α+π4<β+π4<π2,且y =sin x 在⎣⎡⎦⎤0,π2上为增, ∴2sin ⎝⎛⎭⎫α+π4<2sin ⎝⎛⎭⎫β+π4. 10.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =cos2xB .y =2cos 2xC .y =1+sin(2x +π4)D .y =2sin 2x [答案] B[解析] 将函数y =sin2x 的图象向左平移π4个单位,得到函数y =sin2⎝⎛⎭⎫x +π4,即y =sin ⎝⎛⎭⎫2x +π2=cos2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos2x =2cos 2x .11.已知f (tan x )=sin2x ,则f (-1)的值是( ) A .1 B .-1 C .12D .0 [答案] B[解析] f (tan x )=sin2x =2sin x cos x =2sin x cos x sin 2x +cos 2x =2tan x tan 2x +1,∴f (x )=2xx 2+1,∴f (-1)=-22=-1.12.已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数[答案] D[解析] f (x )=(1+cos2x )sin 2x =2cos 2x sin 2x =12sin 22x =14-14cos4x . ∴函数f (x )是最小正周期为π2的偶函数.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.设α∈(0,π2),若sin α=35,则2cos(α+π4)等于________.[答案] 15[解析] ∵α∈(0,π2),sin α=35,∴cos α=45,∴2cos(α+π4)=2cos αcos π4-2sin αsin π4=2×45×22-2×35×22=45-35=15. 14.计算:sin7°-sin15°cos8°cos7°-cos15°cos8°的值为________.[答案] -2- 3[解析] 原式=sin (15°-8°)-sin15°cos8°cos (15°-8°)-cos15°cos8°=sin15°cos8°-cos15°sin8°-sin15°cos8°cos15°cos8+sin15°sin8-cos15°cos8°=-cos15°sin8°sin15°sin8°=-cot15°=-1tan15°=-1tan (45°-30°)=-1+tan30°1-tan30°=-2- 3.15.若α为锐角,且sin ⎝⎛⎭⎫α-π6=13,则sin α的值为________. [答案]3+226[解析] ∵0<α<π2,∴-π6<α-π6<π3.又∵sin ⎝⎛⎭⎫α-π6=13>0,∴0<α-π6<π3, ∴cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6 =1-⎝⎛⎭⎫132=223.∴sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=32sin ⎝⎛⎭⎫α-π6+12cos ⎝⎛⎭⎫α-π6 =32×13+12×223=3+226. 16.关于函数f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6,有下列命题: ①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数; ③y =f (x )在区间⎝⎛⎭⎫π24,13π24上单调递减;④将函数y =2cos2x 的图像向左平移π24个单位后,与已知函数的图象重合.其中正确命题的序号是________.(注:把你认为正确的命题的序号都填上) [答案] ①②③[解析] 化简f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π2-π3 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3=2cos ⎝⎛⎭⎫2x -π12 ∴f (x )max =2,即①正确. T =2π|ω|=2π2=π,即②正确.由2k π≤2x -π12≤2k π+π,得k π+π24≤x ≤k π+13π24,即③正确.将函数y =2cos2x 向左平移π24个单位得y =2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π24≠f (x ),∴④不正确. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知α是第一象限的角,且cos α=513,求sin ⎝⎛⎭⎫α+π4cos (2α+4π)的值.[解析] ∵α是第一象限的角,cos α=513,∴sin α=1213,∴sin ⎝⎛⎭⎫α+π4cos (2α+4π)=22(sin α+cos α)cos2α=22(sin α+cos α)cos 2α-sin 2α=22cos α-sin α=22513-1213=-13214.18.(本小题满分12分)(2014·四川成都市树德协进中学高一阶段测试)已知π2<α<π,0<β<π2,tan α=-34,cos(β-α)=513,求sin β.[解析] ∵0<β<π2,π2<α<π,∴-π<β-α<0.又∵cos(β-α)=513,∴sin(β-α)=-1213.又tan α=-34,∴sin α=35,cos α=-45.∴sin β=sin[(β-α)+α] =sin(β-α)cos α+cos(β-α)sin α =-1213×(-45)+513×35=6365.19.(本小题满分12分)已知sin α=210,cos β=31010,且α、β为锐角,求α+2β 的值. [解析] ∵sin α=210,α为锐角, ∴cos α=1-sin 2α=1-⎝⎛⎭⎫2102=7210. ∵cos β=31010,β为锐角,∴sin β=1-⎝⎛⎭⎫310102=1010.∴sin2β=2sin βcos β=2×1010×31010=35, cos2β=1-2sin 2β=1-2×⎝⎛⎭⎫10102=45. 又β∈⎝⎛⎭⎫0,π2,∴2β∈(0,π). 而cos2β>0,∴2β∈⎝⎛⎭⎫0,π2.∴α+2β∈(0,π).又cos(α+2β)=cos α·cos2β-sin α·sin2β=7210×45-210×35=22,∴α+2β=π4.20.(本小题满分12分)求函数y =12cos 2x +32sin x ·cos x +1,x ∈R 的最大值以及y 取最大值时自变量x 的集合.[解析] ∵y =12cos 2x +32sin x ·cos x +1=12·1+cos2x 2+34sin2x +1 =14cos2x +34sin2x +54 =12sin ⎝⎛⎭⎫2x +π6+54 ∴当2x +π6=π2+2k π,即x =k π+π6(k ∈Z )时,y max =74.∴函数取最大值时自变量x 和集合为 ⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z ,且最大值为74.21.(本小题满分12分)已知函数f (x )=cos(2x -π3)+2sin(x -π4)sin(x +π4).(1)求函数f (x )的最小正周期和对称轴方程; (2)求函数f (x )在区间[-π12,π2]上的值域.[解析] (1)∵f (x )=cos(2x -π3)+2sin(x -π4)·sin(x +π4)=12cos2x +32sin2x +(sin x -cos x )(sin x +cos x ) =12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin(2x -π6),∴最小正周期T =2π2=π.∵2x -π6=k π+π2,k ∈Z ,∴x =k π2+π3,k ∈Z ,∴对称轴方程为x =k π2+π3,k ∈Z .(2)∵x ∈[-π12,π2],∴2x -π6∈[-π3,5π6].∴f (x )=sin(2x -π6)在区间[-π12,π3]上单调递增,在区间[π3,π2]上单调递减.当x =π3时,f (x )取最大值1.又∵f (-π12)=-32<f (π2)=12,∴当x =-π12时,f (x )取最小值-32.所以函数f (x )在区间[-π12,π2]上的值域为[-32,1].22.(本小题满分14分)设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x ),x ∈R .(1)若f (x )=1-3且x ∈⎣⎡⎦⎤-π3,π3,求x ; (2)若函数y =2sin2x 的图象平移向量c =(m ,n )⎝⎛⎭⎫|m |<π2得到函数y =f (x )的图象,求实数m 、n 的值.[解析] (1)∵f (x )=a ·b =2cos 2x +3sin2x =1+cos2x +3sin2x =2sin ⎝⎛⎭⎫2x +π6+1, 又∵f (x )=1-3=2sin ⎝⎛⎭⎫2x +π6+1, ∴sin ⎝⎛⎭⎫2x +π6=-32, ∴2x +π6=2k π-π3或2x +π6=2k π-2π3,又∵x ∈⎣⎡⎦⎤-π3,π3,∴x =-π4. (2)f (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+1, y =2sin2x 向左平移π12个单位可得y =2sin2⎝⎛⎭⎫x +π12,再向上平移1个单位, 即得y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+1=f (x ),∴c =⎝⎛⎭⎫-π12,1,即m =-π12,n =1.。
2018版高中数学人教A版 必修4第3章 章末综合测评 含解

章末综合测评(三) 三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为( )A .12B .13C .14D .16【解析】 由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=13,所以cos αcos β=16.【答案】 D2.函数y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3·sin ⎝⎛⎭⎫π6-x 的图象的一条对称轴方程是( )A .x =π4B .x =π2C .x =πD .x =3π2【解析】 y =sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫x -π6-cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫x -π6=sin ⎣⎡⎝⎛⎭⎫2x +π3-⎦⎤⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫x +π2=cos x ,故x =π是函数y =cos x 的一条对称轴.【答案】 C3.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( )【导学号:00680080】A .1B .2C .3D .4【解析】 ∵cos ⎝⎛⎭⎫α-3π10=cos ⎝⎛⎭⎫α+π5-π2=sin ⎝⎛⎭⎫α+π5, ∴原式=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tanπ52tan π5-tanπ5=3.【答案】 C 4.2cos 10°-sin 20°cos 20°的值为( )A . 3B .62C .1D .12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A5.cos 4π8-sin 4π8等于( )A .0B .22 C .1D .-22【解析】 原式=⎝⎛⎭⎫cos 2π8-sin 2π8⎝⎛⎭⎫cos 2π8+sin 2π8 =cos 2π8-sin 2π8=cos π4=22.【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝⎛⎭⎫π12,0,则φ的值可以是( ) 【导学号:70512045】A .-π6B .π6C .-π12D .π12【解析】 由题得tan ⎝⎛⎭⎫2×π12+φ=0, 即tan ⎝⎛⎭⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z ,当k =0时,φ=-π6,故选A .【答案】 A7.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( ) A .32B .-32C .±32D .±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ, 所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B . 【答案】 B8.已知sin ⎝⎛⎭⎫π4-x =45,则sin 2x 的值为( ) A .1925B .725C .1425D .-725【解析】 sin 2x =cos ⎝⎛⎭⎫π2-2x =cos 2⎝⎛⎭⎫π4-x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫452=-725. 【答案】 D9.已知cos ⎝⎛⎭⎫x +π6=35,x ∈(0,π),则sin x 的值为( ) A .-43-310B .43-310C .12D .32【解析】 由cos ⎝⎛⎭⎫x +π6=35,且0<x <π, 得π6<x +π6<π2, 所以sin ⎝⎛⎭⎫x +π6=45, 所以sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π6-π6=sin ⎝⎛⎭⎫x +π6cos π6-cos ⎝⎛⎭⎫x +π6sin π6 =45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最小值是( ) A .2- 2 B .2+ 2 C .3D .1【解析】 由y =2sin ⎝⎛⎭⎫x +π4+2,且0≤x ≤π2, 所以π4≤x +π4≤34π,所以22≤sin ⎝⎛⎭⎫x +π4≤1, 所以3≤y ≤2+2. 【答案】 C11.y =sin ⎝⎛⎭⎫2x -π3-sin 2x 的一个单调递增区间是( ) A .⎣⎡⎦⎤-π6,π3 B .⎣⎡⎦⎤π12,7π12 C .⎣⎡⎦⎤5π12,13π12D .⎣⎡⎦⎤π3,5π6【解析】 y =sin ⎝⎛⎭⎫2x -π3-sin 2x =sin 2x cos π3-cos 2x sin π3-sin 2x=-12sin 2x -32cos 2x=-sin ⎝⎛⎭⎫2x +π3. y =-sin ⎝⎛⎭⎫2x +π3的递增区间是y =sin ⎝⎛⎭⎫2x +π3的递减区间, π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , ∴π12+k π≤x ≤7π12+k π,k ∈Z , 令k =0,得x ∈⎣⎡⎦⎤π12,7π12. 【答案】 B12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝⎛⎭⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎫α-π4=( )A .17B .-17C .27D .-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝⎛⎭⎫0,π2, 所以sin α=35,cos α=45,tan α=34,所以tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=34-11+34=-17. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________. 【解析】 因为f (x )=2sin ⎝⎛⎭⎫x -π3, 所以f (x )=2sin ⎝⎛⎭⎫x -π3的最小正周期为T =2π,最大值为2. 【答案】 2π 214.tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ+3tan ⎝⎛⎭⎫π6-θ·tan ⎝⎛⎭⎫π6+θ的值是________. 【解析】 ∵tan π3=tan ⎝⎛⎭⎫π6-θ+π6+θ=tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ1-tan ⎝⎛⎭⎫π6-θtan ⎝⎛⎭⎫π6+θ=3,∴3=tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ+ 3tan ⎝⎛⎭⎫π6-θtan ⎝⎛⎭⎫π6+θ. 【答案】315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________. 【解析】 ∵tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,②由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0.又∵0<C <π2,∴π2<A +B +C <32π,∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 【解】 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β, 所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β.19.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎫π2-x ·sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 【解】 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 【解】 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数, 且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 21.(本小题满分12分)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值;(2)若π2<α<π,0<β<π2,求α+β.【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝⎛⎭⎫-431-⎝⎛⎭⎫-432=247.又由三角函数线知sin β=210. ∵β为第一象限角,∴tan β=17,∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4.22.(本小题满分12分)已知向量a =(2cos ωx,1),b =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +π4,-1⎝⎛⎭⎫其中14≤ω≤32,函数f (x )=a ·b ,且f (x )图象的一条对称轴为x =5π8. (1)求f ⎝⎛⎭⎫34π的值;(2)若f ⎝⎛⎭⎫α2-π8=23,f ⎝⎛⎭⎫β2-π8=223,且α,β∈⎝⎛⎭⎫-π2,π2,求cos ()α-β的值. 【解】 (1)∵向量a =(2cos ωx,1),b =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +π4,-1=(2(sin ωx +cos ωx ),-1),∴函数f (x )=a ·b =2cos ωx (sin ωx +cos ωx )-1=2sin ωx cos ωx +2cos 2ωx -1=sin 2ωx +cos 2ωx=2sin ⎝⎛⎭⎫2ωx +π4. ∵f (x )图象的一条对称轴为x =5π8,∴2ω×5π8+π4=π2+k π(k ∈Z ).又14≤ω≤32,∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫34π=2sin ⎝⎛⎭⎫2×34π+π4=-2cos π4=-1.(2)∵f ⎝⎛⎭⎫α2-π8=23,f ⎝⎛⎭⎫β2-π8=223, ∴sin α=13,sin β=23.∵α,β∈⎝⎛⎭⎫-π2,π2, ∴cos α=223,cos β=53,∴cos(α-β)=cos αcos β+sin αsin β=210+29.。
高中(北师大版)数学必修4(45分钟课时作业与单元测试卷):第三章章末测试含解析

A. B.
C. D.
答案:B
解析:∵tan(α-β)= = =1,
α,β∈(0, ),∴- <α-β< ,
∴α-β= .
6.当x∈[- , ]时,y= 的最小值为()
A.- B.-
C.- D.-
答案:B
解析:∵y= = tanx,∴当x=- 时,ymin=- .
解:(1)由题设知f(x)= [1+cos(2x+ )].
因为x=x0是函数y=f(x)图像的一条对称轴,所以2x0+ =kπ(k∈Z),
即2x0=kπ- (k∈Z).
所以g(x0)=1+ sin2x0=1+ sin(kπ- ).
当k为偶数时,g(x0)=1+ sin(- )= ;
当k为奇数时,g(x0)=1+ sin = .
第三章章末测试
时间:90分钟分值:100分
一、选择题:本大题共10小题,每小题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.
1.已知sinα= 且α∈( ,π),则tanα的值为()
A.- B.
C.- D.
答案:C
解析:∵α∈( ,π),由同角基本关系易知cosα=- .
tanα= =- .
15.已知α∈(0, ),β∈(0,π),且tan(α-β)= ,tanβ=- ,求2α-β.
解:∵tanα=tan[(α-β)+β]= = ,∴tan(2α-β)=tan[(α-β)+α]= =1.
又∵β∈(0,π),tanβ=- ,∴ <β<π,又α∈(0, ),
∴-π<2α-β<0,∴2α-β=- .
12.函数f(x)=sin x+cos x的图像相邻两条对称轴之间的距离是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.若tan =3+2 ,则 =________.
解析:由tan = =3+2 ,得tanα= ,
∴ = =tanα= .
答案:
15.tan10°+tan50°+ tan10°tan50°=________.
解析:∵tan60°=tan(10°+50°)
= ,
∴tan60°(1-tan10°tan50°)=tan10°+tan50°,
因为α∈[0,π],且sin2α=- ,
即2sinαcosα=- <0,
所以α∈ ,
所以cosα-sinα<0,
即cosα-sinα=- .
所以A=- .
21.(12分)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f =0,其中a∈R,θ∈(0,π).
(1)求a,θ的值.
(2)若f =- ,α∈ ,求sin 的值.
解析:由题意知tanα+tanβ=-6,tanαtanβ=7,
所以tanα<0,tanβ<0.
又- <α< ,- <β< ,
所以- <α<0,- <β<0.
所以-π<α+β<0.
因为tan(α+β)= = =1,
所以α+β=- .
19.(12分)(2015·广东高考)已知tanα=2.
(1)求tan 的值;
A.x=0 B.x=-
C.x=- D.x=-
解析:g(x)= sin2x(a>0)的最大值为 ,所以a=1,
f(x)=sinx+cosx= sin ,
令x+ = +kπ,k∈Z得x= +kπ,k∈Z.故选B.
答案:B
10.要使 sinθ+ cosθ= 有意义,则实数m的取值范围是()
A.(4,+∞) B.[4,+∞)
所以tanα<0,tanβ<0,
所以- <α<0,- <β<0,-π<α+β<0.
又tan(α+β)= = = .
所以α+β=- ห้องสมุดไป่ตู้故选B.
答案:B
12.(2016·东莞校级三模)定义运算: =a1a4-a2a3,已知函数f(x)= ,则函数f(x)的最小正周期是()
A. B.π
C.2πD.4π
解析:由题意可得f(x)= =sinxcosx+1= sin2x+1,
函数f(x)的最小正周期T= =π,
令2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,
所以kπ+ ≤x≤kπ+ ,k∈Z,
所以函数f(x)的单调递减区间是 ,k∈Z.
(2)由x∈
得- ≤2x+ ≤ ,
所以- ≤sin ≤1,
所以当2x+ =- ,
即x=- 时,f(x)min=a,
当2x+ = ,
即x= 时,f(x)max= +a,
C.[8,+∞) D.(8,+∞)
解析: sinθ+ cosθ=sin = ∈[-1,1],
即 ≤1,所以8m-32≥0.
解得m≥4.故选B.
答案:B
11.已知tanα,tanβ是方程x2+3 x+4=0的两个根,且- <α< ,- <β< ,则α+β为()
A. B.-
C. 或- D.- 或
解析:由题意得
A.- B.-
C. D.
解析:由题意知sinα=- ,α∈ ,所以cosα=- ,因为 ∈ ,所以sin =cos =- =- .
故选B.
答案:B
8.已知tan =3,则 等于()
A. B.
C.- D.-
解析:因为tan =3,
所以tanα=-2,
所以 = = =- .故选C.
答案:C
9.(2016·福州期中)若函数g(x)=asinxcosx(a>0)的最大值为 ,则函数f(x)=sinx+acosx的图象的一条对称轴方程为()
第三章
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2016·澄城县期末)cos24°cos36°-cos66°cos54°的值等于()
A.0B.
C. D.-
解析:cos24°cos36°-cos66°cos54°
=sin66°cos36°-cos66°sin36°
答案:B
4.(2016·齐齐哈尔实验中学高一月考) 等于()
A.- B.-
C. D.
解析:原式=
=
=sin30°= .故选C.
答案:C
5.cos275°+cos215°+cos75°cos15°的值是()
A. B.
C. D.
解析:原式=sin215°+cos215°+sin15°cos15°=1+ sin30°=1+ × = .故选B.
(2)求 的值.
解析:(1)tan =
= = =-3.
(2)
=
=
=
=
=1.
20.(12分)(2016·杭州高一检测)已知f(x)=Asin (A≠0).
(1)若A=1,将f(x)的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,再将所得图象上各点的横坐标不变,纵坐标扩大为原来的2倍,得到g(x)的图象,求g(x)的解析式及对称轴方程.
由题意得 +a+a= ,解得a=0.
(2)若α∈[0,π],f(α)=cos2α,sin2α=- ,求A的值.
解析:(1)由题意得g(x)=2sin ,令2x+ = +kπ得对称轴方程为x= + (k∈Z).
(2)由f(α)=Asin =cos2α,
得A=
=
= (cosα-sinα),
因为sin2α=- ,
所以(cosα-sinα)2=1-2sinαcosα=1-sin2α= ,
解析:(1)因为y=a+2cos2x是偶函数,
所以g(x)=cos(2x+θ)为奇函数,
而θ∈(0,π),故θ= ,
所以f(x)=-(a+2cos2x)sin2x,
代入 得a=-1.
所以a=-1,θ= .
(2)f(x)=-(-1+2cos2x)sin2x=-cos2xsin2x=- sin4x,
因为f =- ,
即 - tan10°tan50°=tan10°+tan50°,
∴ =tan10°+tan50°+ tan10°tan50°.
答案:
16.已知sin = ,则sin +sin2 =________.
解析:sin +sin2
=sin +cos2
=sin +1-sin2
= +1- = .
答案:
三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)
答案:B
6.(2016·南昌模拟)已知sin2α=- ,α∈ ,则sinα+cosα等于()
A. B.-
C.- D.
解析:因为α∈ ,
所以sinα+cosα>0,
所以(sinα+cosα)2=1+sin2α= ,
所以sinα+cosα= ,故选A.
答案:A
7.(2016·邢台期末)若sin(π-α)=- 且α∈ ,则sin 等于()
从而可得函数f(x)的最小正周期T= =π.故选B.
答案:B
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.设向量a= ,b= ,其中θ∈ ,若a∥b,则θ=________.
解析:若a∥b,则sinθcosθ= ,
即2sinθcosθ=1,
∴sin2θ=1,又θ∈ ,∴θ= .
17.(10分)化简:sin2αsin2β+cos2αcos2β- cos2αcos2β.
解析:原式=sin2αsin2β+cos2αcos2β- (2cos2α-1)·(2cos2β-1)
=sin2αsin2β+cos2αcos2β- (4cos2αcos2β-2cos2α-2cos2β+1)
=sin2αsin2β-cos2αcos2β+cos2α+cos2β-
=sin(66°-36°)=sin30°= .
答案:B
2.化简cos2 -sin2 等于()
A.sin2θB.-sin2θ
C.cos2θD.-cos2θ
解析:原式=cos =cos =sin2θ.故选A.
答案:A
3.(2016·东北师大附中高一期末)化简 等于()
A.1 B.2
C. D.-1
解析: = = =2.故选B.
所以f =- sinα=- ,
故sinα= ,又α∈ ,
所以cosα=- ,sin = × + = .
22.(12分)设函数f(x)= sinxcosx+cos2x+a.
(1)写出函数f(x)的最小正周期及单调递减区间.
(2)当x∈ 时,函数f(x)的最大值与最小值的和为 ,求a的值.
解析:(1)f(x)= sin2x+ +a=sin + +a,
=sin2αsin2β+cos2α(1-cos2β)+cos2β-
=sin2αsin2β+cos2αsin2β+cos2β-
=sin2β(sin2α+cos2α)+cos2β-
=sin2β+cos2β- =1- = .
18.(12分)(2016·大庆高一检测)已知- <α< ,- <β< ,且tanα,tanβ是方程x2+6x+7=0的两个根,求α+β的值.