二元一次方程组(活动课)知识讲解
八年级数学上册第五章二元一次方程组知识整理北师大版

第五章 二元一次方程组一、本章知识点梳理:知识点1:二元一次方程(组)的定义 知识点2:二元一次方程组的解定义知识点3:二元一次方程组的解法 知识点4:一次函数与二元一次方程(组)知识点5:实际问题与二元一次方程组 二、各知识点分类讲解知识点1:二元一次方程(组)的定义 1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数。
(2)含有未知数的项的次数都是1。
(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by|a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( ) A .3x-y 2=0 B .2x+1y=1 C .3x —52y=6D .4xy=32、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组注意:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程. 例:下列方程组中,是二元一次方程组的是( )A 、228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩, 其中属于二元一次方程组的个数为( )A .1B 。
第八讲解二元一次方程组(教案)

举例:从方程组中选取一个方程解出一个未知数,然后代入另一个方程求解另一个未知数;或者通过相加或相减消去一个未知数,进而求解。
(3)运用消元的思想解决实际问题,体会数学在生活中的应用。
举例:根据实际问题列出方程组,通过消元求解未知数,进而解决问题。
此外,在小组讨论和实践活动环节,我发现学生们对二元一次方程组在实际生活中的应用有很高的兴趣。这让我意识到,在今后的教学中,可以更多地引入生活实例,让学生感受到数学与生活的紧密联系,提高他们学习数学的兴趣。
在学生小组讨论环节,我注意到有些学生发言不够积极,可能是由于他们对问题的理解不够深入或者是对自己的观点不够自信。为了鼓励这些学生,我将在以后的课堂中更加关注他们的表现,多给予鼓励和肯定,提高他们的自信心。
3.重点难点解析:在讲授过程中,我会特别强调代入法和加减法这两个重点。对于难点部分,如符号变化和消元过程,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示代入法和加减法解二元一次方程组的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
北师版八年级数学上册第五章 二元一次方程组1 认识二元一次方程组

条件
①整式方程;②含有两个未知数; ③含有未知数的项的次数是 1
一般 形式
ax+by=c( a, b, c 为常数,且 ab ≠ 0)
示例 x-2y+1=0, x+y=5
知1-讲
特别提醒 “所含未知数的项的次数都是1”不可理解为
两个未知数的次数都是1, 例如2xy+1=0 不是二 元一次方程.
知1-练
(1) ቊy=x-=3,5; (2) ቊxy==20,.
感悟新知
解题秘方:将每组数值分别代入二元一次方程组 中的每个方程检验,既满足方程①, 又满足方程②的就是此二元一次方程 组的解,否则就不是此方程组的解.
知4-练
感悟新知
知4-练
解:把ቊy=x-=3,5; 代入方程组,发现不满足方程 ②,所以ቊy=x-=3,5; 不是原方程组的解; 把ቊxy==20,. 代入方程组,发现满足方程①②,所以 ቊx=2,是原方程组的解.
③ቐx1x++2yy==24;,④ቊ2xx2+-yy==35,.
感悟新知
知识点 3 二元一次方程的解
知3-讲
定义 适合一个二元一次方程的一组未知数的值,叫做 这个二元一次方程的一个解
示例 x=6, y=2 是方程 x+y=8 的一个解,记作ቊx=y=62,
判断 判断一对数值是不是二元一次方程的解,只需将 方法 这对数值代入方程,看等式是否成的项xy 的次数不是1; ②方程组中第二个方程不是整式方程;③方程组中共有 3个未知数. 只有④满足,④中的π是常数. ⑤方程组中第 二个方程含未知数的项 x2, y2 的次数都为 2. 所以二元 一次方程组有 1 个 .
答案:A
知2-练
2-1. 下列方程组不是二元一次方程组的是_②__③__④__.(填序号) ①ቊ4xx+-yy==1205,;②ቊxy+-yz==35;,
二元一次不等式组知识点讲解及习题

第三节:二元一次不等式组与简单的线性规划1、二元一次不等式表示的区域:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。
注意:由于对直线同一侧的所有点(x,y),把它代入Ax+By+C,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0) ,从Ax0+By0+C的正负可以判断出Ax+By+C>0表示哪一侧的区域(一般在C≠0时,取原点作为特殊点)2、二元一次不等式组表示的区域:二元一次不等式表示平面的部分区域,所以二元一次方程组表示各个区域的公共部分。
(二元一次不等式表示的区域)例1、画出不等式2x+y-6<0表示的平面区域。
(跟踪训练)画出不等式4x-3y≤12表示的平面区域。
(点的分布)例2、已知点P(x 0,y 0)与点A(1,2)在直线l:3x+2y-8=0的两侧,则( ) A 、3x 0+2y 0>0 B 、3x 0+2y 0<0 C 、3x 0+2y 0>8 D 、3x 0+2y 0<8(跟踪训练)已知点(3 ,1)和点(-4 ,6)在直线 3x –2y + m = 0 的两侧,则( ) A .m <-7或m >24 B .-7<m <24 C .m =-7或m =24D .-7≤m ≤ 24(二元一次不等式组表示的平面区域) 例3、画出不等式组表示的区域。
(1) (2)⎪⎩⎪⎨⎧-≥≤+<242y y x xy ⎪⎪⎩⎪⎪⎨⎧+<≥+≥<9362323x y y x x y x(已知区域求不等式)例4、求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。
(跟踪训练)下图所示的阴影区域用不等式组表示为(已知不等式组求围成图形的面积)例5、求不等式组3,0,20xx yx y≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积(跟踪训练)在直角坐标系中,由不等式组230,2360,35150,x yx yx yy->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点个数(绝对值不等式的画法)例6、画出不等式|x|+|y|<1所表示的区域。
数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案:大家好!今天来给大家讲解一下数学中的二元一次方程组解法,并且使用实例展示这个解法的具体应用情况。
一、二元一次方程组的概念二元一次方程组是指由两个含有两个未知数的线性方程所组成的方程组。
一般形式为:$$\begin{cases} ax+by=c \\ dx+ey=f \end{cases}$$其中,a、b、c、d、e、f都是已知数,x、y是未知数。
解方程组就是求出x和y的值,使得这两个方程组成立。
二、二元一次方程组的解法1、代数法采用代数方法解二元一次方程组,我们可以先通过其中一个方程将其中一个未知数表示成另一个未知数的函数。
将这个函数式代入另一个方程中,就会得到只含有一个未知数的一元一次方程,从而可以解出这个未知数的值。
接着,将求解出的值代入函数式中,可以得到另一个未知数的值。
二元一次方程组的代数解法具有操作简单、过程规范等特点。
我们可以通过实例来解释这个方法的正确性。
例1:用代数法解下列方程组:$$\begin{cases} 3x+5y=12 \\ 4x+2y=10 \end{cases}$$解:由第二个方程式得:$$y=\frac{10-4x}{2}=5-2x$$于是,方程组变成为:$$\begin{cases} 3x+5(5-2x)=12 \\ \\ 4x+2y=10\end{cases}$$将y=5-2x带入第一个方程式,可以消去y,得到:$$x=1$$将x=1代入y=5-2x,可以得到:$$y=3$$所以,这个方程组的解是(1,3)。
2、消元法消元法也是解二元一次方程组的一种方法。
它的核心思想是将两个含有两个未知数的方程中的一个未知数系数相等再作差,通过消元得到一个一元一次方程。
最后代入到其中一个方程,解出另一个未知数。
消元法解方程组的步骤如下:1)将其中一个方程两边同乘以一个数,使得两个未知数的系数相等或相反(决定于方便操作,一般情况下选择系数小的未知数)2)将两个方程加起来,消去某个未知数,从而得到另一个未知数的值3)代入其中一个方程式中,求出另一个未知数的值通过实例来解释这个方法的正确性。
求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。
《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。
二元一次方程组的相关概念(基础)知识讲解

二元一次方程(组)的相关概念(基础)知识讲解【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b =⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个. 【典型例题】类型一、二元一次方程1.已知下列方程,其中是二元一次方程的有________.(1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7;(6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.【答案】(1)(4)(5)(8)(10)【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.举一反三:【变式】下列方程中,属于二元一次方程的有( )A .71xy -=B .2131x y -=+C .4535x y x y -=-D . 231x y-= 【答案】B类型二、二元一次方程的解2.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【答案】B【解析】解:当x =0,y =12-时,x -2y =1,故A 是原方程的解. 当x =1,y =1时,x -2y =-1,故B 不是原方程的解.当x =1,y =0时,x -2y =1,故C 是原方程的解.当x =-1,y =-1时,x -2y =1,故D 是原方程的解.【总结升华】判断一组数值是否是原方程的解,只需要将这组数值代入原方程,能使方程左右两边相等的未知数的值是原方程的解,否则,不是.举一反三:【变式】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= . 【答案】33.已知二元一次方程3142x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;(3)用适当的数填空,使2_______x y =-⎧⎨=⎩是方程的解.【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.【答案与解析】解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.举一反三:【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .【答案】解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723x y -= 类型三、二元一次方程组及方程组的解 4. 下列方程组中,是二元一次方程组的是( )A. 22375(9)1x y x y ⎧+=⎨+=-⎩B. 2138237y x x y ⎧-=⎪⎨⎪-=⎩C. 135()237x z x y x z y =+-⎧⎨-=⎩D. 5()()82317x y x y x y -++=⎧⎨=-+⎩() 【答案】D【解析】A ,B 中未知数的次数高于或低于一次,而C 中出现三个未知数,只有D 选项满足题意,故正确答案为D.【总结升华】是否是二元一次方程组要满足“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩①②的解.(1)35x y =⎧⎨=-⎩ (2)21x y =-⎧⎨=⎩ 【答案与解析】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解,再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.举一反三:【变式】写出解为12x y =⎧⎨=-⎩的二元一次方程组. 【答案】解:此题答案不唯一,可先任构造两个以12x y =⎧⎨=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:∵ x =1,y =-2,∴ x+y =1-2=-1.2x -5y =2×1-5×(-2)=12.∴ 12512x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组.注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设我国和世界其他国家一 年中死于与吸烟有关疾病的 人数分别为x人,y人.由题意得
解这个方程组,得
答:我国一年中死于与吸烟有 关疾病的人数是955000人,世 界其他国家一年中死于与吸烟 有关疾病的人数是1965000人.
某烟民平均每天抽一包烟,他一月(按30天计算)中三分之 一的时间吸10元每包的烟,其余时间吸5元每包的烟,他一年中用 于吸烟的花费可使2名山区失学儿童及2名城区失学儿童重返校园 一年.资助一名山区失学儿童比资助一名城区失学儿童重返校园一 年少用200元.
交通…… 吸烟……
的请 应根 用据 题网 。上 (信 只息 列, 出自 方编 程一 组道 即有 可关 )二
元 一 次 方 程 组
•通过网上信息表明:我国每天平均死于交通事故和死于与吸 烟有关的疾病的人数约有3300人,两者比较可发现,交通事 故的死亡人数与死于与吸烟有关的疾病的人数比为2:9.请问,
试用二元一次方程组解决这个问题:资助一名山区失学儿童和 一名城区失学儿童重返校园一年共需多少钱?
分析:设资助一名山区失学儿童和一名城区失学 儿童各需要x元、y元.
•我国平均每天死于交通事故的人数和死于与吸烟有关的疾病的人 数约有3300人。
•交通事故的死亡人数与死于与吸烟有关的疾病的人数比为2:9.
数学问题 (二元一次方程组)
解
代入法
方 程 组
加减法 (消元)
检验
数学问题的解
(二元一次方程组的解)
未成年人请远离香烟
世界无烟日:1987年世界卫生组织把5月31 日定为“世界无烟日”。
谢谢!
世界其他国家 y
1.2×109
9×108
问题:
1996年的统计资料显示,全 世界每天平均有8000人死于与吸 烟有关的疾病.我国吸烟者约3亿 人,占世界吸烟人数的四分之一. 比较一年中死于与吸烟有关的疾 病的人数占吸烟者总数的百分比, 我国比世界其他国家约高0.1%.
根据上述资料,试用所学的知 识求出:我国及世界其他国家一年 中死于与吸烟有关的疾病的人数 分别是多少?
二元一次方程组 (活动)
小幽默:吸烟真“
贼不偷啊!
吸烟好啊!
”
青春能永驻!
烟草之祸
目前全球吸烟人数约 为11亿,现在每年死于 吸烟及其相关疾病的人数 达500万,约占吸烟者总 数的百分比是_ _ _ _
问题:
1996年的统计资料显示,全 世界每天平均有8000人死于与吸 烟有关的疾病.我国吸烟者约3亿 人,占世界吸烟人数的四分之一. 比较一年中死于与吸烟有关的疾 病的人数占吸烟者总数的百分比, 我国比世界其他国家约高0.1%.
我国平均每月死于交通事故的和死于与吸烟有关的疾病的人数 各是多少?
解:设我国每天平均有 x人死于交通事故,有y人死于与吸烟有关
的疾病。
列方程组
X+y=3300 X:y=2:9
从报刊、图书、 网络等再搜集一些资 料,分析其中的数量 关系,编成问题,看 看能不能用二元一次 方程组解决这些问题。
1.某厂去年总产值比总支出多500万元,而今年 计划的总产值比总支出多950万元,已知今年计划 的总产值比去年增加15%,而计划的总支出比去年 减少10%,求今年计划的总产值和总支出各是多少?
根据上述资料,试用所学的知 识求出:我国及世界其他国家一年 中死于与吸烟有关的疾病的人数 分别是多少?
1、从上述资料你知 道了哪些信息?
2、你认为要解决 问题需要知道些什 么?
问题:
1996年的统计资料显示,全世界每天平均有8000人死于 与吸烟有关的疾病.我国吸烟者约3亿人,占世界吸烟人数的四 分之一.比较一年中死于与吸烟有关的疾病的人数占吸烟者 总数的百分比,我国比世界其他国家约高0.1%.
根据上述资料,试用所学的知识求出:我国及世界其他国 家一年中死于与吸烟有关的疾病的人数分别是多少?
探究1:我国吸烟人数是多少?全世界吸烟人 数呢?世界其他国家呢?
(一年中)
我国
全世界
世界其他国家
死于与吸烟有 关疾病的人数
x
8000×365
y吸烟人数ຫໍສະໝຸດ 3×1081.2×109
9×108
问题:
1996年的统计资料显示,全世界每天平均有8000人死于 与吸烟有关的疾病.我国吸烟者约3亿人,占世界吸烟人数的四 分之一.比较一年中死于与吸烟有关的疾病的人数占吸烟者 总数的百分比,我国比世界其他国家约高0.1%.
2.有四种原料:①50%的酒精溶液150克;② 90%的酒精溶液45克;③纯酒精45克;④水45克. 请你设计一种方案,只选取三种原料(各取若干或 全部)配制成60%的酒精溶液200克.你准备选哪三 种原料?各取多少?用列方程组的方法说明你的配 制方法的正确性。
实际问题 实际问题的答案
设未知数,列方程组
根据上述资料,试用所学的知识求出:我国及世界其他国 家一年中死于与吸烟有关的疾病的人数分别是多少?
探究2:我国一年中死于吸烟有关疾病的人数占吸烟人 数的多少?世界其他国家呢?
(一年中)
一年中死于
与吸烟有关 死于与吸烟有
疾病的人数 占吸烟人数
=
关疾病的人数
的百分比
吸烟人数
我国 x
3×108
全世界 8000×365