一元二次方程、分式方程的解法及应用—知识讲解1
第五课时:一元二次方程(分式方程)及应用

知识梳理:知识点1 分式方程的概念及解法1.分式方程的概念;分母中含有 的方程叫做分式方程 【名师提醒:分母中是否含有未知数是区分分式方程和整式方程根本依据】2.分式方程的解法步骤(1)去分母:给方程两边都乘以________,把它化为整式方程;(2)解这个整式方程;(3)________.3.增根(无解):在进行分式方程去分母的变形时,有时可产生使原方程分母为 的根称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。
【名师提醒:分式方程解法中的验根是一个必备的步骤,不能省略】提分必练:1.分式方程3x =2x -1的解是( )A .x =-3B .x =-35C .x =3D .无解2.若分式方程x x -1-m 1-x=2有增根,则这个增根是________.m=___________。
3.解分式方程2x -1+x +21-x=3知识点 2 分式方程的应用(高频考点) 1.列分式方程解应用题的六个步骤 (1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系;(2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程; (4)解:求出所列方程的解; (5)检:双检验.A .检验是否是分式方程的解; B .检验是否符合实际问题; (6)答:写出答案. 2.常见关系 分式方程的应用题主要涉及工作量问题,行程问题等常见的公式及数量关系. 知识点3 一元二次方程的概念 1. 概念:只含有_____个未知数,未知数的最高次数是_____的________方程叫一元二次方程.2.一般形式是:_______________________. ____________________________________。
【名师提醒:1、在一元二次方程的一般形式要特别注意强调a ≠o 这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并且一般首项为正】知识点4 一元二次方程的解法 直接开平方法:这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如ax 2=b 或(x +m)2=n(n>0)的方程. 配方法:1、化二次项系数为 即方程两边都 二次项的系数。
第1讲一元二次方程的根与解法学生版

初中数学联赛体系第1讲 一元二次方程的根与解法【知识要点与基本方法】 一、一元二次方程基本概念1、概念:只含有一个未知数x 的整式方程,并且都可以化为20ax bx c ++=(,,a b c 为常数,0a ≠)的形式的方程叫做一元二次方程.2、一元二次方程必须满足的三大条件 (1)整式方程(2)含有一个未知数(3)未知数的最高次数为2 3、一元二次方程的一般形式形如关于x 的一元二次方程:)0(02≠=++a c bx ax 的形式,(它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.注意b 、c 可以是任何实数,但a 绝对不能为零)二、一元二次方程的根与解法1、一元二次方程的根0x x =是方程20ax bx c ++=(,,a b c 为常数,0a ≠)的根的充要条件是0020=++c bx ax . 2、直接开平方法解一元二次方程:(1)把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成)0()(2≥=±a a b x 的形式(2)直接开平方,解得a b x a b x -=+= 21,3、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.【注】、用配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果02=++c bx ax 中a 不等于1,必须两边同时除以a ,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根. 4、公式法解一元二次方程(1)对于一元二次方程02=++c bx ax 其中0≠a ,由配方法有22244)2(aacb a b x -=+, ①当042≥-ac b 时,得aacb b x 242-±-=;②当042<-ac b 时,一元二次方程无实数解.(2)公式法的定义:利用求根公式接一元二次方程的方法叫做公式法.(3)运用求根公式求一元二次方程的根的一般步骤:①必须把一元二次方程化成一般式02=++c bx ax ,以明确a 、b 、c 的值; ②再计算ac b 42-的值:当04Δ2≥-=ac b 时,方程有实数解,其解为:aacb b x 242-±-=;当04Δ2<-=ac b 时,方程无实数解. 5、因式分解解一元二次方程(1)分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法.(2)分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b (3)用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解.6、含字母系数一元二次方程的解法解关于含字母系数的方程,要求对每个参数允许值回答:方程是否有解?若有解,写出解集.特别地,当二次项系数含有字母系数时,如果题目本身没有指明时一元二次方程,则必须对二次项系数讨论是否为零.【例1】 1、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. 2、若方程()112=⋅+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 . 【例2】1、用分解因式法解下列方程(1)01032=--x x (2)01762=+-x x (3)0625412=-+x x (4)021)1(4)1(2=----x x . 2、利用求根公式求解下列方程(1) 0222=--x x (2)010342=+-x x(3)()()()()5211313+-=+-x x x x (4)061054422=--++-p x p px x【对应训练】:1、用公式法解下列方程(1)0232=+-x x (2)2212x x -=- (3)x x 3)1(2-=+(4)1(61)432(2)2x x x x ++-=+ (5)023222=--+-n mn m mx x【例3】解下列方程(1)42200x x --=;(2)06)13(2)32(2=----x x ;(3).02)23()21(2=++-+x x【例4】解下列方程 (1)4122+-=x x(2)112432--=-+x x x【例5】解关于x 的方程 (1);0)(222=++-ab x b a abx(2).)1()1()232(22222b x x ab a x x -=+---【例6】1、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 .2、设b a 、是整数,方程02=++b ax x 有一个根是347-,则=+b a .3、已知02=++c bx ax )0(≠ac 有一个根是3,则方程02=++a bx cx 一定有一个根是 ,方程02=+-a bx cx 一定有一个根是 .4、已知两数积1≠ab ,且03123456789022=++a a ,02123456789032=++b b ,则=ba【例7】已知方程p x x =--)97)(19(有实根21,r r ,试求方程p r x r x -=--))((21的最小实根.【例8】求k 的值,使得两个一元二次方程0)2(,0122=-++=-+k x x kx x 有公共根,并分别求出这两个方程的解集.【例9】对于任意实数,k 方程04)(2)1(2222=++++-+b k k x k a x k 都有实根1,试求另一个根的最大值与最小值.【例10】已知方程)0(2>=++a x c bx ax 的两根21x x 、满足ax x 1021<<<.当10x x <<时,证明:12x c bx ax x <++<.【例11】已知首项系数不相等的两个一元二次方程0)2()2()1(,0)2()2()1(222222=+++--=+++--b b x b x b a a x a x a 有公共根.(1)求证:.2++=b a ab(2)若b a ,为正整数,求ab ab ba b a --++的值. (3)设0x 为公共根,求证:.048403040>++-x x x【课后强化训练】A 组1、下列方程中,是一元二次方程的序号是①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2; ⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ; ⑨22=-x x ; ⑩)0(2≠=a bx ax2、已知方程3ax 2-bx -1=0和ax 2+2bx -5=0,有共同的根1-,则a = ,b = .3、已知a 2-5ab +6b 2=0,则abb a +等于 4、在实数范围内分解因式:=--12x x ;=++-223y xy x5、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形周长为 6、已知042=+-b x x 的一根的相反数为042=-+b x x 的根,则042=-+bx x 的根是 7、已知0132=+-a a ,那么=++--2219294a a a ___________. 8、方程019991997199822=⋅++x x 的解是 . 9、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=ba. 10、已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.11、方程0672=+-x x ,各根的和是 .12、若31028-是方程02=++b ax x 的一个根(其中b a 、是有理数),则ab 的值是 . 13、用公式法解下列各方程(1)x 2+6x +9=7 (2)017122=++x x(3)08242=+-x x (4)4)3)(12(=--x x(5)02)82(42=++-y y (6)02322=--x x(7))3)(21()12(5+-=-x x x14、用因式分解法解下列方程:(1)t (2t -1)=3(2t -1); (2)y 2+7y +6=0;(3)y 2-15=2y (4)(2x -1)(x -1)=1.(5))3)(21()12(5+-=-x x x (6)10x 2-x -3=015、解下列方程(1)0)34()45(22=---x x ; (2)06)23(2=++-x x ;(3)0154)35(222=----x x ; (4)02)32()347(2=----x x ;(5)629332+=-+++x x x x .16、已知两个二次方程02=++b ax x ,02=++d cx x 有一个公共根1,求证:二次方程0222=++++db xc a x 也有一个根为1.17、求方程072=--kx x 与()0162=+--k x x 的公共根.B 组1、已知c b 、为方程02=++c bx x 的两个根,且0≠c ,c b ≠.则c b 、的值分别是 、2、已知正实数a b c ,,满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,则a b c ++的值是3、关于x 的方程1)12(62++-=m x m x 有一根α,满足不等式:19981998≤≤-α,且使得α53为整数,则m 可取 个值.4、已知02=++c bx ax 的两根和为1S ,两根平方和为2S ,两根立方根为3S ,则123cS bS aS ++的值是5、已知1=x 是方程02=++c bx ax 的根,0≠abc .则)111(32333222cb ac b a c b a +++++++的值是 .6、(2012湖北随州)设0122=-+a a ,01224=--b b ,且012≠-ab ,52213⎪⎪⎭⎫ ⎝⎛+-+a a b ab 的值是 .7、解下列关于x 的方程(1)03222=-+m x m x ; (2)0))()((=+++++++abc b a x a c x c b x ;(3))0(0)(33442≠=++-ab b a x b a abx ;(4)0)3(2)1(2=+--+m x m x m ;(5)02)5(522=--+-x m x m )(.8、已知下面三个方程有公共根.02=++c bx ax ,02=++a cx bx , 02=++b ax cx .求证:abc c b a 3333=++.9、设等腰三角形的一腰与底边长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,试求a 的取值范围.10、若21q q 、是方程02=++b ax x 的两个实根,且0,21≠≠b q q .又21c c 、是任意两个实数,则n n n q c q c x 2211+=是方程021=++--n n n bx ax x 的解.11、设2121,,,b b a a 都是实数,21a a ≠,且1))(())((22122111=++=++b a b a b a b a ,求证:1))(())((22211211-=++=++b a b a b a b a .初中数学联赛体系第2讲 可化为一元二次方程的方程(组)模块一、特殊高次方程的解法次数超过2的整式方程称为高次方程.一般地高次方程没有统一的求解方法.对于一些特殊的高次方程,可通过降次,转化为一元二次方程或一元一次方程求解.转化的方法有因式分解法、换元法、变换主元法等.【例1】解下列方程(1)13322)132(222+-=+-x x x x(2)222222)143()352()2(+-=+-+-+x x x x x x(3).3123=--x x x(4).022224223=-+++x x x(5)062536506650362562345678=+-+-+-+-x x x x x x x x【例2】解方程.02)65(2)11(2102234=++++---a a x a x a x x 其中a 是常数.【例3】方程02=++b ax x 有两个不同的实数根.求证:方程01)2(234=+--++ax x b ax x 有4个不同的实数根.模块二、特殊分式方程的解法分母中含有未知数的方程叫分式方程,求解分式方程总的原则是通过去分母或换元,时期转化为整式方程,然后再求解.在这个过程中离不开分式的恒等变形,如通分、约分及降低分子的次数等等,这就有可能使未知数的范围扩大(或缩小),从而使方程产生增根(或遗根),因此,当未知数的范围扩大时,需验根。
一元二次方程分式方程

联系
一元二次方程和分式方程都是常见的数学方程类型,可以应用于各种实际问题。
一元二次方程的应用
曲线绘制
一元二次方程可以用于描述抛物 线和其他曲线的形状。
物体运动
通过解一元二次方程,可以确定 物体在空中的轨迹和碰撞时间。
求根公式
一元二次方程的求根公式可用于 精确计算方程的根。
分式方程的应用
1 比例问题
通过解分式方程,可以确定两个量之间的比例关系。
2 混合物问题
分式方程可用于计算不同成分混合物的比例和成分。
高阶方程
定义
高阶方程是含有三个或更多个未知量的方程,如三 元方程和四元方程。
联系和区别
高阶方程和低阶方程的主要区别在于未知量的个数, 但它们都是数学方程,可以使用类似的解法。
高阶方程的解法
1
高斯消元法
高斯消元法可用于求解线性方程组,从而解高阶方程。
2
逆序消元法
逆序消元法是高阶方程解法中常用的一种策略。
3
相邻相消法
相邻相消法是一种简便的高阶方程解法,适用于特定情况。
结论
一元二次方程和分式方程
这个演示总结了一元二次方程和分式方程的概念、解法和应用。
高阶方程
我们还介绍了高阶方程的定义和解法,以及与低阶方程的区别。
应用
一元二次方程在实际生活中的 应用非常广泛,例如用于解决 物体运动、跳跃和曲线绘制的 问题。
分式方程
1
解法
2
可以使用通分法和消元法来解分式方程,
使方程两边的表达式相等。
3
概念
分式方程是包含分数的方程,其中包含 了未知量或变量。
应用
中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。
【注意】A 、B 都是整式,B 中含有字母,且B ≠0。
2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。
3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。
(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。
(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。
(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。
【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。
【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。
4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nn aa-=。
5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。
【注意】不论是分式的哪种运算,都要先进行因式分解。
6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。
数学九年级上册一元二次方程的应用--知识讲解(基础)

一元二次方程的应用--知识讲解(基础)【学习目标】1. 通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一 般步骤;2. 通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.【要点梳理】要点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释:列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.要点二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、 千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用 其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位 数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为: 100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)na xb -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.要点诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想—方程思想.【典型例题】类型一、数字问题1.已知两个数的和等于12,积等于32,求这两个数是多少.【答案与解析】设其中一个数为x ,那么另一个数可表示为(12-x),依题意得x(12-x)=32,整理得x 2-12x+32=0解得 x 1=4,x 2=8,当x =4时12-x =8;当x =8时12-x =4.所以这两个数是4和8.【总结升华】 数的和、差、倍、分等关系,如果设一个数为x ,那么另一个数便可以用x 表示出来,然后根据题目条件建立方程求解.举一反三:【高清ID 号:388525 关联的位置名称(播放点名称):数字问题 例1】【变式】有一个两位数等于其数字之积的3倍,其十位数字比个位数字少2,求这个两位数.【答案】设个位数字为x ,则十位数字为(2)x -.由题意,得: 10(2)+3(2)x xx x -=- 整理,得:2317200x x -+=解方程,得:(35)(4)0x x --=∴ 15,3x = 24x = 经检验,53x =不合题意,舍去(注意根的实际意义的检验) ∴当4x =时, 2x -=2∴10(2)102424x x -+=⨯+=答:这个两位数为24.类型二、平均变化率问题2. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元.(1)求从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率;(2)若2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,预计我市这三年用于城市基础设施维护和建设资金共多少亿元?【答案与解析】(1)设从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率为x ,由题意得5(1+x)2=8.45.解得x 1=30%,x 2=-2.3(不合题意,舍去).答:从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率为30%.(2)这三年共投资5+5(1+x)+8.45=5+5(1+0.3)+8.45=19.95(亿元)答:预计我市这三年用于城市基础设施维护和建设资金共19.95亿元.【总结升华】本题是常见的增长率问题,要理解a(1+x)n =b(其中a 是原来的量,x 是平均增长率,n 是增长的次数,b 是增长到的量)的含义.原来的量经过一次增长后达到a(1+x);在这个基础上,再增长一次即经过第二次增长后达到a(1+x)(1+x)=a(1+x)2;在这个基础上,再增长一次即经过三次增长后达到a(1+x)(1+x)(1+x)=a(1+x)3;…;依次类推.举一反三:【高清ID 号:388525 关联的位置名称(播放点名称):增长率问题例3】【变式】某产品原来每件是600元,由于连续两次降价,现价为384元,如果两次降价的百分数相同,求平均每次降价率.【答案】设平均每次降价率为x ,则第一次降价为600x ,降价后价格为:600600600(1)x x -=-,第二次降价为:600(1)x x -⋅,降价后价格为: 600(1)x --600(1)x x -⋅2600(1)x =-.根据题意列方程,得:2600(1)384x -=216(1)25x -= 415x -=± ∴115x =, 295x = 295x =不合题意,舍去(注意根的实际意义的检验) ∴0011205x == 答:平均每次下降率为0020.类型三、利润(销售)问题3.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a 元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价多少元?【答案与解析】设每件商品的售价为a 元.根据题意,得(a-21)(350-10a)=400.∴ a 2-56a+775=0,∴ (a-25)(a-31)=0,∴ a-25=0或a-31=0,∴ a 1=25,a 2=31.当a =31时,加价31-21=10,不合题意,舍去.∴ 350-10a =350-10×25=100.答:每件商品售价为25元,需要卖出100件商品.【总结升华】列一元二次方程解应用题往往求出两解,有的解不合实际意义或不合题意.应舍去,必须进行检验.类型四、形积问题4.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD,求该矩形草坪BC边的长.【答案与解析】设草坪ABCD的BC边长x米,则宽AB为根据题意,得整理得:x2-32x+240=0,∴ (x-12)(x-20)=0.解得:x1=12,x2=20又由题意知:BC≤16.∴ x=20(不合题意,舍去).∴该矩形草坪BC边的长为12米.【总结升华】1.结合图形分析数量关系是解决面积等几何问题的关键;2.注意检验一元二次方程的两个解是否符合题意.。
专题08一元二次方程(含解析)讲解

专题08 一元二次方程一、解读考点二、考点归纳归纳 1:一元二次的有关概念基础知识归纳:1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a =0时,不含有二次项,即不是一元二次方程.【例1】若x =﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为( )A . 1或4B . ﹣1或﹣4C . ﹣1或4D . 1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程. 归纳 2:一元一次方程的解法 基础知识归纳: 一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2、配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法. 一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.基本方法归纳:(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解.注意问题归纳:用公式法求解时必须化为一般形式;用配方法求解时必须两边同时加上一次项的系数一半的平方.【例2】用配方法解关于x的一元二次方程ax2+bx+c=0.x x(其中b2﹣4ac≥0).【答案】12【解析】试题分析:应用配方法解一元二次方程,要把左边配成完全平方式,右边化为常数.考点:解一元二次方程-配方法.归纳 3:一元二次方程的根的判别式基础知识归纳:一元二次方程的根的判别式对于一元二次方程ax2+bx+c=0(a≠0):(1)b2-4ac>0⇔方程有两个不相等的实数根;(2)b2-4ac=0⇔方程有两个的实数根;(3)b2-4ac<0⇔方程没有实数根.基本方法归纳:若只是判断方程解得情况则根据一元二次方程的根的判别式判断即可.注意问题归纳:一元二次方程的根的判别式应用时必须满足a≠0;一元二次方程有解分两种情况:1、有两个相等的实数根;2、有两个不相等的实数根.【例3】下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x-3=0C.x2-2x+3=0 D.(x-2)(x-3)=12【答案】C.【解析】试题分析:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选C.考点:根的判别式.归纳 4:根与系数的关系基础知识归纳:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=ba,x1x2=ca.基本方法归纳:一元二次方程问题中,出现方程的解得和与积时常运用根与系数的关系.注意问题归纳:运用根与系数的关系时需满足:1、方程有解;2、a≠0.【例4】若α、β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A. -8B. 32C. 16D. 40【答案】C.考点:根与系数的关系.归纳 5:一元二次方程的应用基础知识归纳:1、一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n 为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题3、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例5】如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草。
一元二次方程 不等式 分式方程

中考总复习:一元一次不等式(组)—知识讲解【知识网络】【考点梳理】考点一、不等式的相关概念 1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左. 3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 考点二、不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a >b ,那么a ±c >b ±c .性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或a c >bc ). 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c <b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号.概念 基本性质不等式的定义 不等式的解法 一元一次不等式 的解法一元一次不等式组 的解法 不等式 实际应用 不等式的解集(2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示. 不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b>⎧⎨<⎩ ba无解 (空集) (大大、小小 找不到)5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要.要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【典型例题】类型一、解不等式(组)1.解不等式(组),并把它们的解集在数轴上表示出来 (1)2x ﹣1<3x+2 (2).举一反三:【变式】131321≤---x x 解不等式:.2.解不等式组352,1212x x x x -<⎧⎪⎨-≤+⎪⎩并将其解集在数轴上表示出来.举一反三:【变式1】解不等式组312(1)2(1)4x x x x +≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.【变式2】解不等式组24x ≤⎧⎪⎨+⎪⎩(x-1)+33x x-2>3,并写出不等式组的整数解;类型二、一元一次不等式(组)的特解问题3.若不等式组的正整数解有3个,那么a 必须满足( ) A .5<a <6 B .5≤a<6 C .5<a≤6 D .5≤a≤6举一反三:【变式1】关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a 的取值范围.【变式2】若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是_______.类型三、一元一次不等式(组)的应用4.仔细观察下图,认真阅读对话:根据对话内容,试求出一盒饼干和一袋牛奶的标价各是多少元.举一反三:【变式】某牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?产品每件产品的产值甲 4.5万元乙7.5万元类型四、一元一次不等式(组)与方程的综合应用5.某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.6.某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案【巩固练习】一、选择题1. 不等式-x-5≤0的解集在数轴上表示正确的是()A B C D2.若实数a>1,则实数M=a,N=23a+,P=213a+的大小关系为()A.P>N>M B.M>N>P C.N>P>M D.M>P>N3.如图所示,一次函数y=kx+b的图象经过A ,B两点,则不等式kx+b>0•的解集是()A.x>0 B.x>2 C.x>-3 D.-3<x<24.如果不等式213x++1>13ax-的解集是x<53,则a的取值范围是()A.a>5 B.a=5 C.a>-5 D.a=-55.已知整数x满足是不等式组,则x的算术平方根为()A.2 B.±2 C. D.46.不等式组3(2)423xa xxx+--≤⎧>⎪⎨⎪⎩无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1二、填空题7.若不等式ax<a的解集是x>1,则a的取值范围是__ ____.8.若(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,则m= .9.已知3x+4≤6+2(x-2),则│x+1│的最小值等于__ ____.10.若不等式a(x-1)>x-2a+1的解集为x<-1,则a的取值范围是____ __.11.满足22x+≥213x-的x的值中,绝对值不大于10的所有整数之和等于__ ____.12.有10名菜农,每个可种甲种蔬菜3亩或乙种蔬菜2亩,•已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要总收入不低于15.6万元,•则最多只能安排_______人种甲种蔬菜.三、解答题13.解下列不等式(组),并把解集在数轴上表示出来.(1)x-3≥354x-.(2)解不等式组14. 若0231<-+x x ,求x 的取值范围.15.某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?16. 如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?中考总复习:一元二次方程、分式方程的解法及应用—知识讲解【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为24b b acx -±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法. 3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%. 明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释: 方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x +=举一反三:【变式】用配方法解方程x 2-7x-1=0.2.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.举一反三:【变式】已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.类型二、分式方程 3.解分式方程:=﹣.举一反三:【变式1】解分式方程:21233x x x -+=--.【变式2】方程22123=-+--xx x 的解是x= . 4.若解分式方程2111(1)x m x x x x x ++-=++产生增根,则m 的值是( ) A.B. C. D.举一反三: 【变式】若关于x 的方程2332+-=--x m x x 无解,则m 的值是 .类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【巩固练习】一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 3.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k≥﹣1C .k≠0D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A.B. C. D.二、填空题 7.方程﹣=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 . 11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .三、解答题13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,(1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高)
【考纲要求】
1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;
2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
【知识网络】
【考点梳理】
考点一、一元二次方程 1.一元二次方程的定义
只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.
它的一般形式为2
0ax bx c ++=(a ≠0). 2.一元二次方程的解法
(1)直接开平方法:把方程变成2
x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.
(2)配方法:通过配方把一元二次方程2
0ax bx c ++=变形为2
22
424b b ac x a a -⎛⎫+= ⎪⎝
⎭的形式,再利用直接开平方法求得方程的解.
(3)公式法:对于一元二次方程2
0ax bx c ++=,当2
40b ac -≥时,它的解为
242b b ac
x a
-±-=
. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.
要点诠释:
直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.
易错知识辨析:
(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元
二次方程一般形式中0≠a .
(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.
(4)用直接开平方的方法时要记得取正、负.
3.一元二次方程根的判别式
一元二次方程根的判别式为ac 4b 2
-=∆.
△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.
上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:
△≥0⇔方程有实数根.
4.一元二次方程根与系数的关系
如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a
c x x a b x x 2
121=⋅-=+,.
要点诠释:
(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分
解法,再考虑用公式法.
(3)一元二次方程0c bx ax 2
=++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.
(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.
考点二、分式方程
1.分式方程的定义
分母中含有未知数的有理方程,叫做分式方程.
要点诠释:
(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.
(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含
有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和
都是分式方程,而关于的方程和都是整式方程.
2.分式方程的解法
去分母法,换元法.
3.解分式方程的一般步骤
(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;
(2)解这个整式方程;
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.
口诀:“一化二解三检验”.
要点诠释:
解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.
增根的产生的原因:
对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.
考点三、一元二次方程、分式方程的应用
1.应用问题中常用的数量关系及题型
(1)数字问题(包括日历中的数字规律)
关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.
(2)体积变化问题
关键是寻找其中的不变量作为等量关系.
(3)打折销售问题
其中的几个关系式:利润=售价-成本价(进价),利润率=
利润
成本价
×100%.
明确这几个关系式是解决这类问题的关键.
(4)关于两个或多个未知量的问题
重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.
(5)行程问题
对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特
点,同向而行一般是追及问题,相向而行一般是相遇问题.
注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇. (6)和、差、倍、分问题 增长量=原有量×增长率; 现有量=原有量+增长量; 现有量=原有量-降低量.
2.解应用题的步骤
(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;
(5)检验所求的答数是否符合题意,并做答.
要点诠释:
方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.
注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.
【典型例题】 类型一、一元二次方程
1.阅读材料:
为解方程222(1)5(1)40x x ---+=,我们可以将2
1x - 看作一个整体,然后设21x y -=, 那么原方程可化为2540y y -+=……①, 解得11y =,24y =,
当1y =时,211x -=,2
2x ∴=,2x ∴=±;
当4y =时,2
14x -=,2
5x ∴=,5x ∴=±,故原方程的解为12x =,
22x =-,35x =,45x =-.
解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;
(2)请利用以上知识解方程4
2
60x x --=.
【思路点拨】此题考查了学生学以致用的能力,解题的关键是掌握换元思想. 【答案与解析】
(1)换元法;
(2)设2x y =,那么原方程可化为260y y --= 解得13y =;22y =-
当3y =时,2
3x =;3x ∴=±
当2y =-时,22x =-不符合题意,舍去. 所以原方程的解为13x =,23x =-.
【总结升华】应用换元法解方程,体现了转化的数学思想. 举一反三:
【高清课程名称:一元二次方程、分式方程的解法及应用 高清ID 号: 405754 关联的位置名称(播放点名称):例3】 【变式】设m 是实数,求关于x 的方程2320x mx x m --++=的根. 【答案】x 1=1,x 2=m+2.
2.(优质试题•肇庆二模)设x 1、x 2是方程2x 2
+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值:
(1)(x 1﹣x 2)2
; (2).
【思路点拨】
先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可. 【答案与解析】
解:根据根与系数的关系可得:x 1+x 2=﹣2,x 1•x 2=.
(1)(x 1﹣x 2)2
=x 12
+x 22
﹣2x 1x 2=x 12
+x 22
+2x 1x 2﹣4x 1x 2
=(x 1+x 2)2
﹣4x 1x 2
=
=10.
(2)
=x 1x 2+1+1+
=。