基于 HFSS 缝隙耦合贴片天线的仿真设计 报告(谷风软件)

合集下载

基于HFSS的超宽带天线的仿真设计

基于HFSS的超宽带天线的仿真设计

基于HFSS的超宽带天线的仿真设计超宽带(Ultra-Wideband,UWB)技术在通信、雷达、生命科学以及计算机网络等领域都有着重要的应用。

为了实现超宽带通信,需要设计优化的超宽带天线。

本文介绍了基于HFSS软件的超宽带天线的仿真设计。

首先,超宽带天线的设计需要考虑其频率范围和辐射特性。

超宽带天线能够在多个频段内工作,其辐射波形应该符合超宽带信号的要求。

因此,我们需要设计一种在整个频率范围内都能够辐射信号的天线。

在超宽带天线设计中,一种常见的方法是采用螺旋天线。

螺旋天线是一种能够产生圆极化辐射的天线,其具有较宽的频带。

通过调整螺旋天线的尺寸和参数,可以实现在超宽带频率范围内的工作。

使用HFSS软件进行超宽带天线的设计和仿真。

HFSS是一种电磁场仿真软件,能够帮助工程师分析和解决各种无线电频率设备的问题。

使用HFSS软件,可以对超宽带天线进行三维电磁场模拟,并获得其频率响应、辐射图案等参数。

在使用HFSS软件进行仿真设计时,首先需要生成天线的三维模型。

可以通过绘制天线的结构和几何形状,或通过导入CAD文件生成。

在建模过程中,需要注意准确的尺寸和几何参数。

接下来,需要通过设置边界条件和材料参数来定义仿真模型。

在超宽带天线的仿真中,可以采用均匀网格和适当的边界条件来提高计算效率和准确度。

完成模型设置后,可以进行频率扫描仿真来获得天线的频率响应。

通过设置所需的频率范围和步进值,可以获取超宽带天线在整个频率范围内的响应特性。

然后,进行辐射特性的仿真。

通过设置天线的激励条件,可以得到天线的辐射图案和增益等参数。

辐射图案是描述天线辐射能力的重要指标,可以通过HFSS软件进行仿真和分析。

在得到仿真结果后,可以对超宽带天线的性能进行评估和优化。

可以根据仿真结果对天线的尺寸、结构和材料进行调整,以达到设计要求。

总之,基于HFSS的超宽带天线的仿真设计可以帮助工程师实现高效、准确的天线设计。

通过HFSS软件的仿真分析,可以获得超宽带天线的频率响应、辐射图案等各种性能指标,为超宽带通信和其他应用领域提供支持。

HFSS贴片天线仿真

HFSS贴片天线仿真

目录引言发生多撒飞洒发多少我都发范德萨范德萨分到达发到付啊放大但是的但是上的放大放大飞机返回来烦你的经费户附近的看是否就安分点积分激发你觉得离开谁惹你北京网络法律能发奶粉就发觉你废物了南方vfjdklafnlfefjdalfn费劲儿了奶粉就为了你附近的少年富放你家里是南方金额女王1 绪论HFSS简介电磁场学科是围绕麦克斯韦方程组为中心展开的研究。

电磁场本身属于人肉眼所见的范围之外,因此,特别是在早年科学技术还不发达的时候,要想研究人们看不见也摸不着的电磁场来说首要解决的问题就是怎么实现电磁场的可视化。

HFSS发展历程HFSS(High Fequency Structure Simulator——高频电磁场仿真)。

该软件是由美国Ansoft公司开发!!!!!!!!!!!!!(1)的世界上第一个商业化的三维结构电磁场仿真软件,当然,该仿真软件并不是唯一一个电磁场仿真软件,但却是世界上公认的主流的三维电磁场仿真软件。

当然最开始出现的HFSS软件并不是由美国Ansoft公司多研发,HFSS软件的前身是美国着名的安捷伦公司设计的高频结构仿真软件(Agilent HFSS)。

2003年美国Ansoft公司收购了Agilent HFSS软件并经过自研发和升级,推出了HFSS 的版本。

该版本增加了许多新的功能。

功能的增加使HFSS得运用跟为广泛,深得客户的喜爱。

当然这并没有停止HFSS发展的脚步。

同年5月美国Ansoft公司发布了HFSS的新版本,发布不久,同年由发布的更新版本。

直到2005年,经过美国Ansoft公司不断地创新和努力,他们推出了HFSS的最高版本即。

最新版本与之前的版本相比,大大增加了软件的设计和分析效率,强化了该软件与其他工具的配合。

同时版本还推出了一种新功能,俗称“Heal-ing”功能。

该功能具有能消除微小段差和坐标误差的功能,能够直接使用为大多数的CAD模型,大大拓宽了HFSS的运用范围。

HFSS的天线课程设计报告

HFSS的天线课程设计报告

图1:微带天线的构造一、 实验目的●利用电磁软件Ansoft HFSS 设计一款微带天线。

◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。

●在仿真实验的帮助下对各种微波元件有个具体形象的了解。

二、 实验原理1、微带天线简介微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的开展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。

微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。

图1是一个简单的微带贴片天线的构造,由辐射源、介质层和参考地三局部组成。

与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相对介电常数r ε和损耗正切δtan 、介质层的长度LG 和宽度WG 。

图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。

对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2〔a 〕所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。

从图2〔b〕可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两局部,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线外表。

〔a〕俯视图〔b〕侧视图图2 矩形微带贴片天线的俯视图和侧视图2、天线几何构造参数推导计算公式假设矩形贴片的有效长度设为eL,那么有2/geLλ=式中,gλ表示波导波长,有egελλ/=式中,λ表示自由空间波长,eε表示有效介电常数,且21)121(2121-+-++=Whrreεεε式中,rε表示介质的相对介电常数,h表示介质层厚度,W表示微带贴片的宽度。

基于HFSS的双频微带天线仿真及设计

基于HFSS的双频微带天线仿真及设计

基于HFSS的双频微带天线仿真及设计HFSS(High Frequency Structure Simulator)是一款广泛应用于天线设计领域的电磁仿真软件。

本文将基于HFSS进行双频微带天线的仿真和设计,包括仿真模型构建、参数设置、频率扫描、天线设计优化等内容。

以下是对于每个步骤的详细介绍。

首先,在HFSS软件中创建一个新的项目,然后选择"Design Type"为"Antenna"。

接下来,根据双频微带天线的特点,构建天线的几何结构。

双频微带天线通常由一个辐射贴片和一个馈电贴片组成。

辐射贴片的几何结构决定了辐射频率,馈电贴片的几何结构决定了馈电频率。

根据具体的设计要求,可以选择矩形、圆形或其他形状的贴片。

在构建天线的几何结构后,需要设置天线的材料属性。

可以选择常见的介质材料,如FR-4、Rogers等,然后设置其相对介电常数和损耗因子。

这些参数对天线的性能有重要影响,需要根据具体的设计需求进行调整。

完成材料属性设置后,需要定义辐射贴片和馈电贴片的端口。

通常,辐射贴片和馈电贴片的接地为共地,但其余部分分开。

可以通过选择适当的面来定义每个端口。

然后,设置端口的激励类型和激励参数。

常见的激励类型有电流激励和电压激励,而激励参数包括频率、幅度和相位等。

在设置好端口后,可以进行频率扫描,以获取天线的频率响应。

可以选择在一定范围内进行频率扫描,也可以单独指定感兴趣的频率点。

通过分析结果可以得到辐射和馈电贴片的共振频率,以及频率响应的带宽等信息。

如果设计的频率不满足要求,可以对几何结构和材料参数进行调整,然后重新进行频率扫描。

当天线的频率响应满足要求后,可以进行天线设计的优化。

优化的目标通常包括增加天线的增益、改善天线的辐射效率、扩展天线的带宽等。

可以通过对辐射贴片的长度、宽度、形状等进行调整,或者对馈电贴片的长度和宽度进行调整。

优化过程中,可以通过设置参数范围和优化目标,使用HFSS内置的优化算法进行自动优化。

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计基于HFSS的不同形状微带贴片天线的仿真设计摘要:本文利用HFSS软件对不同形状的微带贴片天线进行了仿真设计。

通过对各种形状的微带贴片天线进行性能仿真分析,在不同频段下评估其天线参数,如增益、带宽等。

通过对比分析,找出性能较优的微带贴片天线形状。

本研究对微带贴片天线的设计和优化提供了一定的参考和指导。

关键词:HFSS;微带贴片天线;仿真设计1. 引言微带贴片天线广泛应用于移动通信、雷达系统、卫星通信等领域。

其具有结构简单、制造工艺方便、重量轻、频带宽广、使用灵活等优点。

而微带贴片天线的性能受到其形状、尺寸和材料等因素的影响。

本文将利用HFSS(High Frequency Structure Simulator)软件对不同形状的微带贴片天线进行仿真设计,旨在寻找性能较好的天线形状,并为微带贴片天线的实际设计提供一定的参考和指导。

2. 微带贴片天线的基本原理微带贴片天线是通过在基底板上制备一片金属片来实现辐射,基底板的材料可以是电介质材料。

微带贴片天线由贴片(patch)、馈电线(feed line)和反射层(ground plane)组成。

基本原理是在贴片上注入射频信号,通过馈电线将信号传输到贴片上,然后贴片将电磁波辐射至空间中。

贴片的尺寸和形状以及馈电线的位置和长度将直接影响到天线的工作性能。

3. HFSS软件介绍HFSS是一款高性能的电磁场仿真工具,广泛应用于天线设计、微波器件的仿真分析等方面。

它可以对各种类型的天线和微波器件进行三维模拟,通过输入几何参数和电磁性能参数,可以得到仿真结果和相应性能参数。

4. 不同形状微带贴片天线的仿真设计在本研究中,我们设计了三种不同形状的微带贴片天线,分别为矩形、圆形和椭圆形。

设计参数如下:矩形贴片天线:边长2cm,贴片材料为铜。

圆形贴片天线:直径2cm,贴片材料为铜。

椭圆形贴片天线:长轴4cm,短轴2cm,贴片材料为铜。

基于HFSS的缝隙耦合贴片天线仿真

基于HFSS的缝隙耦合贴片天线仿真
合 天 线 的 重 要 的 尺 寸 ,直 接 影 响 着 谐 振 频 率 和谐 振 电 阻 。
本 文 以缝 隙 的 长 和 宽 为 设 计 变 量 , 以 提 高 天 线 的带 宽 为优 图 2 HF S中建 立 的 天 线模 型 S 化 目标 .运 用 HF S软 件 的 参 数 分 析 和 优 化 功 能 对 天 线 开 S 展 了尺 寸 优 化 工 作 。缝 隙 仍 位 于贴 片 的正 下 方 , 方 向 和 Y
好 ,但 仍 有 待 加 强 。
3尺 寸 优 化
31优 化约 束及 目标 .
缝 隙 耦 合 贴 片 天线 的 主 体 结 构 为 两层 介 质 ,天 线 的性
能 和结 构 的一 些关 板 的媒 介 参 数 影 响 天 线 的 阻 抗 带 宽 ,频 带 愈 宽 则 要 求 介 电 常数 愈低 而 厚 度 愈 厚 ,但 厚 度 的增 加 会 减 弱 贴 片 和 缝 隙 之 间 的耦 合 作 用 ,因 此 结 构 的 尺 寸需 综 合 考 虑 。 在 结 构 外 形 基 本 确 定 的 前 提 下 ,缝 隙 的 尺 寸 是 缝 隙耦


L/mm
} 一


f ’
图 5 64 G z 驻 波 比随 缝 隙 尺 寸 的 变化 图 . H 时 5



l \ ,

、 \


— 一

J f

图 6和 图 7分 别 为 优 化 后 S I和 驻 波 比随 频 率 的 变 化 1 关 系 。 可见 优 化 后 中 心频 率 为 64 H ,相 对 优 化 前 变 化 很 .G z 小 ,表 现 较 稳 定 。 回 波 损 耗 的 极 小 值 约 为 一 9 B,较 优 化 1d 前 有 较 大 提 升 。 绝 对 带 宽 和 相 对 带 宽 分 别 为 08 G z和 . H 5

hfss耦合器仿真设计范例-概述说明以及解释

hfss耦合器仿真设计范例-概述说明以及解释1.引言1.1 概述在HFSS耦合器仿真设计范例这篇文章中,我们将介绍HFSS耦合器的原理和仿真设计步骤。

HFSS(High Frequency Structure Simulator)是一种电磁场仿真软件,广泛应用于高频电磁场仿真领域。

耦合器作为一种重要的电路元件,在无线通信和微波领域具有广泛的应用。

通过仿真设计,我们可以模拟和优化耦合器的性能,以满足实际工程需求。

本篇文章的主要目的是通过以HFSS为工具,详细介绍耦合器的仿真设计过程。

首先,我们将在理论背景部分介绍一些基本的电磁场理论知识,包括电磁波的传输和耦合原理。

随后,在HFSS耦合器的原理部分,我们将重点讲解HFSS软件在耦合器仿真中的应用。

接下来,我们将详细介绍HFSS耦合器的仿真设计步骤。

这包括建立仿真模型、设置边界条件和材料属性、定义仿真参数等。

我们还将介绍如何通过改变耦合器的几何参数来优化性能,如改变耦合间隙、调整导体尺寸等。

通过仿真结果的分析和对比,我们可以评估不同设计参数对耦合器性能的影响,并提出设计优化建议。

最后,在结论部分,我们将对实验结果进行分析和总结。

通过对仿真数据的分析,我们可以得出一些结论,如耦合器的带宽、传输损耗等。

同时,我们也会给出一些建议,如如何改善耦合器性能或进一步优化仿真设计。

通过本文的学习,读者将了解到HFSS耦合器的原理和仿真设计步骤,并能够利用HFSS软件进行仿真设计。

这不仅对于从事无线通信和微波领域研究的工程师和学者有重要意义,同时也对于对电磁场仿真感兴趣的读者有一定的参考价值。

在实际工程应用中,通过仿真设计可以节省成本和时间,同时提高产品性能和可靠性。

因此,熟练掌握HFSS耦合器的仿真设计方法对于工程实践具有重要的指导意义。

1.2 文章结构文章结构部分的内容可以包括以下信息:文章结构部分的主要目的是介绍整篇文章的组织方式,以及各个章节的内容概述。

通过对文章结构的明确介绍,读者可以更好地理解整篇文章的逻辑架构,有助于他们更好地理解和接受文章的内容。

HFSS贴片天线仿真

目录引言 (I)1 绪论 (3)1.1 HFSS简介 (3)1.1.1 HFSS发展历程 (3)1.1.2HFSS仿真原理 (3)1.1.3HFSS的仿真过程 (4)1.1.4HFSS的功能 (5)1.2应用领域 (5)1.3HFSS的基本操作 (5)1.3.1HFSS的一般仿真操作 (5)1.3.2HFSS的一般操作界面 (6)2 微带天线理论 (8)2.1微带天线 (8)2.1.1传输线即微带天线 (8)2.1.2微带贴片天线 (9)2.2圆形微带贴片天线理论 (10)2.3极化理论 (12)2.3.1圆极化理论简述 (12)2.3.2左旋圆极化与右旋圆极化 (13)3 贴片天线的仿真过程 (14)3.1实验内容 (14)3.2HFSS贴片天线仿真 (14)3.2.1创建工程 (14)3.2.2创建模型 (15)3.3设置参量 (22)3.3.1设置变量 (22)3.3.2设置模型材料参数 (23)3.3.3设置边界条件和激励源 (24)3.3.4设置求解条件 (25)3.4创建参数分析并求解 (26)3.4.1添加参数设置 (26)3.4.2定义输出变量 (28)3.4.3求解 (28)3.5优化求解 (29)3.5.1选择优化变量 (29)3.5.2设置远区辐射场 (29)3.5.3添加优化设置 (29)3.5.4求解优化分析 (30)4 结果演示与分析 (30)4.1贴片天线的仿真结果 (30)4.1.1贴片天线的仿真结果 (30)4.1.2贴片天线的仿真结果分析 (30)引言发生多撒飞洒发多少我都发范德萨范德萨分到达发到付啊放大但是的但是上的放大放大飞机返回来烦你的经费户附近的看是否就安分点积分激发你觉得离开谁惹你北京网络法律能发奶粉就发觉你废物了南方vfjdklafnlfefjdalfn费劲儿了奶粉就为了你附近的少年富放你家里是南方金额女王1 绪论1.1 HFSS简介电磁场学科是围绕麦克斯韦方程组为中心展开的研究。

基于HFSS缝隙耦合贴片天线的仿真设计报告

基于HFSS缝隙耦合贴片天线的仿真设计报告基于 HFSS 缝隙耦合贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率天线结构尺寸如表所示:名称 Sub_UP Sub_Down Patch MSLine Port Air Slot GND 起点-80,-50,-3 -80,-50,0 -50,-15,5 -80,-,-3 -80,-,-3 -100,-80,-20 -31,-7,0 -80,-50,0 尺寸140,100,3 140,100,5 40,30,0 70,5,0 5,3,0 200,160,60 2,14,0 140,100,0 类型Box Box Rectangle Rectangle Rectangle Box Rectangle Rectangle 材料 Dupont Type 100(tm) Duroid(th) Vacumn 一、新建文件、重命名、保存、环境设置。

、菜单栏File>>save as,输入20XX210841,点击保存。

插入模型设计重命名------ 输入20XX210841. 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

、设置模型单位:Modeler>Units选择mm ,点击OK。

、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)创建Sub_Down,点击 ,起始点:x:-80,y:-50,z:-3,dx:140,dy:100,dz:3修改名称为Sub_Down, 修改材料属性为 \(2) 基片Sub_UP:点击 x:-80,y:-50,z:0。

dx: 140,dy: 100,dz:5,修改名称为Sub_UP,修改材料属性为Duroid ,修改颜色为绿色,透明度。

微波仿真论坛_基于HFSS的双层宽带微带贴片天线的研究

Abstract: A novel double deck broadband microstrip patch antenna was designed and simulated by HFSS software in the study. The antenna adopts two substrates with Telon and air. The thickness of air substrate is increased and a lumped series capacitance is add to the antenna structure to compensate for the inductive reactance introduced by the long coaxial probe.The simulated results show that the impedence bandwidth of the antenna reaches 23%(VSWR≤2), so the goal is realized.
and propagat, 1989,48(5):73-76. [6]Ikmo Park. An aperture-couple small microstrip antenna with enhanced bangwidth[J]. Antennas and Propagation Society Interna
关键词:宽频带 微带贴片天线 阻抗带宽 HFSS
中图分类号: TN821
文献标识码: A
文章编号:1674-0874(2008)05-0059-03
微带天线又叫共型天线, 是在带有导体接地板 的介质基片上贴加导体薄片而形成的天线. 它具有 剖面薄、体积小、重量轻、便于获得圆极化、容易 实现双频段、双极化, 平面结构, 与微波毫米波无 源电路、有源电路以及集成电路的兼容性好等优 点. 但微带天线有其固有缺陷, 即宽带比较窄, 一般 微带天线的带宽只有 5%左右[1.5]. 因此, 展宽微带天 线的带宽具有十分重要的意义. 目前, 随着微带天 线的应用越来越广, 对于如何展宽天线的带宽已经 出现了很多有效的方法, 其基本方法有以下几种: ①增大微带介质的厚度[1]; ②降低微带介质的介电 常数[1,4]; ③采用有耗介质[6]; ④附加阻抗匹配网络[7] 等. 前两种方法制作起来比较简单, 容易加工; 第三 种方法以天线增益的降低为代价; 第四种方法需要 设计宽带匹配电路, 电路结构复杂, 制作难度大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于 HFSS 缝隙耦合贴片天线的仿真设计
实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真
实验内容:矩形微带天线仿真:工作频率6.45GHz
天线结构尺寸如表所示:
名称起点尺寸类型材料
Sub_UP -80,-50,-3 140,100,3 Box Dupont Type 100(tm) Sub_Down -80,-50,0 140,100,5 Box Duroid(th) Patch -50,-15,5 40,30,0 Rectangle
MSLine -80,-2.5,-3 70,5,0 Rectangle
Port -80,-2.5,-3 5,3,0 Rectangle
Air -100,-80,-20 200,160,60 Box Vacumn
Slot -31,-7,0 2,14,0 Rectangle
GND -80,-50,0 140,100,0 Rectangle
一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入2011210841,点击保存。

插入模型设计
重命名 ------ 输入2011210841
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型
(1)创建Sub_Down,点击 ,起始点:x:-80,y:-50,z:-3,dx:140,dy:100,dz:3
修改名称为Sub_Down, 修改材料属性为 "Dupont Type 100 HN Film (tm)"
(2)基片Sub_UP:点击,:x:-80,y:-50,z:0。

dx: 140,dy: 100,dz:5,
修改名称为Sub_UP,修改材料属性为Duroid (tm),修改颜色为绿色,透明度0.6。

点击OK
(3) 建立GND,
点击,命名为GND,点击OK。

双击GND下方CreatRectangle
x:-80,y:-50,z:0.dx:140,dy:100,dz:0
(4) 建立天线Patch
点击,命名为Patch,透明度0.4
双击GND下方CreatRectangle。

相关文档
最新文档