北京市石景山区2017-2018年八年级上期末数学试卷(含答案解析)
2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。
2017-2018学年北京市石景山区八年级(上)期末数学试卷(解析版)

2017-2018学年北京市石景山区八年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)9的算术平方根是()A.3B.﹣3C.±3D.±92.(2分)下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.3.(2分)下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形4.(2分)二次根式有意义的条件是()A.x B.x C.x D.x≤35.(2分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间6.(2分)如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.7.(2分)等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°8.(2分)当分式的值为正整数时,整数x的取值可能有()A.4个B.3个C.2个D.1个二、填空题(本题共16分,每小题2分)9.(2分)在实数范围内因式分解:x2﹣2=.10.(2分)转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是.11.(2分)写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①;②.12.(2分)分式变形=中的整式A=,变形的依据是.13.(2分)计算=.14.(2分)如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD =1,则线段BD的长为.15.(2分)如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=;AD=.16.(2分)如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′,BB′.判断△AB′B的形状为;若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为.三、解答题(本题共68分,第17-23每小题5分;第24-26题,每小题5分;27题7分;28题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:+﹣.18.(5分)计算:×(2﹣)﹣÷+.19.(5分)解方程:﹣=.20.(5分)如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.21.(5分)当x=﹣1时,求代数式÷﹣的值.22.(5分)为了解决某贫困地区两村村民子女就近入学问题,某爱心企业捐资助学,计划新建一所学校,如图AB,AC表示两条公路,点M,N表示两个村庄,学校的位置需满足三个条件:①到两条公路的距离相等;②到两个村庄的距离相等;③在∠BAC的内部.请运用尺规作图确定学校的位置,不写作法,保留作图痕迹并写明结论.23.(5分)某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码A1,A2和两名男工作人员的代码B1,B2.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.24.(6分)2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.25.(6分)周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A,B,C,D在同一条直线上,.求证:.证明:.26.(6分)阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程的解为非负数,求m的取值范围.27.(7分)如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.(1)求线段BN的长;(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:①;②.28.(8分)在△ABC中,∠C=90°,AC=BC.作射线AP,过点B作BD⊥AP于点D,连接CD.(1)当射线AP位于图1所示的位置时①根据题意补全图形;②求证:AD+BD=CD.(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为.2017-2018学年北京市石景山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】解:9的算术平方根是3.故选:A.2.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.3.【解答】解:A、是随机事件,故A不符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是必然事件,故D符合题意;故选:D.4.【解答】解:由题意得:3x﹣1≥0,解得:x≥,故选:B.5.【解答】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:C.6.【解答】解:(a﹣)•=•=•=a﹣b,∵a﹣b=,∴原式=.故选:D.7.【解答】解:①若100°是等腰三角形顶角的外角,则它的顶角的度数为:180°﹣100°=80°;②若100°是等腰三角形底角的外角,则它的底角的度数为:180°﹣100°=80°;∴它的顶角为:180°﹣80°﹣80°=20°;∴它的顶角的度数为:80°或20°.故选:B.8.【解答】解:由题意可知:2x﹣3=1或2或3或6所以x=2或或3或由于x是整数,∴x=2或3所以x的有两个故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).10.【解答】解:由于一个圆平均分成6个相等的扇形,在这6种等可能结果中,指针指向写有红色的扇形有2种可能结果,所以指针指到红色的概率是=;故答案为:.11.【解答】解:(π+3)+(﹣π+3)=6,故答案为:π+3,﹣π+3.12.【解答】解:∵x2﹣4=(x+2)(x﹣2),∴分式变形=中的整式A=x(x﹣2)=x2﹣2x,依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.故答案为:x2﹣2x,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.【解答】解:原式=﹣(•)=﹣,故答案为:﹣.14.【解答】解:设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,在Rt△ABD中,cos A=,即=,解得:x=1,∴AD=1、AB=2,则BD===,故答案为:.15.【解答】解:由题意得,BD=CD=,由勾股定理得,AC==2,AD==,故答案为:2;.16.【解答】解:由第一次折叠,可得EF垂直平分AB,∴AB'=BB',由第二次折叠,可得AB=AB',∴AB=AB'=BB',∴△ABB'是等边三角形;∵点B与点A关于EF对称,∴AP=BP,∴PB+PM=AP+PM,∴当A,P,M在同一直线上时,PB+PM最小值为AM的长,∴点P的位置为AM与EF的交点,故答案为:等边三角形,AM与EF的交点.三、解答题(本题共68分,第17-23每小题5分;第24-26题,每小题5分;27题7分;28题8分)解答应写出文字说明,演算步骤或证明过程.17.【解答】解:原式=2+3﹣2=3.18.【解答】解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣19.【解答】解:去分母得:9x﹣3﹣2=13,解得:x=2,经检验x=2是分式方程的解.20.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴BC=DE.21.【解答】解:原式=•﹣=﹣=﹣,当x=﹣1时,原式=﹣=﹣.22.【解答】解:点P为线段MN的垂直平分线与∠BAC的平分线的交点,则点P到点M、N的距离相等,到AB、AC的距离也相等,作图如下:23.【解答】解:画树状图为:共有12种等可能的结果数,代表一男一女的结果数为8,所以代表一男一女的概率==.24.【解答】解:设列车乙行驶平均速度为x千米/小时.由题意:﹣=1.5,解得:x=220,经检验:x=220是分式方程的解.=4.5小时,答:列车甲从北京到上海运行的时间是4.5小时.25.【解答】解:已知:如图,EA=ED,EF⊥AD,AB=DC,求证FB=FC.理由:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.故答案为:EA=ED,EF⊥AD,AB=DC;FB=FC;延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.26.【解答】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x﹣6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠3,解得:m≥﹣6且m≠﹣3.27.【解答】解:(1)∵D是AB的中点,∴BD=AB=3.设BF=x,则CF=9﹣x.由翻折的性质可知:DF=CF=9﹣x.在△BDF中,由勾股定理得:DF2=BD2+FB2,即(9﹣x)2=32+x2.解得:x=4.∴BF的长为4.(2)如图:结论:①DE=EC;②∠DEM=90°,故答案为DE=EC,∠DEM=90°28.【解答】(1)解:①补全图的图形如图所示;②证明:取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.∵∠ACB=∠ADB=90°,∴OC=OD=AB,∴A、D、B、C四点共圆,∴∠ADB=∠ABC=45°,∴∠ADC=∠CDB,∵CE⊥AD于E,CF⊥DB于F,∴CE=CF,易证四边形DECF是正方形,∴DE=DF,CD=DE,∵AC=BC,CE=CF,∴Rt△CAE≌Rt△CBF,∴AE=BF,∵AB+DB=DE+AE+DF﹣BF=2DE,又∵DE=CD,∴AB+BD=CD.(2)结论:AD﹣BD=CD.理由:取AB的中点O,连接OC,OD.作CM⊥CD交AD于M.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A、C、D、B四点共圆,(设AD交BC于O,先证明△AOC∽△BOD,再证明△AOB ∽△COD即可)∴∠ADC=∠ABC=45°,∴△MCD是等腰直角三角形,∴CM=CD,∵∠MCD=∠ACB=90°,∴∠ACM=∠BCD,∵CA=CB,∴△ACM≌△BCD,∴AM=BD,∴AD﹣BD=AD=AM=DM=CD.故答案为:AD﹣BD=CD.。
2017-2018学年北京市石景山区八年级(上)期末数学试卷-含答案解析

2017-2018学年北京市石景山区八年级(上)期末数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.9的算术平方根是()A. 3B. −3C. ±3D. ±92.下列古代的吉祥图案中,不是轴对称图形的是()A. B. C. D.3.下列事件中,属于必然事件的是()A. 随时打开电视机,正在播新闻B. 优秀射击运动员射击一次,命中靶心C. 抛掷一枚质地均匀的骰子,出现4点朝上D. 长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形4.二次根式3x−1有意义的条件是()A. x>13B. x≥13C. x≤13D. x≤35.估计13的值在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间6.如果a-b=12,那么代数式(a-b2a)•aa+b的值是()A. −2B. 2C. −12D. 127.等腰三角形的一个外角是100°,则它的顶角的度数为()A. 80∘B. 80∘或20∘C. 20∘D. 80∘或50∘8.当分式62x−3的值为正整数时,整数x的取值可能有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,共16.0分)9.在实数范围内因式分解:x2-2=______.10.转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是______.11.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①______;②______.12.分式变形xx+2=Ax2−4中的整式A=______,变形的依据是______.13.计算8x3y ⋅(−9y22x3)=______.14.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD的长为______.15.如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=______;AD=______.16.如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′,BB′.判断△AB′B的形状为______;若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为______.三、计算题(本大题共5小题,共26.0分)17.计算:18×(2-16)-6÷3+13.18.解方程:32-13x−1=136x−2.19.当x=2-1时,求代数式1x−2÷x+1x2−4x+4-x−1x+1的值.20.某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码A1,A2和两名男工作人员的代码B1,B2.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.21.阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程ax−4=1的解为正数,求a的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>-4,问题解决.小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.(1)请回答:______的说法是正确的,并简述正确的理由是______;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程mx−3−x3−x=2的解为非负数,求m的取值范围.四、解答题(本大题共7小题,共42.0分)22.计算:83+27-(−2)2.23.如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.24.为了解决某贫困地区两村村民子女就近入学问题,某爱心企业捐资助学,计划新建一所学校,如图AB,AC表示两条公路,点M,N表示两个村庄,学校的位置需满足三个条件:①到两条公路的距离相等;②到两个村庄的距离相等;③在∠BAC的内部.请运用尺规作图确定学校的位置,不写作法,保留作图痕迹并写明结论.25.2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的4倍,全程运行时间比列车乙少1.5小时,求列车甲从北3京到上海运行的时间.26.周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A,B,C,D在同一条直线上,______.求证:______.证明:______.27.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.(1)求线段BN的长;(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:①______;②______.28.在△ABC中,∠C=90°,AC=BC.作射线AP,过点B作BD⊥AP于点D,连接CD.(1)当射线AP位于图1所示的位置时①根据题意补全图形;②求证:AD+BD=2CD.(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为______.答案和解析1.【答案】A【解析】解:9的算术平方根是3.故选:A.根据开方运算,可得一个正数的算术平方根.本题考查了算术平方根,注意一个正数只有一个算术平方根.2.【答案】C【解析】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.3.【答案】D【解析】解:A、是随机事件,故A不符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是必然事件,故D符合题意;故选:D.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【答案】B【解析】解:由题意得:3x-1≥0,解得:x≥,故选:B.根据二次根式有意义的条件可得3x-1≥0,再解不等式即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.【答案】C【解析】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:C.估算得出的范围即可.此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.6.【答案】D【解析】解:(a-)•=•=•=a-b,∵a-b=,∴原式=.故选:D.直接利用分式的混合运算法则将原式变形进而得出答案.此题主要考查了分式的化简求值,正确化简分式是解题关键.7.【答案】B【解析】解:①若100°是等腰三角形顶角的外角,则它的顶角的度数为:180°-100°=80°;②若100°是等腰三角形底角的外角,则它的底角的度数为:180°-100°=80°;∴它的顶角为:180°-80°-80°=20°;∴它的顶角的度数为:80°或20°.故选:B.分别从:①若100°是等腰三角形顶角的外角,②若100°是等腰三角形底角的外角,去分析,即可求得答案.此题考查了等腰三角形的性质:等边对等角.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.8.【答案】C【解析】解:由题意可知:2x-3=1或2或3或6所以x=2或或3或由于x是整数,∴x=2或3所以x的有两个故选:C.根据题意可知2x-3必是6的因数,从而可求出答案.本题考查分式的值,解题的关键正确得出2x-3是6的正因数,本题属于基础题型.9.【答案】(x-2)(x+2)【解析】解:x2-2=(x-)(x+).故答案是:(x-)(x+).利用平方差公式即可分解.本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.10.【答案】13【解析】解:由于一个圆平均分成6个相等的扇形,在这6种等可能结果中,指针指向写有红色的扇形有2种可能结果,所以指针指到红色的概率是=;故答案为:.首先确定红色区域在整个转盘中占的比例,根据这个比例即可求出指针指向红色区域的概率.本题考查学生对简单几何概型的掌握情况,体现了数学学科的基础性.概率=所求情况数与总情况数之比.11.【答案】π+3 -π+3【解析】解:(π+3)+(-π+3)=6,故答案为:π+3,-π+3.根据无理数的意义,可得答案.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.【答案】x2-2x分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变【解析】解:∵x2-4=(x+2)(x-2),∴分式变形=中的整式A=x(x-2)=x2-2x,依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.故答案为:x2-2x,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.依据x2-4=(x+2)(x-2),即可得到分式变形=中的整式A=x(x-2)=x2-2x.本题主要考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.【答案】-12yx2【解析】解:原式=-(•)=-,故答案为:-.利用分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母进行计算即可.此题主要考查了分式的乘法,关键是掌握分式的乘法法则,注意结果要化简.14.【答案】3【解析】解:设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,在Rt△ABD中,cosA=,即=,解得:x=1,∴AD=1、AB=2,则BD===,故答案为:.设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,根据cosA=可求得x的值,进一步可得答案.本题主要考查旋转的性质,解题的关键是熟练掌握旋转不变性和三角函数的定义、勾股定理等知识点.15.【答案】2552【解析】解:由题意得,BD=CD=,由勾股定理得,AC==2,AD==,故答案为:2;.根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16.【答案】等边三角形AM与EF的交点【解析】解:由第一次折叠,可得EF垂直平分AB,∴AB'=BB',由第二次折叠,可得AB=AB',∴AB=AB'=BB',∴△ABB'是等边三角形;∵点B与点A关于EF对称,∴AP=BP,∴PB+PM=AP+PM,∴当A,P,M在同一直线上时,PB+PM最小值为AM的长,∴点P的位置为AM与EF的交点,故答案为:等边三角形,AM与EF的交点.依据折叠的性质,即可得到AB=AB'=BB',进而得出△ABB'是等边三角形,依据当A,P,M在同一直线上时,PB+PM最小值为AM的长,即可得到点P的位置为AM与EF的交点.本题主要考查了折叠的性质以及等边三角形的判定,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【答案】解:原式=3 2×(2- 66)- 2+ 33=6 2- 3- 2+ 33=5 2-2 33【解析】先化简各二次根式,再根据混合运算顺序依次计算可得.本题主要考查二次根式的混合运算,熟练掌握二次根式的性质和二次根式的混合运算的顺序和法则是解题的关键.18.【答案】解:去分母得:9x -3-2=13,解得:x =2,经检验x =2是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【答案】解:原式=1x−2•(x−2)2x +1-x−1x +1 =x−2x +1-x−1x +1=-1x +1,当x = 2-1时,原式=- 2+1−1=- 22. 【解析】直接利用分式的混合运算法则将原式化简,再将x 的值代入计算可得.本题主要考查分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.20.【答案】解:画树状图为:共有12种等可能的结果数,代表一男一女的结果数为8,所以代表一男一女的概率=812=2 3.【解析】画树状图展示所有12种等可能的结果数,再中出代表一男一女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.【答案】小哲分式的分母不为0【解析】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x-6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠3,解得:m≥-6且m≠-3.(1)根据分式方程解为正数,且分母不为0判断即可;(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:原式=2+33-2=33.【解析】直接利用立方根以及算术平方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.【答案】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△ECD中,∠A=∠ECD∠ACB=∠DAB=CE,∴△ABC≌△ECD(AAS),∴BC=DE.【解析】根据两直线平行,内错角相等可得∠A=∠ECD,然后利用“角角边”证明△ABC 和△ECD全等,再根据全等三角形对应边相等即可得证.本题考查了三角形全等的判定与性质,平行线的性质,比较简单,求出∠A=∠ECD是证明三角形全等的关键.24.【答案】解:点P为线段MN的垂直平分线与∠BAC的平分线的交点,则点P到点M、N的距离相等,到AB、AC的距离也相等,作图如下:【解析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠BAC的平分线AF,DE与AF相交于P点,则点P即为所求.此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.25.【答案】解:设列车乙行驶平均速度为x千米/小时.由题意:1320x -13204x=1.5,解得:x=220,经检验:x=220是分式方程的解.13204 3×220=4.5小时,答:列车甲从北京到上海运行的时间是4.5小时.【解析】设列车乙行驶平均速度为x千米/小时.根据时间差=1.5构建方程即可解决问题.本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.解题的关键是熟练掌握速度=路程×时间的关系,正确寻找等量关系构建方程解决问题.26.【答案】EA=ED,EF⊥AD,AB=DC FB=FC延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.【解析】解:已知:如图,EA=ED,EF⊥AD,AB=DC,求证FB=FC.理由:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.故答案为:EA=ED,EF⊥AD,AB=DC;FB=FC;延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.已知:EA=ED,EF⊥AD,AB=DC,求证FB=FC.想办法证明EF是线段BC的垂直平分线即可.(答案不唯一)本题考查等腰三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.27.【答案】DE=EC∠DEM=90°【解析】解:(1)∵D是AB的中点,∴BD=AB=3.设BF=x,则CF=9-x.由翻折的性质可知:DF=CF=9-x.在△BDF中,由勾股定理得:DF2=BD2+FB2,即(9-x)2=32+x2.解得:x=4.∴BF的长为4.(2)如图:结论:①DE=EC;②∠DEM=90°,故答案为DE=EC,∠DEM=90°先求得BD的长,设BF=x,由翻折的性质可知:DF=9-x.接下来,在Rt△BDF 中,由勾股定理可列出关于x的方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x 的方程是解题的关键.28.【答案】AD-BD=2CD【解析】(1)解:①补全图的图形如图所示;②证明:取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.∵∠ACB=∠ADB=90°,∴OC=OD=AB,∴A、D、B、C四点共圆,∴∠ADB=∠ABC=45°,∴∠ADC=∠CDB,∵CE⊥AD于E,CF⊥DB于F,∴CE=CF,易证四边形DECF是正方形,∴DE=DF,CD=DE,∵AC=BC,CE=CF,∴Rt△CAE≌Rt△CBF,∴AE=BF,∵AB+DB=DE+AE+DF-BF=2DE,又∵DE=CD,∴AB+BD=CD.(2)结论:AD-BD=CD.理由:取AB的中点O,连接OC,OD.作CM⊥CD交AD于M.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A、C、D、B四点共圆,(设AD交BC于O,先证明△AOC∽△BOD,再证明△AOB∽△COD即可)∴∠ADC=∠ABC=45°,∴△MCD是等腰直角三角形,∴CM=CD,∵∠MCD=∠ACB=90°,∴∠ACM=∠BCD,∵CA=CB,∴△ACM≌△BCD,∴AM=BD,∴AD-BD=AD=AM=DM=CD.故答案为:AD-BD=CD.(1)①根据要求补全图形即可;②取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.四只要证明边形DECF是正方形,可得DE=DF,CD=DE,由Rt△CAE≌Rt△CBF,推出AE=BF,可得AB+DB=DE+AE+DF-BF=2DE,(2)结论:AD-BD=CD.取AB的中点O,连接OC,OD.作CM⊥CD交AD 于M.只要证明△MCD是等腰直角三角形,△ACM≌△BCD,、即可解决问题;本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、正方形的判定和性质、四点共圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2017-2018学年北京市石景山区八年级上期末数学试卷(精品解析)

2017-2018学年北京市石景山区八年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的算术平方根是()A.3B.﹣3C.±3D.±92.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.3.下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形4.二次根式有意义的条件是()A.x B.x C.x D.x≤35.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间6.如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.7.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°8.当分式的值为正整数时,整数x的取值可能有()A.4个B.3个C.2个D.1个二、填空题(本题共16分,每小题2分)9.在实数范围内因式分解:x2﹣2=.10.转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是.11.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①;②.12.分式变形=中的整式A=,变形的依据是.13.计算=.14.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD的长为.15.如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=;AD=.16.如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′,BB′.判断△AB′B的形状为;若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为.三、解答题(本题共68分,第17-23每小题5分;第24-26题,每小题5分;27题7分;28题8分)解答应写出文字说明,演算步骤或证明过程.17.计算: +﹣.18.计算:×(2﹣)﹣÷+.19.解方程:﹣=.20.如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.21.当x=﹣1时,求代数式÷﹣的值.22.为了解决某贫困地区两村村民子女就近入学问题,某爱心企业捐资助学,计划新建一所学校,如图AB,AC表示两条公路,点M,N表示两个村庄,学校的位置需满足三个条件:①到两条公路的距离相等;②到两个村庄的距离相等;③在∠BAC的内部.请运用尺规作图确定学校的位置,不写作法,保留作图痕迹并写明结论.23.某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码A1,A2和两名男工作人员的代码B1,B2.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.24.2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.25.周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A,B,C,D在同一条直线上,.求证:.证明:.26.阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程的解为非负数,求m的取值范围.27.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.(1)求线段BN的长;(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:①;②.28.在△ABC中,∠C=90°,AC=BC.作射线AP,过点B作BD⊥AP于点D,连接CD.(1)当射线AP位于图1所示的位置时①根据题意补全图形;②求证:AD+BD=CD.(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为.2017-2018学年北京市石景山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的算术平方根是()A.3B.﹣3C.±3D.±9【分析】根据开方运算,可得一个正数的算术平方根.【解答】解:9的算术平方根是3.故选:A.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.3.下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、是随机事件,故A不符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是必然事件,故D符合题意;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.二次根式有意义的条件是()A.x B.x C.x D.x≤3【分析】根据二次根式有意义的条件可得3x﹣1≥0,再解不等式即可.【解答】解:由题意得:3x﹣1≥0,解得:x≥,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】估算得出的范围即可.【解答】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:C.【点评】此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.6.如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.【分析】直接利用分式的混合运算法则将原式变形进而得出答案.【解答】解:(a﹣)•=•=•=a﹣b,∵a﹣b=,∴原式=.故选:D.【点评】此题主要考查了分式的化简求值,正确化简分式是解题关键.7.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°【分析】分别从:①若100°是等腰三角形顶角的外角,②若100°是等腰三角形底角的外角,去分析,即可求得答案.【解答】解:①若100°是等腰三角形顶角的外角,则它的顶角的度数为:180°﹣100°=80°;②若100°是等腰三角形底角的外角,则它的底角的度数为:180°﹣100°=80°;∴它的顶角为:180°﹣80°﹣80°=20°;∴它的顶角的度数为:80°或20°.故选:B.【点评】此题考查了等腰三角形的性质:等边对等角.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.8.当分式的值为正整数时,整数x的取值可能有()A.4个B.3个C.2个D.1个【分析】根据题意可知2x﹣3必是6的因数,从而可求出答案.【解答】解:由题意可知:2x﹣3=1或2或3或6所以x=2或或3或由于x是整数,∴x=2或3所以x的有两个故选:C.【点评】本题考查分式的值,解题的关键正确得出2x﹣3是6的正因数,本题属于基础题型.二、填空题(本题共16分,每小题2分)9.在实数范围内因式分解:x2﹣2=(x﹣)(x+).【分析】利用平方差公式即可分解.【解答】解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.10.转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是.【分析】首先确定红色区域在整个转盘中占的比例,根据这个比例即可求出指针指向红色区域的概率.【解答】解:由于一个圆平均分成6个相等的扇形,在这6种等可能结果中,指针指向写有红色的扇形有2种可能结果,所以指针指到红色的概率是=;故答案为:.【点评】本题考查学生对简单几何概型的掌握情况,体现了数学学科的基础性.概率=所求情况数与总情况数之比.11.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①π+3;②﹣π+3.【分析】根据无理数的意义,可得答案.【解答】解:(π+3)+(﹣π+3)=6,故答案为:π+3,﹣π+3.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.分式变形=中的整式A=x2﹣2x,变形的依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【分析】依据x2﹣4=(x+2)(x﹣2),即可得到分式变形=中的整式A=x(x﹣2)=x2﹣2x.【解答】解:∵x2﹣4=(x+2)(x﹣2),∴分式变形=中的整式A=x(x﹣2)=x2﹣2x,依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.故答案为:x2﹣2x,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【点评】本题主要考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.计算=﹣.【分析】利用分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母进行计算即可.【解答】解:原式=﹣(•)=﹣,故答案为:﹣.【点评】此题主要考查了分式的乘法,关键是掌握分式的乘法法则,注意结果要化简.14.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD的长为.【分析】设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,根据cosA=可求得x的值,进一步可得答案.【解答】解:设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,在Rt△ABD中,cosA=,即=,解得:x=1,∴AD=1、AB=2,则BD===,故答案为:.【点评】本题主要考查旋转的性质,解题的关键是熟练掌握旋转不变性和三角函数的定义、勾股定理等知识点.15.如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=2;AD=.【分析】根据勾股定理计算即可.【解答】解:由题意得,BD=CD=,由勾股定理得,AC==2,AD==,故答案为:2;.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16.如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′,BB′.判断△AB′B的形状为等边三角形;若P为线段EF上一动点,当PB+PM最小时,请描述点P 的位置为AM与EF的交点.【分析】依据折叠的性质,即可得到AB=AB'=BB',进而得出△ABB'是等边三角形,依据当A,P,M在同一直线上时,PB+PM最小值为AM的长,即可得到点P的位置为AM与EF的交点.【解答】解:由第一次折叠,可得EF垂直平分AB,∴AB'=BB',由第二次折叠,可得AB=AB',∴AB=AB'=BB',∴△ABB'是等边三角形;∵点B与点A关于EF对称,∴AP=BP,∴PB+PM=AP+PM,∴当A,P,M在同一直线上时,PB+PM最小值为AM的长,∴点P的位置为AM与EF的交点,故答案为:等边三角形,AM与EF的交点.【点评】本题主要考查了折叠的性质以及等边三角形的判定,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本题共68分,第17-23每小题5分;第24-26题,每小题5分;27题7分;28题8分)解答应写出文字说明,演算步骤或证明过程.17.计算: +﹣.【分析】直接利用立方根以及算术平方根的性质分别化简得出答案.【解答】解:原式=2+3﹣2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.计算:×(2﹣)﹣÷+.【分析】先化简各二次根式,再根据混合运算顺序依次计算可得.【解答】解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质和二次根式的混合运算的顺序和法则是解题的关键.19.解方程:﹣=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:9x﹣3﹣2=13,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.【分析】根据两直线平行,内错角相等可得∠A=∠ECD,然后利用“角角边”证明△ABC和△ECD全等,再根据全等三角形对应边相等即可得证.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴BC=DE.【点评】本题考查了三角形全等的判定与性质,平行线的性质,比较简单,求出∠A=∠ECD是证明三角形全等的关键.21.当x=﹣1时,求代数式÷﹣的值.【分析】直接利用分式的混合运算法则将原式化简,再将x的值代入计算可得.【解答】解:原式=•﹣=﹣=﹣,当x=﹣1时,原式=﹣=﹣.【点评】本题主要考查分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.为了解决某贫困地区两村村民子女就近入学问题,某爱心企业捐资助学,计划新建一所学校,如图AB,AC表示两条公路,点M,N表示两个村庄,学校的位置需满足三个条件:①到两条公路的距离相等;②到两个村庄的距离相等;③在∠BAC的内部.请运用尺规作图确定学校的位置,不写作法,保留作图痕迹并写明结论.【分析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠BAC 的平分线AF,DE与AF相交于P点,则点P即为所求.【解答】解:点P为线段MN的垂直平分线与∠BAC的平分线的交点,则点P到点M、N的距离相等,到AB、AC的距离也相等,作图如下:【点评】此题考查作图﹣应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.23.某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码A1,A2和两名男工作人员的代码B1,B2.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.【分析】画树状图展示所有12种等可能的结果数,再中出代表一男一女的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,代表一男一女的结果数为8,所以代表一男一女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.【分析】设列车乙行驶平均速度为x千米/小时.根据时间差=1.5构建方程即可解决问题.【解答】解:设列车乙行驶平均速度为x千米/小时.由题意:﹣=1.5,解得:x=220,经检验:x=220是分式方程的解.=4.5小时,答:列车甲从北京到上海运行的时间是4.5小时.【点评】本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.解题的关键是熟练掌握速度=路程×时间的关系,正确寻找等量关系构建方程解决问题.25.周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A,B,C,D在同一条直线上,EA=ED,EF⊥AD,AB=DC.求证:FB=FC.证明:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC..【分析】已知:EA=ED,EF⊥AD,AB=DC,求证FB=FC.想办法证明EF是线段BC的垂直平分线即可.(答案不唯一)【解答】解:已知:如图,EA=ED,EF⊥AD,AB=DC,求证FB=FC.理由:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.故答案为:EA=ED,EF⊥AD,AB=DC;FB=FC;延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.【点评】本题考查等腰三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.26.阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.(1)请回答:小哲的说法是正确的,并简述正确的理由是分式的分母不为0;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程的解为非负数,求m的取值范围.【分析】(1)根据分式方程解为正数,且分母不为0判断即可;(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.【解答】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x﹣6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠3,解得:m≥﹣6且m≠﹣3.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.(1)求线段BN的长;(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:①DE=EC;②∠DEM=90°.【分析】先求得BD的长,设BF=x,由翻折的性质可知:DF=9﹣x.接下来,在Rt△BDF中,由勾股定理可列出关于x的方程求解即可.【解答】解:(1)∵D是AB的中点,∴BD=AB=3.设BF=x,则CF=9﹣x.由翻折的性质可知:DF=CF=9﹣x.在△BDF中,由勾股定理得:DF2=BD2+FB2,即(9﹣x)2=32+x2.解得:x=4.∴BF的长为4.(2)如图:结论:①DE=EC;②∠DEM=90°,故答案为DE=EC,∠DEM=90°【点评】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.28.在△ABC中,∠C=90°,AC=BC.作射线AP,过点B作BD⊥AP于点D,连接CD.(1)当射线AP位于图1所示的位置时①根据题意补全图形;②求证:AD+BD=CD.(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为AD﹣BD=CD.【分析】(1)①根据要求补全图形即可;②取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.四只要证明边形DECF是正方形,可得DE=DF,CD=DE,由Rt△CAE≌Rt△CBF,推出AE=BF,可得AB+DB=DE+AE+DF﹣BF=2DE,(2)结论:AD﹣BD=CD.取AB的中点O,连接OC,OD.作CM⊥CD交AD于M.只要证明△MCD是等腰直角三角形,△ACM≌△BCD,、即可解决问题;【解答】(1)解:①补全图的图形如图所示;②证明:取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.∵∠ACB=∠ADB=90°,∴OC=OD=AB,∴A、D、B、C四点共圆,∴∠ADB=∠ABC=45°,∴∠ADC=∠CDB,∵CE⊥AD于E,CF⊥DB于F,∴CE=CF,易证四边形DECF是正方形,∴DE=DF,CD=DE,∵AC=BC,CE=CF,∴Rt△CAE≌Rt△CBF,∴AE=BF,∵AB+DB=DE+AE+DF﹣BF=2DE,又∵DE=CD,∴AB+BD=CD.(2)结论:AD﹣BD=CD.理由:取AB的中点O,连接OC,OD.作CM⊥CD交AD于M.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A、C、D、B四点共圆,(设AD交BC于O,先证明△AOC∽△BOD,再证明△AOB∽△COD即可)∴∠ADC=∠ABC=45°,∴△MCD是等腰直角三角形,∴CM=CD,∵∠MCD=∠ACB=90°,∴∠ACM=∠BCD,∵CA=CB,∴△ACM≌△BCD,∴AM=BD,∴AD﹣BD=AD=AM=DM=CD.故答案为:AD﹣BD=CD.【点评】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、正方形的判定和性质、四点共圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
石景山区2018-2019学年八年级第一学期数学期末考试数学试题及参考答案

石景山区2018—2019学年第一学期初二期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.16的算术平方根是A .4B .4±C .4-D .22.在下列图案中,不是..轴对称图形的是ABCD3.一个不透明的盒子中装有5个红球,3个白球和2个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是白球的可能性为A .12 B .310 C .15D .134.下列各式中,计算正确的是A =B 6=C .21)4=-D .2(10-=5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是A .1x ≠B .3x >-且1x ≠C .3x -≥D .3x ≥-且1x ≠6.实数m 在数轴上的位置如图所示, 1m -的结果为A .1-B .12m -C .1D .21m -7.如图,ABC △中,AB AC =,30B ∠=°, 点D 是AC 的中点,过点D 作DE AC ⊥交 BC 于点E ,连接EA .则BAE ∠的度数为A .30°B .80°C .90°D .110°8.如图,直线l 表示一条河,点A ,B 表示两个村庄,想在直 线l 上的某点P 处修建一个水泵站向A ,B 两村庄供水.现 有如图所示的四种铺设管道的方案(图中实线表示铺设的管 道),则铺设的管道最短的是A B C D二、填空题(本题共16分,每小题2分) 9.写出一个比4大的无理数: .10.如果等腰三角形的两边长分别为2cm 和3cm ,那么它的周长是 . 11.一元二次方程2560x x --=的解为: . 12.如图,点A ,B ,C 在同一条直线上,90A DBE C ∠=∠=∠=°,请你只添 加一个条件,使得DAB △≌BCE △. (1)你添加的条件是 .(要求:不再添加辅助线,只需填一个答案即可) (2)依据所添条件,判定DAB △与BCE △全等 的理由是 . 13.已知关于x 的一元二次方程 2210mx x -+=有两 个不相等的实数根,则m 的取值范围是 . 14.如图,△ACB 中,5AC =,12BC =,13AB =, 点D 是AB 的中点,则CD 的长为 .BAlm115.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学 的基本框架.其中第九卷《勾股》主要讲述了以测量问题为中心的直 角三角形三边互求,之中记载了一道有趣的“引葭赴岸”问题: “今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年北京市石景山区八年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的算术平方根是()A.3B.﹣3C.±3D.±92.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.3.下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形4.二次根式有意义的条件是()A.x B.x C.x D.x≤35.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间6.如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.7.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°8.当分式的值为正整数时,整数x的取值可能有()A.4个B.3个C.2个D.1个二、填空题(本题共16分,每小题2分)9.在实数范围内因式分解:x2﹣2=.10.转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是.11.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①;②.12.分式变形=中的整式A=,变形的依据是.13.计算=.14.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD 的长为.15.如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC 的顶点都在格点上,D是BC的中点.则AC=;AD=.16.如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′,BB′.判断△AB′B的形状为;若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为.三、解答题(本题共68分,第17-23每小题5分;第24-26题,每小题5分;27题7分;28题8分)解答应写出文字说明,演算步骤或证明过程.17.计算: +﹣.18.计算:×(2﹣)﹣÷+.19.解方程:﹣=.20.如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.21.当x=﹣1时,求代数式÷﹣的值.22.为了解决某贫困地区两村村民子女就近入学问题,某爱心企业捐资助学,计划新建一所学校,如图AB,AC表示两条公路,点M,N表示两个村庄,学校的位置需满足三个条件:①到两条公路的距离相等;②到两个村庄的距离相等;③在∠BAC的内部.请运用尺规作图确定学校的位置,不写作法,保留作图痕迹并写明结论.23.某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码A1,A2和两名男工作人员的代码B1,B2.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.24.2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.25.周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A,B,C,D在同一条直线上,.求证:.证明:.26.阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程的解为非负数,求m的取值范围.27.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.(1)求线段BN的长;(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:①;②.28.在△ABC中,∠C=90°,AC=BC.作射线AP,过点B作BD⊥AP于点D,连接CD.(1)当射线AP位于图1所示的位置时①根据题意补全图形;②求证:AD+BD=CD.(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为.2017-2018学年北京市石景山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的算术平方根是()A.3B.﹣3C.±3D.±9【分析】根据开方运算,可得一个正数的算术平方根.【解答】解:9的算术平方根是3.故选:A.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.3.下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、是随机事件,故A不符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是必然事件,故D符合题意;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.二次根式有意义的条件是()A.x B.x C.x D.x≤3【分析】根据二次根式有意义的条件可得3x﹣1≥0,再解不等式即可.【解答】解:由题意得:3x﹣1≥0,解得:x≥,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】估算得出的范围即可.【解答】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:C.【点评】此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.6.如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.【分析】直接利用分式的混合运算法则将原式变形进而得出答案.【解答】解:(a﹣)•=•=•=a﹣b,∵a﹣b=,∴原式=.故选:D.【点评】此题主要考查了分式的化简求值,正确化简分式是解题关键.7.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°【分析】分别从:①若100°是等腰三角形顶角的外角,②若100°是等腰三角形底角的外角,去分析,即可求得答案.【解答】解:①若100°是等腰三角形顶角的外角,则它的顶角的度数为:180°﹣100°=80°;②若100°是等腰三角形底角的外角,则它的底角的度数为:180°﹣100°=80°;∴它的顶角为:180°﹣80°﹣80°=20°;∴它的顶角的度数为:80°或20°.故选:B.【点评】此题考查了等腰三角形的性质:等边对等角.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.8.当分式的值为正整数时,整数x的取值可能有()A.4个B.3个C.2个D.1个【分析】根据题意可知2x﹣3必是6的因数,从而可求出答案.【解答】解:由题意可知:2x﹣3=1或2或3或6所以x=2或或3或由于x是整数,∴x=2或3所以x的有两个故选:C.【点评】本题考查分式的值,解题的关键正确得出2x﹣3是6的正因数,本题属于基础题型.二、填空题(本题共16分,每小题2分)9.在实数范围内因式分解:x2﹣2=(x﹣)(x+).【分析】利用平方差公式即可分解.【解答】解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.10.转盘上有六个面积相等的扇形区域,颜色分布如图所示,若指针固定不动,转动转盘,当转盘停止后,则指针对准红色区域的可能性是.【分析】首先确定红色区域在整个转盘中占的比例,根据这个比例即可求出指针指向红色区域的概率.【解答】解:由于一个圆平均分成6个相等的扇形,在这6种等可能结果中,指针指向写有红色的扇形有2种可能结果,所以指针指到红色的概率是=;故答案为:.【点评】本题考查学生对简单几何概型的掌握情况,体现了数学学科的基础性.概率=所求情况数与总情况数之比.11.写出两个无理数,使得它们的和为有理数,则这两个无理数可以为①π+3;②﹣π+3.【分析】根据无理数的意义,可得答案.【解答】解:(π+3)+(﹣π+3)=6,故答案为:π+3,﹣π+3.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.分式变形=中的整式A=x2﹣2x,变形的依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【分析】依据x2﹣4=(x+2)(x﹣2),即可得到分式变形=中的整式A=x(x﹣2)=x2﹣2x.【解答】解:∵x2﹣4=(x+2)(x﹣2),∴分式变形=中的整式A=x(x﹣2)=x2﹣2x,依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.故答案为:x2﹣2x,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【点评】本题主要考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.计算=﹣.【分析】利用分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母进行计算即可.【解答】解:原式=﹣(•)=﹣,故答案为:﹣.【点评】此题主要考查了分式的乘法,关键是掌握分式的乘法法则,注意结果要化简.14.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD 的长为.【分析】设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,根据cosA=可求得x的值,进一步可得答案.【解答】解:设AD=x,则AC=AD+CD=x+1,由旋转的性质知AB=AC=x+1,∠A=60°,在Rt△ABD中,cosA=,即=,解得:x=1,∴AD=1、AB=2,则BD===,故答案为:.【点评】本题主要考查旋转的性质,解题的关键是熟练掌握旋转不变性和三角函数的定义、勾股定理等知识点.15.如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=2;AD=.【分析】根据勾股定理计算即可.【解答】解:由题意得,BD=CD=,由勾股定理得,AC==2,AD==,故答案为:2;.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16.如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′,BB′.判断△AB′B的形状为等边三角形;若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为AM与EF的交点.【分析】依据折叠的性质,即可得到AB=AB'=BB',进而得出△ABB'是等边三角形,依据当A,P,M在同一直线上时,PB+PM最小值为AM的长,即可得到点P的位置为AM与EF的交点.【解答】解:由第一次折叠,可得EF垂直平分AB,∴AB'=BB',由第二次折叠,可得AB=AB',∴AB=AB'=BB',∴△ABB'是等边三角形;∵点B与点A关于EF对称,∴AP=BP,∴PB+PM=AP+PM,∴当A,P,M在同一直线上时,PB+PM最小值为AM的长,∴点P的位置为AM与EF的交点,故答案为:等边三角形,AM与EF的交点.【点评】本题主要考查了折叠的性质以及等边三角形的判定,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本题共68分,第17-23每小题5分;第24-26题,每小题5分;27题7分;28题8分)解答应写出文字说明,演算步骤或证明过程.17.计算: +﹣.【分析】直接利用立方根以及算术平方根的性质分别化简得出答案.【解答】解:原式=2+3﹣2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.计算:×(2﹣)﹣÷+.【分析】先化简各二次根式,再根据混合运算顺序依次计算可得.【解答】解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质和二次根式的混合运算的顺序和法则是解题的关键.19.解方程:﹣=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:9x﹣3﹣2=13,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.【分析】根据两直线平行,内错角相等可得∠A=∠ECD,然后利用“角角边”证明△ABC和△ECD 全等,再根据全等三角形对应边相等即可得证.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴BC=DE.【点评】本题考查了三角形全等的判定与性质,平行线的性质,比较简单,求出∠A=∠ECD是证明三角形全等的关键.21.当x=﹣1时,求代数式÷﹣的值.【分析】直接利用分式的混合运算法则将原式化简,再将x的值代入计算可得.【解答】解:原式=•﹣=﹣=﹣,当x=﹣1时,原式=﹣=﹣.【点评】本题主要考查分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.为了解决某贫困地区两村村民子女就近入学问题,某爱心企业捐资助学,计划新建一所学校,如图AB,AC表示两条公路,点M,N表示两个村庄,学校的位置需满足三个条件:①到两条公路的距离相等;②到两个村庄的距离相等;③在∠BAC的内部.请运用尺规作图确定学校的位置,不写作法,保留作图痕迹并写明结论.【分析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠BAC 的平分线AF,DE与AF相交于P点,则点P即为所求.【解答】解:点P为线段MN的垂直平分线与∠BAC的平分线的交点,则点P到点M、N的距离相等,到AB、AC的距离也相等,作图如下:【点评】此题考查作图﹣应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.23.某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码A1,A2和两名男工作人员的代码B1,B2.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.【分析】画树状图展示所有12种等可能的结果数,再中出代表一男一女的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,代表一男一女的结果数为8,所以代表一男一女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.【分析】设列车乙行驶平均速度为x千米/小时.根据时间差=1.5构建方程即可解决问题.【解答】解:设列车乙行驶平均速度为x千米/小时.由题意:﹣=1.5,解得:x=220,经检验:x=220是分式方程的解.=4.5小时,答:列车甲从北京到上海运行的时间是4.5小时.【点评】本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.解题的关键是熟练掌握速度=路程×时间的关系,正确寻找等量关系构建方程解决问题.25.周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EF⊥AD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A,B,C,D在同一条直线上,EA=ED,EF⊥AD,AB=DC.求证:FB=FC.证明:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC..【分析】已知:EA=ED,EF⊥AD,AB=DC,求证FB=FC.想办法证明EF是线段BC的垂直平分线即可.(答案不唯一)【解答】解:已知:如图,EA=ED,EF⊥AD,AB=DC,求证FB=FC.理由:延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.故答案为:EA=ED,EF⊥AD,AB=DC;FB=FC;延长EF交BC于H.∵EA=ED,EF⊥AD,∴AH=HD,∵AB=DC,∴BH=CH,∵FH⊥BC,∴FB=FC.【点评】本题考查等腰三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.26.阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.(1)请回答:小哲的说法是正确的,并简述正确的理由是分式的分母不为0;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程的解为非负数,求m的取值范围.【分析】(1)根据分式方程解为正数,且分母不为0判断即可;(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.【解答】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x﹣6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠3,解得:m≥﹣6且m≠﹣3.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.(1)求线段BN的长;(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:①DE=EC;②∠DEM=90°.【分析】先求得BD的长,设BF=x,由翻折的性质可知:DF=9﹣x.接下来,在Rt△BDF中,由勾股定理可列出关于x的方程求解即可.【解答】解:(1)∵D是AB的中点,∴BD=AB=3.设BF=x,则CF=9﹣x.由翻折的性质可知:DF=CF=9﹣x.在△BDF中,由勾股定理得:DF2=BD2+FB2,即(9﹣x)2=32+x2.解得:x=4.∴BF的长为4.(2)如图:结论:①DE=EC;②∠DEM=90°,故答案为DE=EC,∠DEM=90°【点评】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.28.在△ABC中,∠C=90°,AC=BC.作射线AP,过点B作BD⊥AP于点D,连接CD.(1)当射线AP位于图1所示的位置时①根据题意补全图形;②求证:AD+BD=CD.(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为AD﹣BD=CD.【分析】(1)①根据要求补全图形即可;②取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.四只要证明边形DECF是正方形,可得DE=DF,CD=DE,由Rt△CAE≌Rt△CBF,推出AE=BF,可得AB+DB=DE+AE+DF﹣BF=2DE,(2)结论:AD﹣BD=CD.取AB的中点O,连接OC,OD.作CM⊥CD交AD于M.只要证明△MCD是等腰直角三角形,△ACM≌△BCD,、即可解决问题;【解答】(1)解:①补全图的图形如图所示;②证明:取AB是中点O,连接OD、OC,作CE⊥AD于E,CF⊥DB于F.∵∠ACB=∠ADB=90°,∴OC=OD=AB,∴A、D、B、C四点共圆,∴∠ADB=∠ABC=45°,∴∠ADC=∠CDB,∵CE⊥AD于E,CF⊥DB于F,∴CE=CF,易证四边形DECF是正方形,∴DE=DF,CD=DE,∵AC=BC,CE=CF,∴Rt△CAE≌Rt△CBF,∴AE=BF,∵AB+DB=DE+AE+DF﹣BF=2DE,又∵DE=CD,∴AB+BD=CD.(2)结论:AD﹣BD=CD.理由:取AB的中点O,连接OC,OD.作CM⊥CD交AD于M.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A、C、D、B四点共圆,(设AD交BC于O,先证明△AOC∽△BOD,再证明△AOB∽△COD即可)∴∠ADC=∠ABC=45°,∴△MCD是等腰直角三角形,∴CM=CD,∵∠MCD=∠ACB=90°,∴∠ACM=∠BCD,∵CA=CB,∴△ACM≌△BCD,∴AM=BD,∴AD﹣BD=AD=AM=DM=CD.故答案为:AD﹣BD=CD.【点评】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、正方形的判定和性质、四点共圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。