高一数学指数函数练习题

合集下载

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。

高一数学指数函数同步练习题

高一数学指数函数同步练习题

高一数学指数函数同步练习题第I 卷(选择题)一、单选题(本大题共8小题,共40.0分)1. 若不等式(12)x 2−2ax <23x+a 2恒成立,则实数a 的取值范围是( ) A. (0,−1) B. (34,+∞) C. (0,34) D. (−∞,34) 2. 三个数30.4,0.43,30.3的大小关系( )A. 0.43<30.3<30.4B. 0.43<30.4<30.3C. 30.3<30.4<0.43D. 30.3<0.43<30.43. 当x ∈[−1,1]时,函数f(x)=3x −2的值域是( )A. [1,53]B. [−1,1]C. [−53,1]D. [0,1] 4. 已知集合M =[−1,1],N ={x|12<2x+1<4,x ∈Z}则M ∩N =( )A. [−1,1]B. {−1}C. {0}D. {−1,0}5. 已知函数f(x)=2x−b (2≤x ≤4,b 为常数)的图象经过点(3,1),则f(x)的值域为( )A. [4,16]B. [2,10]C. [12,2]D. [12,+∞) 6. 若0<x <y <1,则( )A. 3y <3xB. y 3<x 3C. log 4x <log 4yD. (14)x <(14)y 7. 已知集合A ={x|x 2−4x +3<0},B ={x|4x >8},则A ∩B =A. (1,32)B. (32,3)C. (2,3)D. (1,3) 8. 已知f(2x +1)=x 3,则f(4)等于 ( )A. 13log 25B. 13log 23C. 23D. 43 二、多选题(本大题共2小题,共10.0分)9. 函数,则下列说法正确的有( )A.B. 都有C. 函数f(x)的值域为(−1,1)D. 不等式f(x) <12的解集为(−log2 3,+∞)10.已知实数a,b满足等式2017a=2018b,则下列关系式可能成立的是()A. 0<a<bB. a<b<0C. 0<b<aD. a=b第II卷(非选择题)三、单空题(本大题共1小题,共5.0分)11.函数f(x)=√12−2x的定义域是.四、解答题(本大题共11小题,共132.0分)12.已知指数函数f(x)=a x(a>0且a≠1)经过点(3,27).(1)求f(x)的解析式及f(−1)的值;(2)若f(x−1)>f(−x),求x的取值范围.13.已知函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=a xa x+2.(1)求a的值;(2)证明f(x)+f(1−x)=1;(3)求f(12019)+f(22019)+f(32019)+⋯+f(20182019)的值.+2.14.已知函数f(x)=2x,g(x)=12|x|(1)求函数g(x)的值域;(2)求满足方程f(x)−g(x)=0的x的值.15.已知不等式x2−4x+3≤0.(1)解上述关于x的不等式;(2)在(1)的条件下,求函数y=4x−4×2x+2的最大值和最小值,并求出相应的x的值.16.已知m>0,a>0且a≠1,函数f(x)=(m2−4m−4)a x是指数函数,且f(2)=4.(Ⅰ)求m和a的值;(Ⅱ)求的解集.17.已知函数f(x)=a x−1(a>0,且a≠1)满足f(1)−f(2)=1.4(1)求a的值;(2)解不等式f(x)<0.18.已知指数函数f(x)的图象过点(2,1).9(1)求函数f(x)的解析式;(2)已知f(|x|)>f(1),求x的取值范围;+2为奇函数.19.已知函数f(x)=a3x−1(1)求实数a的值;(2)求不等式log3f(x)<x+1的解集.20.已知函数f(x)=3x+m⋅3−x(x∈R,m∈R).(1)若f(x)为奇函数,求m的值和此时不等式f(x)>3的解集;2(2)若不等式f(x)≤4对∀x∈[−1,2]恒成立,求m的取值范围.(a∈R)21.已知函数f(x)=a−12x+1(1)若函数f(x)是定义在R上的奇函数,求a的值;(2)用单调性的定义证明函数f(x)在(−∞,+∞)上是增函数.22.(1)计算:)x2+x−5(2)解不等式:3x2+x+1>(13答案和解析1.【答案】B【解析】【分析】本题考查指数不等式,考查指数函数的单调性,二次函数恒成立问题,中档题.根据指数函数的单调性,将给定不等式等价转化为−x2+2ax<3x+a2恒成立,结合二次函数的图象和性质得到a的取值范围.【解答】解:原式变形为:2−x2+2ax<23x+a2恒成立,∵函数y=2x是R上的单调递增函数,∴−x2+2ax<3x+a2恒成立,即x2−(2a−3)x+a2>0恒成立,∴Δ=[−(2a−3)]2−4a2<0,.解得a>34故选B.2.【答案】A【解析】【分析】根据函数y=3x的单调性判断出30.4>30.3>1,结合0.43<1,即可得到三个数的大小关系.本题考查利用指数函数的单调性判断出数的大小关系,注意中间值“1”“0”的利用.【解答】解:因为函数y=3x在R上是增函数,所以30.4>30.3>1,又0.43<0.40=1,所以0.43<30.3<30.4,故选:A.【解析】【分析】本题考查了指数函数的单调性,利用单调性求函数值域的方法.利用指数函数的单调性,先判断函数f(x)的单调性,再利用单调性求函数的值域即可。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2

y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;

y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2

因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min

A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3

C. b c a

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。

不妨令。

则所有交点横坐标之和为。

故C正确。

【考点】1函数图像;2余弦函数的周期;3数形结合思想。

3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。

高一数学指数与指数幂的计算题及答案解析

高一数学指数与指数幂的计算题及答案解析

高一数学知识点 幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于 0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果 同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为 不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大 于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的 值域
定义
一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又 是偶函数,称为既奇又偶函数。
高一数学指数与指数幂的计算题(一) 1.将532写为根式,则正确的是( ) A.352 B.35 C.532 D.53 解析:选D.532=53. 2.根式 1a1a(式中a>0)的分数指数幂形式为( ) A.a-43 B.a43 C.a-34 D.a34 解析:选C.1a1a= a-1• a-1 12= a-32=(a-32)12=a-34. 3. a-b 2+5 a-b 5的值是( ) A.0 B.2(a-b) C.0或2(a-b) D.a-b 解析:选C.当a-b≥0时, 原式=a-b+a-b=2(a-b); 当a-b<0时,原式=b-a+a-b=0. 4.计算:(π)0+2-2×(214)12=________. 解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118. 答案:118

高一数学指数函数测试题

高一数学指数函数测试题

高一数学测试题(指数函数)一、选择题1.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn2.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 3.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 4.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 5.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R6.函数⎩⎨⎧+≥-=-222,12)( x x f x x f x ),(,则f(-3)=( )A .2B . 3C .4D .87-7.已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 8.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-、填空题9.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 10.计算:(1)48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π= .(2)⎪⎪⎭⎫ ⎝⎛-÷++-33233233421428a b b ab a ba a = . 11.不等式x x 283312--<⎪⎭⎫⎝⎛的解集是 .12.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .13.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为 .14.已知f(x)= ⎩⎨⎧>≤+-)1()1(1)2(x a x x a x,满足对任意的x 1,x 2,都有0)()(2121>--x x x f x f 成立,则实数a 的取值范围是 . 三、解答题: 15.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.16.(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|xk -=无解?有一解?有两解?17.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.(4)若f(-x 2+3x)+f(m-x-x 2)>0对任意的x []1,0∈均成立,求实数m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一指数函数同步检测
(一)选择题(每小题5分,共40分) 1.化简46394369)()(a a ⋅的结果为
( )
A .a 16
B .a 8
C .a 4
D .a 2 2.设5.1344.029.01)2
1(,8,4-===y y y ,则 ( )
A .y 3>y 1>y 2
B .y 2>y 1>y 3
C .y 1>y 2>y 3
D .y 1>y 3>y 2
3.当x ∈[-2,2)时,y =3

x
-1的值域是
( )
A .[-9
8,8] B .[-9
8,8] C .(9
1,9)
D .[9
1
,9]
4.若集合S ={y |y =3x ,x ∈R}T ={y |y =x 2-1,x ∈R},则S ∩T
( ) A .S
B .T
C .
D .有限集 5.下列说法中,正确的是 ( )
①任取x ∈R 都有3x >2x ②当a >1时,任取x ∈R 都有a x >
a -x
③y =(3)-x 是增函数 ④y =2|x |的最小值为1 ⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴 A .①②④ B .④⑤
C .②③④
D .①⑤
6.c <0,下列不等式中正确的是[ ]
A c 2
B c
C 2
D 2c
c
c
c c c
.≥.>.<.>()
()
()12
12
1
2
7.x ∈(1,+∞)时,x α>x β,则α、β间的大小关系是
[ ]
A .|α|>|β|
B .α>β
C .α≥0≥β
D .β>0>α
8.函数y =2-x 的图像可以看成是由函数y =2-x+1+3的图像平移后得到的,平移过程是[ ] A .向左平移1个单位,向上平移3个单位 B .向左平移1个单位,向下平移3个单位 C .向右平移1个单位,向上平移3个单位 D .向右平移1个单位,向下平移3个单位
(二)填空题(每小题6分,共30分)
9.计算:2
1
0319)4
1()2(4)21(----+-⋅- = . 10.函数x a y =在]1,0[上的最大值与最小值的和为3,则
=a

11.不等式162
2<-+x x 的解集是
12.已知x >0,函数y=(a 2-8)x 的值恒大于1,则实数a 的取值范围是________.
13.函数y=a x+2-3(a >0且a ≠1)必过定点________. (三)解答题(每小题10分,共30分) 18.已知,32
12
1=+-x x 求3
2
12
32
3++++--
x x x x 的值.
19.若函数y =a 2x +b +1(a >0且a ≠1,b 为实数)的图象恒过定点(1,2),求b 的值.
20.求函数y =3322
++-x x 的定义域、值域和单调区间.(附加题)。

相关文档
最新文档