专训2 “化斜为直”构造直角三角形的方法
解直角三角形的方法与技巧

解直角三角形常用解题方法与技巧 解直角三角形所涉及的知识面较广,题目灵活性、综合性较强,因而学习起来可能会有一定的困难,为帮助大家理解并掌握其中的解题方法与解题技巧,现结合实例归纳总结如下: 一、巧妙应变,走出解题陷阱 例1 如图①,在Rt △ABC 中,AB =c ,AC =b ,BC =a ,∠A =90°,⑴、若a =15,b =12,求c ;⑵、若b =8,c=15,求a .简析 由∠A =90°知,本题a 才是斜边,故应运用勾股定理222b c a +=求解.解 ⑴、∵∠A =90°,AB =c ,AC =b ,BC =a ,∴222b c a +=,又∵c >0,∴222215129c a b =-=-=.⑵、由⑴知222b c a +=,∴222281517a b c =+=+=.评注 解直角三角形问题,审题很重要,有时候稍一疏忽就有可能导致错解或者漏解的产生.本例在求解时正是注意到了斜边这一特殊边长的变化从而避免了解题错误的发生.二、巧设参数,化繁难为简易例2 如图②,在△ABC 中,∠C =90°,sin A =45,求tan B 的值. 简析 要算tan B ,必须先求出直角边AC 、BC 的长,注意到题中只有“sin A =35”而没有给出相应线段的长,故考虑采用设参数的办法进行解决.解 设BC =4k ,则AB =5k (k >0).∵在△ABC 中,∠C =90°,∴AC =2222(5)(4)3AB BC k k k -=-=,∴tan AC B BC ==3344k k =. 评注 对于已知特殊角而求三角函数值(或线段比值)的解直角三角形问题,有时候适当引入参数可以帮助我们在解题过程中少走不少弯路.三、巧建模型,以不变应万变例3 如图③所示,某小岛周围40海里内布满暗礁,一艘船由西向东航行,起初在A 处测得小岛在北偏东60°方向,航行30海里后在B 处又测得小岛在东北方向,如果该船不改变航行方向而继续向前航行,那么它会有触礁危险吗?简析 过O 作OH ⊥AB 于H ,将实际问题转化为解直角三角形问题.不妨设OH =x ,则由AH -BH =AB 可得方程cot30°x -cot45°x =30,从中解出x 的值,接下去只需将OH 的值与40进行比较即可得解.解 过点O 作OH ⊥AB 于H ,设OH =x ,由题意可知∠OAH =30°,∠OBH =45°,AB =30.在Rt △OAH 与Rt △OBH 中,∵cot ∠OAH =AH OH ,cot ∠OBH =BH OH∴AB =AH -BH = OH (cot30°-cot45°),即(cot30°-cot45°)x =30,解之得x =15+153≈40.98>40.所以如果不改变航向,该船不会有触礁的危险.例4 如图④所示,为了求河的宽度,在河对岸岸边任意取一点A ,再在河这边沿河边取两点B 、C ,使得∠ABC =60°,∠ACB =45°,现量得BC =30m ,求河的宽度.简析 河的宽度即为△ABC 中BC 边上的高,为此,过点A 作AD ⊥BC于D ,则本实际问题也转化成了解直角三角形问题.和前例一样,通过设AD =x 然后建立方程即可求得AD 的长.解 过A 作AD ⊥BC 于D ,并设AD =x .在Rt △ABD 与Rt △ACD 中,∵cot cot 60BD ABC AD =∠=︒,cot cot 45CD ACB AD=∠=︒, ∴BC =BD +CD =AD (cot60°+cot45°),即(cot60°+cot45°)x =30,解之得x =45-153, ∴所求河的宽度为(45-153)m .评注 在解有双方位角或双视角类实际问题时,如果图形中没有直角三角形,则应通过添加辅助线的方法将原图形转化为两个具有公共边特征的直角三角形,然后再建立方程进行求解.为方便同类题型求解,以上两例还可归结为如下的数学模型——⑴如图⑤a ,已知AB ⊥CD 于B ,点C 、D 在AB 的同侧,若测得∠ACB =α,∠ADB =β,且α<β,则有AB (cot α-cot β)=CD ,BC · tan α=BD · tan β;⑵如图⑤b ,已知AB ⊥CD 于B ,点C 、D 在AB 的两侧,若测得∠ACB =α,∠ADB =β,则有AB (cot α+cot β)=CD ,BC · tan α=BD · tan β.。
化斜为直题型

化斜为直题型
化斜为直题型是数学中一种常见的题型,主要涉及到直线和斜率的概念。
在解决这类问题时,通常需要将一个斜线段转化为一条水平的直线段,以便更容易地找到问题的解决方案。
化斜为直题型通常涉及到以下步骤:
1. 确定斜线段的起点和终点。
2. 找到斜线段的中点。
3. 将斜线段的中点和起点连接起来,形成一条水平的直线段。
4. 利用中点和起点之间的距离和斜率,计算出直线段的长度。
5. 根据需要,可以使用其他数学工具或方法来进一步处理直线段。
化斜为直题型的应用非常广泛,可以用于解决各种不同的问题,例如几何问题、物理问题、工程问题等。
通过将斜线段转化为直线段,可以更容易地找到问题的解决方案,简化计算过程,提高解题效率。
解直角三角形的方法和技巧

解直角三角形的方法和技巧直角三角形是三角形中最为基础和重要的一类三角形,因为它具有很多特殊的性质和应用。
解直角三角形的方法和技巧在数学的学习过程中非常重要,本文将为大家介绍10条关于解直角三角形的方法和技巧,并展开详细描述。
一、勾股定理勾股定理是解直角三角形最基本的定理,也是解直角三角形的最快捷的方法。
勾股定理的公式为:a² + b² = c²。
a和b表示直角边,c表示斜边。
当已知a和b的长度时,可以通过计算c的长度来确定直角三角形的大小和形状。
勾股定理非常广泛地应用于工程、科学和数学等领域,可以帮助我们计算物体的大小、距离和位置等。
二、正弦定理正弦定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:a/sinA = b/sinB = c/sinC。
a、b、c分别表示三角形任意两边和斜边,A、B、C表示这些边对应的角度。
如果已知了两个长度和一个角度,则可以通过正弦定理计算第三个长度。
正弦定理的应用十分广泛,可以帮助我们计算三角形的任意边的长度。
三、余弦定理余弦定理也是解直角三角形的一种基本方法,它也是一个三角形中的三角函数,公式为:c² = a² + b² - 2abcosC。
a、b表示三角形中两个边的长度,c表示斜边的长度,C表示斜边对应的角度。
如果已知了两个长度和一个角度,则可以通过余弦定理计算第三个长度。
余弦定理也是应用广泛的一个数学公式,可以帮助我们计算三角形的任意边的长度。
四、正切定理正切定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:tanA = a/b或tanB = b/a。
a、b分别表示三角形中的两个直角边,A、B是它们对应的角度。
通过正切定理可以求得角度的大小或两直角边的比例。
五、特殊直角三角形的知识特殊直角三角形是指那些具有特殊边长和角度的直角三角形。
其中最为常见的是边长为3、4、5的特殊直角三角形。
直角三角形的性质与计算方法总结

直角三角形的性质与计算方法总结直角三角形是一种特殊的三角形,其中一个角度为90度,即直角。
在这篇文章中,我们将总结直角三角形的性质,以及计算直角三角形的方法。
一、直角三角形的性质1. 斜边:直角三角形中最长的一边被称为斜边。
它是直角三角形的斜边和另外两边之间的关系:斜边的平方等于另外两个直角边的平方和。
我们可以用勾股定理来表示:c² = a² + b²,其中c表示斜边,a和b表示直角边。
2. 直角边:直角三角形中与直角相邻的两条边被称为直角边。
两个直角边的长度可以通过勾股定理计算出来。
3. 角度:直角三角形中,除了直角外,还有两个锐角。
锐角的大小可以通过三角函数来计算,比如正弦、余弦和正切等。
二、计算直角三角形的方法1. 已知两条边求第三边:如果已知直角三角形的一条直角边和斜边(或者另一条直角边),可以使用勾股定理求解。
根据 c² = a² + b²,可以计算出第三条边的长度。
2. 已知一条边和一个角度求其他边:如果已知直角三角形的一条直角边和一个角度(不包括直角),可以使用三角函数来计算其他边的长度。
比如,已知直角三角形的斜边和一个锐角,可以使用正弦或余弦函数来求解。
3. 已知两个角度求第三个角度:直角三角形中,两个锐角的和为90度。
如果已知两个锐角中的一个,可以通过将其与90度相减得出第三个角的度数。
三、直角三角形的应用1. 地理测量:直角三角形的性质和计算方法在地理测量中具有广泛的应用。
通过测量两个已知距离之间的夹角和一个已知距离,我们可以计算出其他未知距离。
2. 建筑设计:在建筑设计中,直角三角形的性质和计算方法可以帮助我们确定建筑物的大小和比例,以及计算出斜坡的坡度和长度。
3. 导航和航海:通过使用直角三角形的性质和计算方法,我们可以在导航和航海中确定我们的位置、航向和航速。
总结:直角三角形是一种重要的三角形,具有独特的性质和计算方法。
新人教部编版初中九年级数学解题技巧专题:构造直角三角形解题

即 sin18°=
5-1 4.
长冲中学-“四学一测”活力课堂
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
在
Rt△ADH
中,sin∠ADH=AAHD=
5 5.
∴∠ADC
的正弦值为
5 5.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
3.如图,在△ABC 中,AB=BC=5,tan∠ ABC=34.
(1)求边 AC 的长;
长冲中学-“四学一测”活力课堂
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
2.如图,AD 是△ABC 的中线,tanB=51,cosC = 22,AC= 2.求:
(1)BC 的长;
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
解:(1)如图,作 AH⊥BC 于点 H. 在 Rt△ACH 中,cosC= 22=CAHC,AC= 2, ∴CH=1. ∴AH= AC2-CH2=1.
5.如图,在△ABC 中,D 为 BC 边上的一点, 若∠B=36°,AB=AC=BD=2.
(1)求 CD 的长;
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
解:(1)∵AB=AC,∠ABC=36°, ∴∠C=∠ABC=36°. ∴∠BAC=180°-∠ABC-∠C=108°. ∵AB=BD,∠ABC=36°,
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
∵AB=AC=BD=2, ∴C2D=2+2CD. 解得 CD= 5-1(负值舍去).
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
(2)利用此图求 sin18°的值. (2)如图,延长 CB 到 E,使 BE=AB=2,连接 AE,则∠E=∠BAE=18°.
28.2.2“化斜为直”构造直 角三角形的四种常用方法

解:如图,延长BC,AD交于点E. ∵∠A=60°,∠B=90°, ∴∠E=30°.
在Rt△ABE中,BE=
AB tan E
2 tan 30
=2
解:如图,过点A作AE⊥BC于点E.
∵AB=AC=5,
∴BE=
1 2
BC=
1 2
×8=4,
1 ∠ ∵B∠ABEP=C=2 ∠12 ∠BABCA.C, ∴∠BPC=∠BAE.
在Rt△BAE中,由勾股定理得:
AE= AB2 BE2 52 42 =3,
∴tan
∠BPC=tan
∠BAE=
BE AE
4 3
3,
在Rt△CDE中,EC=2CD=2,
∴DE=EC·cos 30°=2× 3 3 . 2
∴S四边形ABCD=SRt△ABE-SRt△ECD=
1 AB·BE- 1 CD·ED=
2
2
12×2×2
3
-
1 2
×1×
33 3 2
.
返回
方法 3 有三角函数值不能直接利用时作垂线
3.如图,在△ABC中,点D为AB的中点,DC⊥AC,
在Rt△ACD中,∵∠C=45°,
ห้องสมุดไป่ตู้
∴∠CAD=90°-∠C=45°.
∴∠C=∠CAD.∴CD=AD= 3 x.
∵BC=1+ 3 ,∴ 3 x+x=1+ 3 ,
解得x=1,即BD=1.
在Rt△ABD中,∵cos ∴AB= BD 1
B= =2.
BD AB
解直角三角形的方法,步骤与应用

解直角三角形的方法,步骤与应用
几何学中最常见的形状之一是直角三角形,它的特点是一个锐角90度,三
条边均不等的三角形。
学习有关直角三角形的方法有助于理解和应用几何学。
一、如何确定一个三角形是直角三角形?
若要确定一个三角形是否为直角三角形,可以使用斜边-直角定理:如果一个
三角形的斜边的平方等于另外两边相加的平方,则此三角形正是直角三角形。
另外,我们可以使用勾股定理快速判断一个三角形是否为直角三角形,即两个直角边的平方等于对角边的平方。
二、如何确定一个直角三角形的高度?
要计算直角三角形的高度,可以使用直角三角形高度公式:高度=斜边×正弦
度数,其中斜边是三角形斜边的长度;正弦度数是三角形斜边相对应的角度,也就是直角相对应的角度。
三、直角三角形的应用
直角三角形在工程学、护理学、机械学、建筑学等领域都有广泛应用。
在工程学中,直角三角形可以用来计算坡度,从而实现控制俯仰角;在护理学中,直角三角形可以帮助计算肌肉拉伸时的牵力;在机械学中,直角三角形的绘制可以帮助机械工程师确定轴的夹角;在建筑学中,直角三角形可以帮助建筑师设计建筑物的外形和内部空间结构。
综上所述,学习有关直角三角形的方法有助于我们更好地理解几何学知识,并将其应用于各个领域。
浅谈变“斜”为“直”的应用

‘ .
A B  ̄ 2 , D = A Bs n6 一 √ x A i 0。
“ ” “ ”, 条 件 中 到 一 个 直 角 三 角 形 斜 为 直 使
。
.
。 C 一 1. A
.
中 来 解 决 .作 辅 助 线 B 使 非 特 殊 角 分 为 两 E,
.
DC 一
个 特殊 角 , 形 成两 个 直 角 三 角形 , 而 为 运 并 从
【 明】 斜 三角 形 问题 通 过 作 高 巧 妙地 说 将
’
又 。 L C= 4 。 . 。 5,
。
转 化 为直 角三 角形 , 用 勾 股 定 理 解 决 有 关 利 边 的 计 算 问 题 是 常 用 办 法 之 一 .由 此 例 可 以
.
.
ED C = 45 , E = EC. 。D
维普资讯
★方 法技 巧
浅谈变“ ’ 直’ 斜’ 为“ ’ 的应 用
浙 江绍 兴县 实验 中学( 100 樊 玲芝 3 20 )
转 化 思 想 在 数 学 中 应 用 十 分 广 泛 .我 们 在 解 数 学 题 时 , 到 陌 生 的 问 题 常 设 法 把 它 碰 转 化成 熟 悉 的 问题 , 到 复 杂 的 问题 常 设 法 碰 把 它转 化 成 简 单 的 问题 , 而 使 问题 获 得 解 从
・
.
.
z一
导 z 一 吾 (值 去 . 走 ± 负 舍 ) ,
k.
1
0
0
D E = EC =
。 . .
B E — B C— EC
一 4 一
需 多少 钱 ?
一
普 ̄ 是 / . 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法
2
有直角、无直角的图形延长某些边
2.如图,在四边形ABCD中,AB=2,CD=1,∠A= 60°,∠D=∠B=90°,求四边形ABCD的面积. 解: 如图,延长BC,AD交于点E.
ቤተ መጻሕፍቲ ባይዱ
∵∠A=60°,∠B=90°,∴∠E=30°. AB 2 = = 2 3, 在Rt△ABE中,BE= o tan E tan 30
习题课 阶段方法技巧训练(二)
专训2
“化斜为直”构造
直角三角形的方法
锐角三角函数是在直角三角形中定义的,解直 角三角形的前提是在直角三角形中进行,对于非直 角三角形问题,要注意观察图形特点,恰当作辅助
线,将其转化为直角三角形来解.
方法
1
无直角、无等角的三角形作高
1.如图,在△ABC中,已知BC=1+ 3 ,∠B= 60°,∠C=45°,求AB的长. 解: 如图,过点A作AD⊥BC,垂足为点D.
在Rt△CDE中,EC=2CD=2, 3 ∴DE=EC· cos 30°=2× = 3. 2
∴S四边形ABCD=SRt△ABE-SRt△ECD
1 1 = AB· BE- CD· ED 2 2 1 1 3 3 = ×2×2 3 - ×1× 3 = . 2 2 2
本题看似是四边形问题,但注意到∠B=90°, ∠A=60°,不难想到延长BC,AD交于点E,
关系是解题的关键.
方法
4
求非直角三角形中角的三角函数值时构造直角三角形24
4.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= 1 ∠BAC,求tan ∠BPC的值. 2 如图,过点A作AE⊥BC于点E,∵AB=AC=5, 解: 1 1 1 ∴BE= BC= ×8=4,∠BAE= ∠BAC. 2 2 2 1 ∵∠BPC= ∠BAC,∴∠BPC=∠BAE. 2 在Rt△BAE中,由勾股定理得AE=
AB2 - BE 2 = 52 - 42 =3, BE 4 = . ∴tan ∠BPC=tan ∠BAE= AE 3
构造出直角三角形,将所求问题转化为直角三
角形问题来解决.
方法
3
有三角函数值不能直接利用时作垂线
3.如图,在△ABC中,点D为AB的中点,DC⊥AC,
1 sin ∠BCD= ,求tan A的值. 3
解:如图,过点B作BE⊥CD,交CD的延长线于点E.
∵点D是AB的中点,∴AD=DB. 又∵∠ACD=∠BED=90°,∠ADC=∠BDE,
∴△ACD≌△BED,∴CD=DE,AC=BE. BE 1 = ,∴BC=3BE. 在Rt△CBE中,sin ∠BCE= BC 3 ∴CE= BC 2 - BE 2 = 2 2 BE,
1 ∴CD= CE= 2 BE= 2 AC. 2 CD 2 AC = = 2. ∴tan A= AC AC
构造直角三角形,把所要求的量与已知量建立
设BD=x,
在Rt△ABD中,AD=BD· tan B=x· tan 60°= 3 x.
在Rt△ACD中,∵∠C=45°, ∴∠CAD=90°-∠C=45°, ∴∠C=∠CAD,∴CD=AD= 3 x.
∵BC=1+ 3 ,∴ 3 x+x=1+ 3 ,
解得x=1,即BD=1.
BD 在Rt△ABD中,∵cos B= , AB BD 1 = ∴AB= =2. cos B cos 60o