巧构直角三角形解题

合集下载

专题14 巧用解直角三角形解决实际问题(含答案)

专题14 巧用解直角三角形解决实际问题(含答案)

专题14 巧用解直角三角形解决实际问题知识解读在直角三角形中,由已知元素(至少有一条是边)求出所有未知元素的过程,叫做解直角三角形。

角之间的关系:两锐角互余;边的关系:两直角边的平方和等于斜边的平方(勾股定理);边与角的关系:锐角三角函数。

解直角三角形的应用包括:①求三角形的边长及角度;②解决某些实际问题。

培优学案典例示范例1.如图3-14-1是某通道的侧面示意图,已知AB /CD //EF ,AM /BC /DE ,AB =CD =EF ,∠AMF =90°,∠BAM =30°,AB =6m .(1)求FM 的长;(2)连接AF ,若sin ∠F AM =13,求AM 的长.【提示】(1)延长BC ,DE 交FM 于点G ,H ,过B ,D 作BJ ⊥AM ,DK ⊥CG ,构造直角三角形可利用三角函数求解;(2)有sin ∠F AM =13可以求AF ,再求AM .图3-14-1AB CDEFM跟踪训练如图3-14-2,在同一平面内,两条平行的高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速路1l 成30°角,长为20km ;BC 与AB ,CD 段都垂直,长为10km ;CD 段长为30km .求两条高速公路间的距离(结果保留根号).【提示】解决本题的关键是将题干中的条件转化到直角三角形中,根据直角三角形中的边角关系解决问题.【解答】DCB30°A图3-14-1l 1l 2例2.黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,如图已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF 的长(结果精确到0.12 1.41≈3 1.73≈)【提示】本题考查了解直角三角形的应用,解题的关键是读懂题意,看懂图形构建合适的方程模型.【解答】ACDBFE图3-14-3跟踪训练一数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得点A的仰角为30°(如图3-14-4),求树高(结果精确到0.1米,参考数据:2 1.41≈,3 1.73≈)【解答】图3-14-4A BCD30°45°例3.如图3-14-5,海中有两个灯塔A,B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A,B间的距离.(计算结果用根号表示,不取【提示】本题考查了解直角三角形的应用一一方位角问题,解题的关键是添加辅助线构造直角三角形。

直角三角形的存在性问题解题策略

直角三角形的存在性问题解题策略

03
CATALOGUE
直角三角形的存在性问题分类
直角在三角形内部
总结词
当直角位于三角形内部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直 角三角形的斜边长度。接着,根据三角形的性质和已知条件,判断是否能够构成 三角形。如果可以,则存在满足条件的直角三角形;否则,不存在。
在题目中,有时候会隐含一些关于三角形或 角度的条件,需要仔细审题并挖掘。
举例说明
在求解三角形边长的问题时,需要注意隐含 的等腰或等边条件,这些条件可能会影响三 角形的形状和存在性。
掌握常见题型和解题方法
01
02
03
常见题型
直角三角形存在性问题的 常见题型包括角度问题、 边长问题、高的长度问题 等。
直角在三角形外部
总结词
当直角位于三角形外部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直角三角形的斜边长度。接着,根 据三角形的性质和已知条件,判断是否能够构成三角形。如果可以,则存在满足条件的直角三角形;否则,不存 在。
建立方程
根据题目条件,可以建立关于未知数 (如角度、边长等)的方程,然后求 解该方程。
解方程
解方程的方法有很多种,如代数法、 三角函数法等,选择合适的方法求解 方程。
利用数形结合思想
数形结合
将题目中的条件和图形结合起来,通过 观察图形和计算数据,找到解决问题的 线索。
VS
综合分析
综合运用数学知识和图形分析,逐步推导 和验证,最终得出结论。
解题方法
针对不同的问题类型,需 要掌握相应的解题方法, 如利用三角函数、勾股定 理、相似三角形等。

构造直角三角形解题

构造直角三角形解题

构造直角三角形解题
本文将重点介绍用来构造直角三角形的基本方法:
一、三角形属性
1、任何三角形都有三条边和三个内角;
2、三条边和三个内角皆可用来构造直角三角形;
3、直角三角形必须有一个直角,也就是其中一个内角是90度;
4、直角三角形的边长必须符合勾股定理:a² + b² = c²。

其中a和b是直角三角形的两条相较较短的边,c是直角三角形的斜边。

二、构造直角三角形的基本方法
1、依据勾股定理构造直角三角形:根据斜边c的长度来计算出a和b 两边的长度,即a² + b² = c²,然后画出三边,再将内角调节至90度即可构造出一个直角三角形。

2、拉伸和缩短给定的边:将给定的边进行拉伸和缩短,确保它们仍符合勾股定理即a² + b² = c²,然后根据调整后的边构建三角形,最后将内角调整至90度即可构造出一个直角三角形。

3、给定三角形的两边和一内角:可用勾股定理来计算另一边的长度,即a² + b² = c²,然后绘制出三条边,把最后一个内角调整至90度即可构造出一个直角三角形。

综上所述,用来构造直角三角形的基本方法有三:依据勾股定理构造直角三角形,拉伸和缩短给定的边,给定三角形的两边和一内角。

熟练掌握这些技巧,就可以有效构建直角三角形。

2017-2018学年八年级数学上册 第十三章 轴对称 微专题 巧构30°的直角三角形同步精练 (新版)新人教版

2017-2018学年八年级数学上册 第十三章 轴对称 微专题 巧构30°的直角三角形同步精练 (新版)新人教版

微专题 巧构30°的直角三角形【方法技巧】 遇到30°角常用的辅助线就是作垂线,构造直角三角形,将角度关系转化为边的关系来解决问题.基本图形:如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD =12BC ,CD =12AC ,BC =12AB .一、连接两点构造1.如图,△ABC 中,AB =AC ,∠C =30°,AB 的垂直平分线交AB 于D ,交BC 于E ,试探究BE 与CE 之间的数量关系.(导学号:58024208)【解题过程】解:连接AE ,证BE =AE ,∠EAC =90°,∴CE =2AE =2BE .2.如图,以等腰直角△ABC 的直角边AC 为边作等边△ACD ,CE ⊥AD 于E ,BD ,CE 交于点F .(导学号:58024209)(1)求∠DFE 的度数;(2)求证:AB =2DF .【解题过程】解:(1)易求∠BDC =15°,∠DCF =30°,∴∠DFE =45°.(2)证明:连接AF ,易证∠AFD =90°,AF =DF ,易求∠ABD =30°,∴AB =2AF =2DF .二、作垂线构造3.如图,四边形ABCD 中,∠B =90°,DC ∥AB ,AC 平分∠BAD ,∠BAD =30°,求证:AD =2BC .(导学号:58024210)【解题过程】证明:过C作CE⊥AD于E,证∠CDE=30°,∴CD=2CE,CE=CB,∴CD=2BC.∵CD=AD,∴AD=2BC.4.如图,CD是△ABC的中线,CD⊥CB,∠ACD=30°,求证:AC=2BC.(导学号:58024211)【解题过程】证明:过A作AE⊥CD于E,∴AC=2AE,证△ADE≌△BDC,∴AE=BC,∴AC=2BC.三、延长两边构造5.如图,四边形ABCD中,∠C=30°,∠B=90°,∠ADC=120°,若AB=2,CD=8,求AD的长.(导学号:58024212)【解题过程】解:延长CD,BA交于M,构造30°的直角△CBM,证△ADM是等边三角形,设AD=AM =DM=x,∴8+x=2(x+2),x=4,∴AD=4.。

联想出妙解——构造直角三角形解题一例

联想出妙解——构造直角三角形解题一例

2020年第4期中学数学月刊・63・EFGH I构造直角三角形解题一例侯明辉(辽宁省岫岩满族自治县教师进修学校114300)问题已知正数%%#b)与锐角a%!#%)满足%人・!92"——1)+b=b・tan a—%%—b'sin"%/=槡%2+b2,求a+%的大小.分析题中给岀关于正数%%与锐角a%的三角函 间比较的等量关系%特点,直接求a十%的度数,往往使人感策,所以直接有一定的难度由槡%2+b2,可以很自然地联想到勾股定理,因此通过构造直角三角形%将其转化为,然后利用几何、三角函数和代数的一些相关知识,可使此题得到妙解.解如图1作△ABC,使6ACB=90°,BC=%AC=b%矿一则AB=槡%2+b2•”"■图—长AB到点M,使BM、=%;延长BA到点N,使AN=b.过点A作AE丄AB AE交MC的延长线于点E;过点B作BF丄BABF交NC的延长线于点F所以6ACE= 90o—Z BCM=90°—Z M=Z E,MW AE=AC= b.类似地,BF=BC=%.%—,・(^2一1)十b=槡%2+b2,得%—b sn%'sin2a%2一%b+b2+(%—b)・槡%2十b2=2—,即sin%%sin2a_%2+b2+(一b)・—%2十b2一%b sin2%=%2+b2—b2(—%2+b2+%)・(—%2+b2一b)(—%2+b2+b)・(—%2+b2一b)—%2+b2+%—%2+b2+b,sin a sin6E所以i%=i z F-因a%,6E,6F都是锐角,故T③”sin6F由b・tan a一%=—%2+b2,得tan a=—%2+b2+%b AE=tn6E,即"=6E%由③④可知%=6F.易知6M=—6ABC,6N=—Z BAC,故sin2Z EAM2ME2(槡%2十b2+%)2所以6M+6N=—(6ABC+6BAC)= (槡%2十b2+%)2+b2(!%2十b2+%)22!2+b2)+2%・槡%2十b2(!%2+b2+%)2槡%2+b+%=①2槡%2+b2・((%2+b2+%)2槡%2+b类似地sin26F =槡%2十b2十b②2槡%2十b2—X90。

构造含30角的直角三角形解题

构造含30角的直角三角形解题

1构造含30°角的直角三角形解题山东 李树臣30︒的角是一个特殊的角,它具有一个特殊的性质,即“在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.”这一性质在各类考试中经常出现,利用它的关键是设法构造出含有30︒角的直角三角形.本文列举几例,以说明怎样通过添加辅助线构造出含30︒角的直角三角形.例1 如图1,在A B C △中,30B AC ∠=︒=,,等腰直角三角形A C D 的斜边A D 在A B 边上,求B C 的长.分析:本题含有30︒角的条件,因为只有在直角三角形中的30︒角才有上述的特殊性质,所以需作辅助垂线,构造出一个含有30︒角的直角三角形来,这是解决本体的关键所在.解:过点C 作C E A B ⊥,垂足为E .因为90A C C D A C D =∠=︒,,所以2AD ==,因为C E A B ⊥,AC D △是等腰直角三角形,所以112A E A D C E ===。

在B C E Rt △中,∠例2 在A B C △中,120A B A C A =∠=︒,,A B 的垂直平分线交B C 于点D ,交A B 于点E .如果1D E =,求B C 的长.分析:根据题意,容易发现2B D =,如果连接A D ,则有2A D B D ==,而24C D AD ==,所以B C 可求.解:连接A D ,D E 垂直平分A B ,AD BD =∴,90D E B ∠=︒.A B A C = ,120B A C ∠=︒,30B C ∠=∠=︒∴. 在BD E Rt △中13022B D E B D B D ∠=︒==,∴,∴.AD BD = ,1203090BAD B D AC BAC BAD ∠=∠∠=∠-∠=︒-︒=︒∴,∴,而30C ∠=︒, 12A D C D =∴,224C D A D B D ===,故有:426B C C D B D =+=+=.例3 如图3,60D AB C D AD C B AB ∠=︒⊥⊥,,,且21AB C D ==,,求A D 和B C 的长.分析:注意到条件6090D A B B ∠=︒∠=︒,,联想到含30︒角的直角三角形的性质,延长A D 和B C ,就可以构造出两个含30︒角的直角三角形来.解:延长A D ,B C 交于点E .∵6090D A B B ∠=︒∠=︒,,30E ∠=︒∴,又C D A D ⊥,9022CDE CE CD ∠===∴,∴,图3ADE CB图22DE ==∴又3090E B ∠=︒∠=︒,, 24AE AB ==∴,BE ==∴,42AD AE D E BC BE C E =-=-=-=∴.例4 如图4,在△ABC 中,BD =DC ,若AD ⊥AC ,∠BAD =30°.求证:AC =12AB .分析:由结论12A C AB =和条件30BAD =∠,就想到能否找到或构造直角三角形,而显然图中没有含30°角的直角三角形,所以过B 作BE AD ⊥交A D 的延长线于点E ,这样就得到了直角三角形A B E ,这是解决本题的关键.证明:过B 作BE AD ⊥交A D 的延长线于E ,则90A E B ∠=︒.1302B A D B E A B ∠=︒=,∴.90AD AC D AC ⊥∠=︒ ,∴, A E B D A C ∠=∠∴.又B D C D B D E C D A =∠=∠,,B E DC AD ∴△≌△, 12BE C A A C A B ==∴,∴.ABCED 图4。

「初中数学」利用含30°角的直角三角形解题的几种技巧.doc

「初中数学」利用含30°角的直角三角形解题的几种技巧.doc

「初中数学」利用含30°角的直角三角形解题的几种技巧在初中数学中有这样一个定理:在直角三角形中,若一个锐角为30°,则它所对的边是斜边的一半.它通过角的关系揭示出了边的关系,从角的类别跨出到了边的类别,建立了不同类别之间的联系,所以非常重要,那么在证明线段之间的倍分关系时,我们就要注意提醒自己,题中是否含有30°、60°或120°的特殊角,或者通过某种方法构造含30°的直角三角形.这一定理运用比较广泛,下面结合八年级的习题分别说明。

一.直接运用含30°角的直角三角形的性质1.如图,在等边三角形ABC中,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q.求证:BP=2PQ.【分析】由等边三角形ABC知,AB=AC=BC,∠BAC=∠ABC=∠ACB=60°且AE=CD,显然△ACD≌△BAE.结论要证BP=2PQ,想到在直角三角形BQP中,找30°角或60°,而∠BPQ=∠ABP+∠BAP,由△ACD≌△BAE,可知∠ABP=∠CAD,所以∠BPQ=∠BAP+∠CAD=∠BAC=60°则达到目的.证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°,又AE=CD,∴△ACD≌△BAE,∴∠CAD=∠ABE,∵∠CAD+∠BAP=∠BAC=60°,∴∠ABE+∠BAP=∠BPQ=60°,∵BQ⊥AD,∴∠BQP=90°,∴∠PBQ=90°一∠BPQ=30°,∴BP=2PQ.2.如图,在△ABC中,AB=AC,∠BAC=90°,BD=AB,∠ABD=30°.求证:AD=DC.【分析】欲证,AD=CD,想到什么:等腰三角形三线合一;想到证底角相等?不管你想到哪个定理和性质,还得联系其他条件,条件有,等腰直角三角形BAC,有∠ABD=30°,这些条件又与结论怎样联系呢?那我们就要画辅助线试着分析一下,因为∠ABD=30°,AB=BD,可得,∠BAD=∠BDA=75°,过点A作AE⊥BD于E,E为垂足,使30°的角处于直角三角形中,则有∠EAD=15°,AE=AB/2,又分析出∠CAD=15°,则AD是∠CAE的角平分线,而DE⊥AE,于是想到过点D作DF⊥AC于F,则可证△EAD≌△FAD,得AF=AE=AB/2=AC/2,∴F是AC的中点,∴DF垂直平分AC,∴AD=DC,得证.如图证明:过点A作AE⊥BD于E,过点D作DF⊥AC于F,∴∠AEB=∠AED=∠AFD90°则在Rt△AEB中,∵∠ABD=30°,∴AE=AB/2,又∵AB=AC,则AE=AC/2,在△ABD 中,∵AB=BD,∠ABD=30°,∴∠BAD=1/2(180°一30°)=75°,∵∠BAC=90°,∴∠DAC=15°,而在Rt△AED中,可知∠BAE=60°,∴∠EAD=15°,所以根据∠DAC=∠EAD=15°,∠AED=∠AFD=90°,AD=AD,可得△EAD≌△FAD,∴AF=AE=AC/2,即F是AC的中点,∴DF垂直平分AC,∴AD=DC.那么依据∠DAC=∠DCA是否也可证AD=DC呢?只要同学们善于分析,还是可以的,下面给出一种作辅助线的方法,希望同学们仔细体会.以BC为边在△ABC的同侧作等边三角形BEC,连接AE,如图,由于正三角形,等腰直角三角形的对称性可知,EA平分∠BEC,所以∠BEA=30°,由于∠ABC=60°,∠ABC=45°,∠ABD=30°,所以∠EBA=∠CBD=15°,而AB=BD,BE=BC,∴△EBA≌△CBD,∴∠BCD=∠BEA=30°,则∠ACD=15°,由上边证得知∠DAC=15°,∴∠DAC=∠DCA,∴AD=DC,此法关键是作出一个等边三角形,有同学要问,你怎么就知道作等边三角形呢?显然我也是学来的,多总结,多归纳,多记忆,多体会,你也会知道这种辅助线。

第7讲、构造直角三角形

第7讲、构造直角三角形

第七讲 构造直角三角形知识梳理1.勾股定理的逆定理: 如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形(1) 勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。

即:在△ABC 中,若222c b a =+,则△ABC 为Rt △。

(2) 满足a 2+b 2=c 2的三个正整数,称为勾股数。

常用的勾股数组:如: 3、4、5; 6、8、10; 5、12、13等;若a ,b ,c 为一组勾股数,那么ka ,kb ,kc (k ≠0,k 为常数)也是勾股数。

2.判定一个三角形是否为直角三角形的步骤与方法◆步骤:① 首先确定最大边;② 计算最大边的平方及其余两边的平方和; ③ 比较最大边的平方与其余两边的平方和。

◆方法:假设三角形的三边分别为a ,b ,c ,且c 为最大边:(1)若222c b a =+,则三角形是直角三角形; (2)若222c b a >+,则三角形是锐角三角形; (3)若222c b a <+,则三角形是钝角三角形。

例题精讲例1:已知△ABC 的三边为a 、b 、c ,有下列各组条件,判定△ABC 的形状。

(1)a =6,b =8,c =10; (2)a =41,b =40,c =9;(3))(,,0n m mn 2c n m b n m a 2222>>=+=-=。

例2:如图,在四边形ABCD 中,∠C 是直角,AB =13,BC =4,CD =3,AD =12,求证:AD ⊥BD 。

同步训练 A 组1.已知a 、b 、c 是△ABC 的三边,(1)a =0.3,b =0.4,c =0.5; (2)a =4,b =5,c =6; (3)a =7,b =24,c =25; (4)a =15,b =20,c =25. 上述四个三角形中,直角三角形有( )个。

2.下列命题中的假命题是( )A .在△ABC 中,若∠A =∠C -∠B ,则△ABC 是直角三角形;B .在△ABC 中,若222c b a =+,则△ABC 是直角三角形;C .在△ABC 中,若∠A,∠B,∠C 的度数比是1:2:3,则△ABC 是直角三角形;D .在△ABC 中,若三边长a :b :c =1:2:3,则△ABC 是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧构直角三角形解题
在近几年的中考试题中,出现了一类关于解斜三角形和不规则四边形的问题,解这类问题的关键是运用“化斜为直”的数学思想方法,即将斜三角形或不规则四边形化归为直角三角形,从而应用解直角三角形的知识来解决.常用的化归方法有以下几种:
一、通过添作高线转化
例1. (兰州市中考题)如图1所示,在△A BC 中,∠B =45°,A C =5,BC =3,求sin A 和A B .
解:作CD ⊥A B ,D 为垂足.
在Rt △BDC 中,∠B =45°,
∴BD =CD =cos45°·BC =2·3=2

∴sin A =CD AC =10.A D =2

∴A B =BD +A D . 注 作CD ⊥A B ,构造直角三角形,这是重要的化斜为直的思想、解题的关键一步! 例2.(福州市中考题)某市在“旧城改造”中计划在市内一块如图2所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )
(A )450a 元 (B )225a 元
(C )150a 元 (D )300a 元
解:作A B 边上的高CD ,在Rt △A DC 中,
DC =A C·sin ∠D A C =30×sin30°=15,

因此购买该种草皮至少需要150a 元.故选(C ).
注 给出了草皮每平方米售价a 元,欲求购买这种草皮至少需要多少元,求出三角形的面积是关键,由于给出三角形是非直角三角形,但给出两边长和150°角,因此作两条已知边上的高均能求解,切忌从150°角顶点向对边作垂线,这样会使解题出现僵局.
二、通过连结两点构造
例3.(新疆中考题)如图3,在四边形A BCD 中,A B 、BC 、CD 、D A 的长分别为2,2,
22,且A B ⊥BC ,则∠B A D =__________.
解:连结A C ,则A C =A CD 中,
A C 2+A D 2=8+4=12=(2=CD 2.
即∠D A C =90°.又∵∠B A C =45°.
∴∠B A D =135°.
三、延长两边构造
例4.(天津市中考题)某片绿地的形状如图4所示,其中∠A =60°,A B ⊥BC ,A D ⊥CD ,
A B =200m ,CD =100m ,求A D 、BC 的长(精确到1m ).
分析 根据图形特点,把图形补充完整,使四边形转化为直角三角形.连结A C 是解这类问题常见的错误,它破坏了∠A =60°这一条件.
解:延长A D ,交BC 的延长线于点E .在Rt △A BE 中,由A B =200m ,∠A =60°,得
BE =A B·t a n A =,
A E =cos 60AB
=400m . 在Rt △CDE 中,∵CD =100m ,∠CED =90°-∠A =30°,得CE =2CD =200m ,
DE =CD·cos ∠CED =
∴A D =A E -DE =400-,
BC =BE -CE =200≈146m .
答:A D 的长约为227m ,BC 的长约为146m .
注 添加辅助线,构造直角三角形,把残缺的图形补为完整的图形求解是解直角三角形中一类见的题型.。

相关文档
最新文档