材料力学第九章能量法
材料力学能量法

限制条件:不适 用于求解动力学 问题如振动、冲 击等
适用范围:适用 于求解线性问题 如弹性、塑性等
限制条件:不适 用于求解非线性 问题如塑性、蠕 变等
材料力学能量法的发展趋势和未来 展望
材料力学能量法的发展趋势
计算方法:发展高效、准确 的数值计算方法
应用领域:拓展应用领域如 航空航天、生物医学等
柱的压缩问题
问题描述:柱在轴向 压力作用下的压缩问 题
应用实例:桥梁、建 筑等结构中的柱在受 压时的变形和破坏
能量法分析:利用能 量法分析柱的受压变 形和破坏过程
结论:能量法在柱的 压缩问题中的应用可 以有效地预测柱的变 形和破坏情况为工程 设计提供依据。
弹性体的振动问题
添加 标题
弹性体振动问题的背景:在工程中弹性体的振动问题非常常见如桥梁、建筑物、机械设备等。
定义和原理
材料力学能量法: 一种研究材料力学 问题的方法通过分 析能量变化来求解 问题。
基本概念:能量、 应力、应变、位移 等。
原理:根据能量守 恒定律材料的变形 和破坏过程中能量 会发生变化通过分 析这些变化可以求 解问题。
应用:广泛应用于 结构分析、优化设 计等领域。
能量法的应用范围
结构力学:分析结构受力、变形和稳定性 材料力学:分析材料应力、应变和断裂 流体力学:分析流体流动、压力和速度 热力学:分析热传导、对流和辐射 电磁学:分析电磁场、电磁波和电磁感应 声学:分析声波传播、反射和吸收
能量法的基本假设
材料是连续、均匀、各向同性的
材料是线弹性的应力与应变成正 比
添加标题
添加标题
材料是弹性的满足胡克定律
添加标题
添加标题
材料是各向同性的应力与应变的 关系与方向无关
材料力学第9章--梁挠度和刚度计算

qx4
ql 12
x3
C x D 1
1
C 材料力学方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
6 梁的最大挠度:根据对称性
E Iw m a x E Iw |2 l 2 1 4 q 2 l 4 1 q 2 l 2 l 3 q 2 l4 3 2 l 3 5 8 q 4 lE 2 I
第9章 平面弯杆弯 曲 变 形与刚度计算 9.1 挠曲线 挠度和转角 9.2 挠曲线近似微分方程 9.3 积分法求梁的变形 9.4 叠加法求梁的变形 9.5 梁的刚度条件与合理刚度设计 9.6 用变形比较法解简单超静定梁
材料力学第9章--梁挠度和刚度计算
9.1 挠曲线 挠度和转角
1、梁的变形特点
平面假设
1 M z (x)
EI z * 思考:
1、若M常量
2、 若MM(x)
材料力学第9章--梁挠度和刚度计算
9.3 积分法求梁的变形
1、挠曲线方程(弹性曲线)
EIw (x)M (x)
EIw (x)M (x)dxC 1
E Iw (x ) (M (x )d x )d x C 1 x C 2
材料力学第9章--梁挠度和刚度计算
q
小变形(小挠度)
C
挠曲线
P x
w(x)
w(x)
C1
挠曲线:梁弯曲后,梁轴线所成的曲线
挠曲线方程
挠度:梁截面形心在垂直于梁的初始轴线方向的位移 w w(x)
转角:梁截面相对于变形前的位置转过的角度 qtanqdwx
材料力学第9章--梁挠度和刚度计算
dx
材料力学第九章动荷载和交变应力

kd 1 a g 1 2.5 9.8 1.26
st FNst / A W2 / A 127.3MPa d kd st 160.4MPa 1.05[ ]
∴ 钢索满足强度要求。
2.5m
FNd W2
W2 g
a
2.5m a
W2
2.梁的强度校核
W1
kd 1 a g 1 2.5 9.8 1.26
求σdmax、△Dd。不计梁的自重。 A
解:1.计算静态的△Cst、Mmax和
σstmax
W
h
D
2l / 3 l
C
B
l/3
由 w Fb(l 2 b2 ) x Fb x3
6EIl
6EIl
得
Δ Cst
W
l [l 2 ( l )2]
3
3
6EIl
2l 3
Wl 3
6EIl
( 2l )3 3
4Wl 3 0.19mm 243EI
结论:梁满足强度要求。
三、提高构件抗冲击能力的措施
d kdst Fd kdW d kd st
kd 1
1 2h — —竖向冲击动荷因数
st
kd
v2 水平冲击动荷因数
gst
在静应力不变的情况下,减小动荷系数可以减小冲击应力。
即加大冲击点沿冲击方向的静位移: 被冲击物采用弹性模量低、变形大的材料制作; 或在被冲击物上垫上容易变形的缓冲附件。
W
h C
z Iz = 1130cm4 Wz =141cm3
A
B
1.梁本身的变形
1.5m
1.5m
k
ΔCst1
Wl 3 48EI
0.474mm
2.支座缩短量
材料力学课件:能量法(一) (2)

公式中k为广义力Fk的相应广义位移
公式中的广义力Fk为相互独立的变量
14
能量法(一)
卡氏第二定理要早于克罗第—恩格塞定理
卡氏第二定理的证明:
Fk
F1 F2 Fk Fn A
1、 各Fi作用下梁的总外力功 B 2、给Fk一微增量Fk后的外力功增量
1 2 k
n
3、改变加载次序(先加Fk,后)
加Fi)的总外力功
bh5/ 2
l h/2
Vc V vcdV 2 0 0 vcbdydx
Vc F
25 F 2l 4 2c 2b 2 h 5
19
能量法(一)
➢
卡氏定理的应用:
k
V FkBiblioteka 例1:求A端的挠度P
A l
x
l M 2(x)
V 0
dx 2 EI
M(x) Px
Pl3 f A 3EI
20
能量法(一)
例2:求A端的转角
P
A l
P
M
x
k
V Fk
l M 2(x)
V 0
dx 2 EI
M(x) Px M
A
V M
M 0
附加力法:先假设一附加力,对被积函数求导后,令附加力等于零
21
能量法(一)
例3:EI为常数,求fA,A
k
V Fk
fA
V P
A
V ( Pa )
Pa
B
aC a
A
V
1( 2EI
a 0
和均取绝对值。求A端的挠度。
k
Vc Fk
F
A l
弹性体余能:Vc V vcdV
不考虑剪力的影响:微体处于单向
材料力学章节重点和难点

材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。
2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。
3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。
2.重点:剪力方程和弯矩方程、剪力图和弯矩图。
3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。
第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。
2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。
3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。
2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。
3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。
第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。
2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。
3.难点:主应力方位确定。
第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。
3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。
山东大学材料力学习题练习册 班级 学号 姓名

第20页共26页
山东大学材料力学习题练习册班级学号姓名
9.17图示桁架各杆的材料相同,截面面积相等。试求节点C处的水平位移和垂直位移。
9.20直角曲拐 水平放置,受垂直方向的力 作用。刚架的 和 都为已知,试求截面 的垂直位移。
9.6在外伸梁的自由端作用力偶矩 ,试用互等定理,并借助于表4.1,求跨度中点 的挠度 。
9.8试求图示各梁 截面的挠度及 截面转角。 为已知。第19 Nhomakorabea共26页
山东大学材料力学习题练习册班级学号姓名
9.9图示为变截面梁,试求在 作用下截面 的垂直位移和截面 的转角。
9.14求图示变截面刚架 截面的垂直位移和水平位移。
山东大学材料力学习题练习册班级学号姓名第九章第九章能量法能量法91两根圆截面直杆的材料相同尺寸如图所示其中一根为等截面另一根为变截面
山东大学材料力学习题练习册班级学号姓名
第九章能量法
9.1两根圆截面直杆的材料相同,尺寸如图所示,其中一根为等截面,另一根为变截面。试比较两根杆件的应变能。
9.2试求图示受扭圆轴内所积蓄的应变能( )。
9.22由杆系及桁架组成的混合结构如图所示。设 、 、 、 、 均为已知。试求 点的垂直位移。
9.26图示折杆的横截面为圆形。在力偶矩 作用下,试求折杆自由端的线位移和角位移。
第21页共26页
九、 材料力学位移分析(2)

5、梁的刚度计算
解:1、作强度设计
[ ]; W ql 2 1 M max 10103 4 2 40kNm; 4 4 40103 4 3 W 4 10 m ; 100106 单个槽钢W 2 10 4 m 3 200cm3 ;
22a槽钢满足刚度要求。
课外练习:9-18;9-19;
6、简单的静不定问题
关于静不定的基本概念
求解静不定问题的基本方法
拉压静不定问题
扭转静不定问题 简单的静不定梁 静不定结构的特性
6、简单的静不定问题
关于静不定的基本概念
静定问题与静定结构——未知力(内力或外力)个数等于独立的平衡方程数 静不定问题与静不定结构——未知力个数多于独立的平衡方程数
对转角的限制 轴的类型 滑动轴承 向心轴承 向心球面轴承 圆柱滚子轴承 圆锥滚子轴承 安装齿轮的轴 许用转角[θ]/rad
0.001 0.005 0.005 0.0025 0.0025 0.001
5、梁的刚度计算
例题9-10、图示钢制圆轴,已知
20kN C
2000
Fp=20kN,E=206GPa,轴承B 处的
4、铝杆应力:σ =FNA/AA=128.8MPa 5、铝杆长度:l =300+0.936-0.552=300.38mm;
6、简单的静不定问题
扭转静不定问题 例题9-15、两端固定的圆轴受力如图,已知Mx,GIp,l, 求A、B两端的约束力。
y
x Mx z A l C l Mx D l B
6、简单的静不定问题
解:1、轴受力如图,由平衡方程:
M
x
0;
M x 4 M x M x M x 3 0;
材料力学章节重点和难点

材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。
2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。
3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。
2.重点:剪力方程和弯矩方程、剪力图和弯矩图。
3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。
第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。
2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。
3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。
2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。
3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。
第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。
2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。
3.难点:主应力方位确定。
第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。
3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Therefore, the final strain energy for the second loading sequence is
dPi dδ i + U + dPiδ i (b) 2 Equating this expression to the earlier one (a), we have ∂U dPi dδ i U+ dPi = + U + dPiδ i ∂Pi 2 Neglecting the higher order infinitesimal amount, we then obtain
For a nonprismatic bar with continuously varying axial force, its strain energy is
[ N(x)2 ] U =∫ dx 2 EA( x) 0
l
2. Strain energy density ----The strain energy per unit volume of material.
If the two loads are equal, then the last equation becomes
δ 12 = δ 21
The reciprocal - displaceme nt theorem
The displacement at point A due to the load acting at point B is equal to the displacement at point B due to the load acting at point A.
l l l
9.2 Reciprocal Theorems 互换定理 1. Basic conditions a) the material must follow Hooke’s law; b) The displacement must be small enough that all calculations can be based upon the undeformed geometry of the structure.
Mθ U =W = 2
M 2L U= 2 EI
l 2
[ M ( x)]2 dx dU = 2x U =∫ 2 EI ( x) 0
5. Strain energy in the case of combined loading
If the materail is linear elastic and the deformation is small, we can get the strain energy in a member by superpersition
Comparing the equations (*) and (**), we get
P1δ 12 = P2δ 21 The reciprocal - work theor em
The work done by the forces in the first state of loading when they move through their corresponding displacements in the second state of loading is equal to the work done by the forces in the second state of loading when they move through their corresponding displacements in the first state of loading
9.3 Castigliao’s Theorems The strain energy U of the beam is
U = W = W ( P , P2 ,......Pn ) 1 i.e., the strain energy U is a function of the loads P1 P2 ,…Pn. Supposing that load Pi is increased slightly by the amount dPi, the increase in strain energy is
∂U δi = ∂Pi (8 - 20) Castigliao’ s Theorems
Example9-1 Find the vertical displacement and angle of rotation at the free end of a cantilever with Castigliano’s theorem. Solution: M=-Px-M0 l l 2 M dx 1 U =∫ = (− Px − M 0 ) 2 dx 2 EI ( x) 2 EI ∫ 0 0
When the second load is applied, an additional deflection results at B equal to δ22 ; hence, the second load dose work equal to 1 P2δ 22 2 Noting that the point A undergoes an additional deflection δ12 while the second load is being applied, the work done by P1 during this process is P1δ 12 In the way that one load is applied before the other, the total strain energy in the beam is 1 1 U = P1δ 11 + P2δ 22 + P1δ 12 (**) 2 2
Tϕ U =W = 2
T L U= 2GI P
2
l
[T ( x)] dx dU = 2GI P ( x)
2
[T ( x)]2 dx U =∫ 2GI P ( x) 0
4. Strain energy in a beam Similarly, we can use equation (*) to calculate the strain energy in a beam by substituting P with bending moment M and δ with the relative angle of rotation of the two ends of the beam θ, and get
0
δ
which make the bar absorbs energy called strain energy.
U = W = ∫ P dδ 1 1
0
δ
PL Noting that δ= We have EA P2L EAδ 2 U= U= 2 EA 2L
Let us assume that the material of the bar follows Hooke’s law, then Pδ U =W = (*) 2
1 1 1 dU = N ( x)dδ + M ( x)dθ + T ( x)dϕ 2 2 2
N 2 ( x)dx M 2 ( x)dx T 2 ( x)dx = + + 2 EA( x) 2 EI ( x) 2GI P ( x)
N 2 ( x)dx M 2 ( x)dx T 2 ( x)dx +∫ +∫ U =∫ 2 EA( x) 0 2 EI ( x) 0 2GI P ( x) 0
∂U dU = dPi ∂Pi Thus, the final strain energy of the beam is ∂U U + dU = U + dPi (a) ∂Pi
Now we let the load dPi is applied first, which produces its Corresponding displacement dδi. Thus, the strain energy due to the dPi is 1 dPi dδ i 2 When the loads P1 P2 ,…Pn are applied, they produce the same displacements as before (δ1, δ2, … ,δn) and do the same amount of work as before (U). However, during the application of these loads, the force dPi automatically moves through the displacement δi. Thus, dPi do additional work, equals to the additional strain energy, as following dPiδ i
For a bar u=
U N u= = AL 2 EA2
2
Eδ u= 2 L2
2
2
σ
2
2E
Eε u= 2
3. Strain energy in a bar in Torsion Similarly, we can use equation (*) to calculate the strain energy in a torsional bar by substituting P with torque T and δ with angle of torsion ϕ, and get
Chapter 9
Energy Methods
9.1 Calculation of Strain Energy 1. Strain energy in the bars Consider a bar with a static load. The work done by P1 is