量子力学练习题
量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学经典练习题及答案解析

1.设氢原子处于基态030,1),,(0a e a r a r -=πϕθψ为Bohr 半径,求电子径向概率密度最大的位置(最概然半径)。
解 22)()(r r R r w nl nl ⋅= 23010021)(r e a r w a r ⋅=-π ⎭⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 011203002=⎭⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得0=r , ∞→r , 0a r =2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和zL ˆ的共同本征函数,并指出相应的本征值。
( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L )解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L 将2ˆL作用于所给函数上,得 ϕθϕθθθθθ332222sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=ϕθ332sin )(12i e r f =上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL的本征函数,本征值为212 。
又ϕ∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f ie rf i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是zL ˆ的本征函数,本征值为 3。
量子力学练习题

量子力学练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一. 填空题1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。
2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。
3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E=kT 23(k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。
4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n = ,相应的波函数=)(x n ψ()a x ax n a n <<=0sin 2πψ和 。
5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E=eV eV 51.136.132-=;L= ;L z = ,轨道磁矩M z = 。
6.两个全同粒子组成的体系,单粒子量子态为)(q k ϕ,当它们是玻色子时波函数为),(21q q s ψ= ;玻色体系为费米子时=),(21q q A ψ ;费米体系7.非简并定态微扰理论中求能量和波函数近似值的公式是E n =()()+-'+'+∑≠0020m nnm mn mn nE EH H E ,)(x n ψ = ())() +-'+∑≠00020m m nnm mnn E EH ψψ,其中微扰矩阵元 'mn H =()()⎰'τψψd H n m 00ˆ;而'nn H 表示的物理意义是 。
该方法的适用条件是 本征值, 。
8.在S 2和S 2的共同表象中,泡利矩阵的表示式为=x σ ,=y σ ,=z σ 。
基本习题及答案_量子力学

量子力学习题(一) 单项选择题1.能量为100ev的自由电子的De Broglie 波长是A. 1.2. B. 1.5. C. 2.1. D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是A.1.3. B. 0.9. C. 0.5. D. 1.8.3. 能量为0.1ev,质量为1g的质点的De Broglie 波长是A.1.4. B.1.9.C.1.17. D. 2.0.4.温度T=1k时,具有动能(为Boltzeman常数)的氦原子的De Broglie 波长是A.8. B. 5.6. C. 10. D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()A.. B..C.. D..6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2. B. 7.1. C. 8.4. D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25J. B. 1.25J.C. 0.25J. D. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.. B.. C.. D..pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A.. B.. C.. D..12. 设,在范围内找到粒子的几率为A.. B.. C.. D..13. 设粒子的波函数为,在范围内找到粒子的几率为A.. B..C.. D..14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为A..B.+.C.+.D.+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限.16.有关微观实物粒子的波粒二象性的正确表述是A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.17.已知波函数,,,.其中定态波函数是A.. B.和. C.. D.和.18.若波函数归一化,则A.和都是归一化的波函数.B.是归一化的波函数,而不是归一化的波函数.C.不是归一化的波函数,而是归一化的波函数.D.和都不是归一化的波函数.(其中为任意实数)19.波函数、(为任意常数),A.与描写粒子的状态不同.B.与所描写的粒子在空间各点出现的几率的比是1:.C.与所描写的粒子在空间各点出现的几率的比是.D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A..B..C..D..21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.B.C.D.23.几率流密度矢量的表达式为A..B..C..D..24.质量流密度矢量的表达式为A...C..D..25. 电流密度矢量的表达式为A..B..C..D..26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B., D..28. 在一维无限深势阱中运动的质量为的粒子的能级为A., B., C., D..29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D..30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是A., B., C., D..31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是 A., B., C., D..32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.33.线性谐振子的能级为A..B..C..D..34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为A.. B.. C.. D..35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是A..B..C..D..37.氢原子的能级为A..B..C.. D..38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.. B..C.. D..39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.. B..C.. D..40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A..B..C..D..41.和是厄密算符,则A.必为厄密算符. B.必为厄密算符.C.必为厄密算符.D.必为厄密算符.42.已知算符和,则A.和都是厄密算符. B.必是厄密算符.C.必是厄密算符.D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1.B. 2.C. 3.D. 4.44.二维自由粒子波函数的归一化常数为(归到函数)A.. B..C.. D.45.角动量Z分量的归一化本征函数为A.. B..C.. D..46.波函数A. 是的本征函数,不是的本征函数.B. 不是的本征函数,是的本征函数.C. 是、的共同本征函数.D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n=3的简并度为A. 3.B. 6.C. 9.D. 12.48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A.. B.. C.. D..51.设体系处于状态,则该体系的能量取值及取值几率分别为A.. B..C.. D..52.接51题,该体系的角动量的取值及相应几率分别为A.. B.. C.. D..53. 接51题,该体系的角动量Z分量的取值及相应几率分别为A.. B..C.. D..54. 接51题,该体系的角动量Z分量的平均值为A.. B.. C.. D..55. 接51题,该体系的能量的平均值为A..B..C.. D..56.体系处于状态,则体系的动量取值为A.. B.. C.. D..57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3.58.接56题, 体系的动量平均值为A.. B.. C.. D..59.一振子处于态中,则该振子能量取值分别为A.. B..C.. D..60.接上题,该振子的能量取值的几率分别为A.. B.,.C.,. D..61.接59题,该振子的能量平均值为A. .B..C.. D..62.对易关系等于(为的任意函数) A..B..C.. D..63. 对易关系等于A.. B..C.. D..64.对易关系等于A.. B.. C.. D..65. 对易关系等于A.. B.. C.. D..66. 对易关系等于A.. B.. C.. D..67. 对易关系等于A.. B.. C.. D..68. 对易关系等于A.. B.. C.. D..69. 对易关系等于A.. B.. C.. D..70. 对易关系等于A.. B.. C.. D..71. 对易关系等于A.. B.. C.. D..72. 对易关系等于A.. B.. C.. D..73. 对易关系等于A.. B.. C.. D..74. 对易关系等于A.. B.. C.. D..75. 对易关系等于A.. B.. C.. D..76. 对易关系等于A.. B.. C.. D..77.对易式等于A.. B.. C.. D..78. 对易式等于(m,n为任意正整数) A.. B.. C.. D..79.对易式等于A.. B.. C.. D..80. .对易式等于(c为任意常数) A.. B.. C.. D..81.算符和的对易关系为,则、的测不准关系是A.. B..C.. D..82.已知,则和的测不准关系是 A.. B..C.. D..83. 算符和的对易关系为,则、的测不准关系是A..B..C..D..84.电子在库仑场中运动的能量本征方程是A..B..C..D..85.类氢原子体系的能量是量子化的,其能量表达式为A.. B..C.. D..86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B.,C., D..87.接上题,能量可测值、出现的几率分别为A.1/4,3/4.B. 3/4,1/4.C.1/2, 1/2.D. 0,1.88.接86题,能量的平均值为A., B., C., D..89.若一算符的逆算符存在,则等于A. 1.B. 0.C. -1.D. 2.90.如果力学量算符和满足对易关系, 则A.和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值.B.和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C.和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D.和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式等于A.. B..C.. D..93.定义算符, 则等于A.. B.. C.. D..94.接上题, 则等于A.. B.. C.. D..95. 接93题, 则等于A.. B.. C.. D..96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A.. B.C.. D..99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是A.. B.. C.. D..100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是A.. B.. C.. D..101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D..102.线性谐振子的能量本征函数在能量表象中的表示是A.. B.. C.. D..103. 线性谐振子的能量本征函数在能量表象中的表示是A.. B..C.. D..104.在()的共同表象中,波函数,在该态中的平均值为A.. B.. C.. D. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是A..B..C..D..106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B. 一个上三角方阵.C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是A.. B.. C.. D..108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A.. B..C.. D..109.在表象中,其本征值是A.. B. 0. C.. D..110.接上题,的归一化本征态分别为 A.. B..C.. D..111.幺正矩阵的定义式为 A.. B.. C.. D..112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢. 113.算符,则对易关系式等于A.. B..C.. D..114.非简并定态微扰理论中第个能级的表达式是(考虑二级近似)A..B..C..D..115. 非简并定态微扰理论中第个能级的一级修正项为A.. B.. C.. D..116. 非简并定态微扰理论中第个能级的二级修正项为A.. B..C.. D..117. 非简并定态微扰理论中第个波函数一级修正项为A..B..C..D..118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为A..B..C..D..119.非简并定态微扰理论的适用条件是 A.. B..C.. D..120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A.. B..C.. D..121.非简并定态微扰理论中,波函数的一级近似公式为A..B..C..D..122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A..B..C..D..124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿.B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋. 126.为自旋角动量算符,则等于A.. B.. C..D..127.为Pauli算符,则等于A.. B.. C.. D..128.单电子的自旋角动量平方算符的本征值为A.. B.. C.. D..129.单电子的Pauli算符平方的本征值为 A. 0. B. 1. C. 2. D. 3.130.Pauli算符的三个分量之积等于A. 0.B. 1.C.. D..131.电子自旋角动量的分量算符在表象中矩阵表示为A.. B..C.. D..132. 电子自旋角动量的y分量算符在表象中矩阵表示为A.. B..C.. D..133. 电子自旋角动量的z分量算符在表象中矩阵表示为A.. B..C.. D..134.是角动量算符,,则等于A.. B.. C. 1 . D. 0 .135.接上题,等于A.. B.. C.. D. 0.136.接134题,等于A.. B.. C.. D. 0.137.一电子处于自旋态中,则的可测值分别为A.. B..C.. D..138.接上题,测得为的几率分别是A.. B.. C..D..139.接137题,的平均值为A. 0.B..C.. D..140.在表象中,,则在该态中的可测值分别为A.. B.. C.. D..141.接上题,测量。
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子力学习题集及答案

09光信息量子力学习题集一、填空题1. 设电子能量为4电子伏,其德布罗意波长为( 6.125A )。
2.索末菲的量子化条件为( ⎰=nh pdq ),应用这量子化条件求得一维谐振子的能级=n E ( ωn )。
3.德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍射实验所证实,德布罗意关系(公式)为( ω=E )和( k p= )。
4.三维空间自由粒子的归一化波函数为()r pψ=( r p i e⋅2/3)2(1π ), ()()=⎰+∞∞-*'τψψd r r p p ( )(p p-'δ )。
5.动量算符的归一化本征态=)(r pψ(r p i e⋅2/3)2(1π ),='∞⎰τψψd r r p p )()(* ( )(p p-'δ )。
6.t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t iex ex ωωψψ25220)(2)(--+ )。
7.按照量子力学理论,微观粒子的几率密度w =2),几率流密度=(()**2ψ∇ψ-ψ∇ψμi )。
8.设)(r ψ描写粒子的状态,2)(r ψ是( 粒子的几率密度 ),在)(r ψ中Fˆ的平均值为F =( ⎰⎰dx dx F ψψψψ**ˆ )。
9.波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ),δi e 不影响波函数ψ1=δi )。
10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为零)的状态。
11.)i exp()()i exp()(),(2211t Ex t E x t x-+-=ψψψ是定态的条件是( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。
12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。
量子力学练习题

量子力学练习题随着科学技术的不断进步,量子力学作为近代物理学的基石,在我们生活中扮演着越来越重要的角色。
量子力学的概念和理论模型不仅用于解释微观世界的现象,还应用于信息处理、材料科学等领域。
为了加深对量子力学的理解,本文将为读者提供一些量子力学练习题,请认真思考并尽力解答。
题目一:平面上的单粒子态考虑一个二维平面上的单粒子,其波函数为Ψ(x, y)。
假设该波函数可以展开为以下形式:Ψ(x, y) = A(xe^(-λx) + ye^(-λy))其中,A和λ均为实常数。
1. 请计算波函数Ψ(x, y)的归一化常数A。
2. 求解波函数Ψ(x, y)对应的概率密度函数|Ψ(x, y)|^2。
3. 计算算符x和y对该波函数的期望值<x>和<y>。
题目二:自旋1/2粒子的测量考虑一个自旋1/2粒子,其自旋算符的本征态为|+⟩和|-⟩,对应自旋向上和向下的状态。
现在进行如下测量:1. 如果对该粒子的自旋以z方向为测量方向,求测量得到自旋向上状态的概率。
2. 假设在z方向上测量得到自旋向上状态后,立即进行对z方向自旋的再次测量,求再次测量得到自旋向上状态的概率。
3. 如果对该粒子的自旋以任意方向为测量方向,求测量得到自旋向上状态的概率。
题目三:简谐振子的能量本征态考虑一个一维简谐振子,其能量本征态可由波函数Ψ_n(x)表示,n 为非负整数。
波函数Ψ_n(x)的表达式为:Ψ_n(x) = N_n H_n(x) e^(-x^2/2)其中,N_n为归一化常数,H_n(x)为Hermite多项式。
1. 请计算波函数Ψ_0(x)的归一化常数N_0。
2. 求解波函数Ψ_1(x)对应的薛定谔方程解,并给出其归一化常数N_1。
3. 计算简谐振子的能量本征值E_n,其中n = 0, 1, 2。
题目四:双缝干涉实验考虑一个双缝干涉实验,光源发射频率为f,波速为v。
光通过双缝后形成干涉条纹,条纹之间的间距为d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学练习题
1.要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是
(A) 1.5 eV . (B) 3.4 eV .
(C) 10.2 eV . (D) 13.6 eV . [ ]
2.要使处于基态的氢原子受激后可辐射出可见光谱线,最少应供给氢原子的能量为
(A) 12.09 eV . (B) 10.20 eV .
(C) 1.89 eV . (D) 1.51 eV . [ ]
3.已知粒子在一维矩形无限深势阱中运动,其波函数为:
a x a
x 23cos 1)(π⋅=ψ, ( - a ≤x ≤a ) 那么粒子在x = 5a /6处出现的概率密度为
(A) 1/(2a ). (B) 1/a . (C) a 2/1 (D) a /1 . [ ]
4.设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?
[ ]
5.波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为
(A) 25 cm . (B) 50 cm .
(C) 250 cm . (D) 500 cm . [ ]
6.下列各组量子数中,哪一组可以描述原子中电子的状态?
(A) n = 2,l = 2,m l = 0,2
1=s m . (B) n = 3,l = 1,m l =-1,2
1-=s m . (C) n = 1,l = 2,m l = 1,2
1=s m . (D) n = 1,l = 0,m l = 1,2
1-=s m . [ ] 7.在原子的L 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是
(1) (2,0,1,21). (2) (2,1,0,2
1-). (3) (2,1,1,21). (4) (2,1,-1,2
1-). 以上四种取值中,哪些是正确的?
(A) 只有(1)、(2)是正确的. (B) 只有(2)、(3)是正确的.
(C) 只有(2)、(3)、(4)是正确的. (D) 全部是正确的. [ ]
8.已知某金属的逸出功为A ,用频率为ν1的光照射该金属能产生光电效应,则该金属的红限频率ν0 =___________,ν1 > ν0,且遏止电势差|U a | =__________________.
9.分别以频率为ν1和ν2的单色光照射某一光电管.若ν1 >ν2 (均大于红限频率ν0),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E 1____ E 2;所产生的饱和光电流I s1____ x (A)x
(B)x (C)x (D)
I s2. (用>或=或<填入)
10.原子内电子的量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同的量子
态数目为__________________;当n 、l 一定时,不同的量子态数目为____________;当n 一定时,不同的量子态数目为_______.
11.根据量子力学理论,氢原子中电子的动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩的可能取值为______________________________.
12.根据量子力学理论,氢原子中电子的动量矩在外磁场方向上的投影为 l z m L =,当角量子数l =2时,L z 的可能取值为________________________.
13.原子中电子的主量子数n =2,它可能具有的状态数最多为______个.
14.主量子数n = 4的量子态中,角量子数l 的可能取值为____________;磁量子数m l 的可能
取值为__________________________.
15.在主量子数n =2,自旋磁量子数2
1=s m 的量子态中,能够填充的最大电子数是______. 16.根据泡利不相容原理,在主量子数n = 4的电子壳层上最多可能有的电子数为____个.
17.锂(Z =3)原子中含有3个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已
知基态锂原子中一个电子的量子态为(1,0,0,2
1),则其余两个电子的量子态分别为 (__________ ___)和(______________).
18.图中所示为在一次光电效应实验中得出的曲线
(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19 C) 19.实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?
(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.
20.已知氢光谱的某一线系的极限波长为3647 Å,其中有一谱线波长为6565 Å.试由玻尔氢原子理论,求与该波长相应的始态与终态能级的能量. (R =1.097×107 m -1 )
21.氢原子激发态的平均寿命约为10-8 s ,假设氢原子处于激发态时,电子作圆轨道运动,试
求出处于量子数n =5状态的电子在它跃迁到基态之前绕核转了多少圈.( m e = 9.11×10-31 kg ,e =1.60×10-19 C ,h =6.63×10-34 J ·s , ε 0=8.85×10-12 C 2·N -1·m -2 )
22.氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求:
(1) 与这一谱线相应的光子能量为多少电子伏特?
(2) 该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少?
(3) 最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线?
请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.
23.当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为∆E = 10.19 eV 的状态时,发射出光
子的波长是λ=4860 Å,试求该初始状态的能量和主量子数.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-
19 J) 24.α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动.
(1) 试计算其德布罗意波长.
(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少?
(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) |14 Hz)。