二次函数在闭区间上的最值

合集下载

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。

将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。

我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。

否则就说x 不属于A ,记作x ∉A 。

2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。

(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。

当a<0可作同样处理。

二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。

(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。

变式2:已知0≤x≤1,求y =的最值。

变式3:求函数y x =+的最小值。

类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)二次函数在闭区间上的最值一、知识要点:一元二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为对称轴在区间的左边,中间,右边三种情况。

设函数f(x)=ax^2+bx+c(a≠0),求f(x)在x∈[m,n]上的最大值与最小值。

分析:将f(x)配方,得顶点为(-b/2a,f(-b/2a)),对称轴为x=-b/2a。

当a>0时,它的图像是开口向上的抛物线,数形结合可得在[m,n]上f(x)的最值:1)当-b/2a∈[m,n]时,f(x)的最小值是f(-b/2a),f(x)的最大值是max{f(m),f(n)}。

2)当-b/2a∉[m,n]时,若-b/2a<m,由f(x)在[m,n]上是增函数则f(x)的最小值是f(m),最大值是max{f(-b/2a),f(n)};若n<-b/2a,由f(x)在[m,n]上是减函数则f(x)的最大值是f(m),最小值是min{f(-b/2a),f(n)}。

当a<0时,可类比得结论。

二、例题分析归类:一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数y=-x^2+4x-2在区间[0,3]上的最大值是6,最小值是-2.练.已知函数f(x)=x^2+x+1(x≤3),求函数f(x)的最值。

2、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2.如果函数f(x)=-x^2+2x+t在区间[t+1,t+2]上,求f(x)的最值。

例3.已知f(x)=-x^2-4x+3,当x∈[t,t+1](t∈R)时,求f(x)的最值。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

二次函数动轴与动区间考点技巧分类总结

二次函数动轴与动区间考点技巧分类总结

二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b am n 2,时,f x ()的最小值是f b a ac ba f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉ba m n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n ()若n ba<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n ()当a <0时,可类比得结论。

二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

谈二次函数在闭区间上的最值估计

谈二次函数在闭区间上的最值估计

分别将 、 和一 / 带人 上式得 : / 、 ’ ( / 、 - : ( / )T 、, \ ‘ 一 /2 ) s x + (/2)① 芝 ( 、 乏一 /Y) : ( , 2)T 一 / )② 一 厂 一 x - s 一/- + ( 、 一
冈 为 S( ) 奇 函 数 , x) 偶 函 数 , 以 ( / x是 T( 是 所 一、 一
X — X
例3 设等 差 数 列 { } 前n 和 为S , 知 ( 4 1 + 0 7 a . a的 n 项 已 a- ) 2 0 (

1 =1 (2H )+ 0 7 ao — ) 一1 S]2 = ) ,a(一1 2 H ( 24 1 = . J ∞7 K 0 0 S
— —

的 平 衡 . 过 设 【 减 少 了 变 元 , 而 为 构 造 数 ft 铺 了 通 察 两个 已知 等式 郜有 相 似 的结 构 特 征 , 妨 构 造 斤观 不
甬 数 fx = 一2 0 x, 后 利 用 此 函 数 的 性 质 寻 找 突 破 口 。 ( ) x+ 0 7 然
道路。 五 、 关 于 二 项 式 定 理 的 问 题 解
解 : ( ) x+ 0 7 易 知fx) 设f x = 2 0 x, ( 为奇 函数 , 是 R上 的 单 il 且 l 占 增 函数 .
4 4 — X 2
南① 、 得S 、 )一 , 一 2 . ③ (/ : 2 即s 注 : (- / ) 表 示 成 一 个 奇 函 数 与一 个 鸺 函 数 之 将 x 、
一 —一 —— 0 — =2 07
注: 南题 目中 已知 等 式 的 结 构 特 征 灵 活 构 造 函数 , 答过 解 程简洁明 了。

微专题31 闭区间上二次函数的最值问题

微专题31 闭区间上二次函数的最值问题

f (x)max =
解法 2 函数 f 求最小值.
2 a a 2 x - (x)=x2-ax+1= - +1,对称轴为 2 4
a x=2,先
a ①当2<-1 时,即 a<-2 时,f (x)在[-1,1]上单调递增,f (x)min =f (-1)=2+a; a ②当-1≤2≤1 时,即-2≤a≤2 时,f (x)min=f
解析:f
2 2 (2 a - 1) 2 a - 1 (x)=a - 3 ,对称轴为 x+ - 4a 2a
2 a -1 x=- 2a ,
(1)当 a>0 时, 2a-1 1 2 ①当- 2a ≤4,即 a≥5时,f (x)max=f (2)=8a-5;
2 a a =1- ; 4 2
a ③当2≥1 时,即 a≥2 时,f (x)在[-1,1]上单调递减,f (x)min=f (1) =2-a. 再求最大值,因为抛物线开口向上,则最高点必为曲线一端点,所 以
2-a,a<0, f (x)max=max{f (-1),f (1)}= 2+a,a≥0.
=g(-1)=-3,则 a≥-3. 1 1 ②当 x=-2时,0≤4+2 恒成立,则 a∈R.
2 2 x + 2 x +2 1 ③当-2<x≤1 时,不等式化为 a≤ ,令 g(x)= ,则 g′(x) 2x+1 2x+1 x2+2 2(x2+x-2) 1 = ′= 2 <0,g(x)在- ,1上单调递减,所以 g(x)min= 2 2 x + 1 (2x+1)
a x=2,
a ①当2<-1 时,即 a<-2 时,f (x)在[-1,1]上单调递增,f (x)min =f (-1)=2+a,f (x)max=f (1)=2-a;

二次函数求最值(动轴定区间、动区间定轴)

二次函数求最值(动轴定区间、动区间定轴)
5 f(x)max=10f(k+2)=(1k5 +2)2-2(k+2)-3 =k2+2k-3
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
(2)若x∈[ 2,4 ],求函数f(x)的最值; 10
(3)若x∈[ 1 , 5 ],求函数f(x)的最值; 8
2
(4)若x∈[
12, 2
3
6
2 ],求函数f(x)的最值;
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
15
10
5
x= 1 时有最大值 f (1) 13
2
24
x=1时有最小值f(1)=-4
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
10
10
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
k
2
2
2
2
1105
k+2
4
4
4
4
6
6
6
6
8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5)若x∈[t,t+2]时,
求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
h
8
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
(4)若x∈[
例3、已知函数f(x)=x2+ax+b,x∈[0,1], 试确定a、b,使f(x)的值域是[0,1].
y
–1 0
1 2x
h
20
例3、已知函数f(x)=x2+ax+b,x∈[0,1], 试确定a、b,使f(x)的值域是[0,1].
y
–1 0
1 2x
h
21
例3、已知函数f(x)=x2+ax+b,x∈[0,1], 试确定a、b,使f(x)的值域是[0,1].
包含定轴的变化,要
注意开口方向及端点
情况。
h
11
例2、求函数f(x)=ax2–2a2x+1(a≠0)在区间 [–1,2]上的最值.
y
–1 0 1 2
x
h
12
例2、求函数f(x)=ax2–2a2x+1(a≠0)在区间 [–1,2]上的最值.
y
–1 0 1 2
x
h
13
例2、求函数f(x)=ax2–2a2x+1(a≠0)在区间 [–1,2]上的最值.
高中数学
二次函数在闭区间上的最值
石家庄市42中学 于祝
h
1
例1、已知函数f(x)= x2–2x –3. (1)若x∈[ –2,0 ], 求函数f(x)的最值;
y
–2 0 1
3
x
例1、已知函数f(x)= x2 –2x – 3. (1)若x∈[ –2,0 ],求函数f(x)的最值;
(2)若x∈[ 2,4 ],求函数f(x)的最值;
h
6
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
y
(4)若x∈[
1
,
3
],求
22
函数f(x)的最值;
(5)若x∈[t,t+2]时, 求函数f(x)的最值.
22
(4)若x∈[
1
,
3
],求
y
22
函数f(x)的最值;
(5)若x∈[t,t+2]时,
求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
h
10
y
评注:例1属于“轴定
区间变”的问题,看
作动区间沿x轴移动
的过程中,函数最值
t
t +2
的变化,即动区间在
– 1 0 1 2 3 4 x 定轴的左、右两侧及
中的较大者是最大值,较小者是最小值;
(3)当x0 [m,n]时,f(m)、f(n)中的较大
者是最大值,较小者是最小值.
h
24
h
25
h
26
y
–1 0 1 2
x
h
14
例2、求函数f(x)=ax2–2a2x+1(a≠0)在区间 [–1,2]上的最值.
y
–1 0 1 2
x
h
15
例2、求函数f(x)=ax2–2a2x+1(a≠0)在区间
[–1,2]上的最值.
y
y
–1 0 1 2
x
–1 0 1 2
x
h
16
例2、求函数f(x)=ax2–2a2x+1(a≠0)在区间
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4 ],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
y
(4)若x∈[ 1 , 3 ], 22
求函数f(x)的最值;
1
3
2
2
–1 0 1 2 3 4 x
h
5
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
y
(4)若x∈[
1
,
3
],求
22
函数f(x)的最值;
(5)若 x∈[t,t+2]时, 求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
y
–1 0
1 2x
h
22
例3、已知函数f(x)=x2+ax+b,x∈[0,1], 试确定a、b,使f(x)的值域是[0,1].
y
–1 0
1 2x
h
23
总结:求二次函数f(x)=ax2+bx+c在[m,n]上 的最值或值域的一般方法是:
(1)检查x0=
b 2a
是否属于
[
m,n];
(2)当x0∈[m,n]时,f(m)、f(n)、f(x0)
[–1,2]上的最值.
y
y
–1 0 1 2
x
–1 0 1 2
x
h
17
评注:例2属于“轴变区间定”的问题,看作对 称轴沿x轴移动的过程中,函数最值的变化,即 对称轴在定区间的左、右两侧及对称轴在定区 间上变化情况,要注意开口方向及端点情况。
y
y
–1 0 1 2
x
–1 0 1 2
x
h
18
例3、已知函数f(x)=x2+ax+b,x∈[0,1], 试确定a、b,使f(x)的值域是[0,1].
1
,
3
],求
y
22
函数f(x)的最值;
(5)若x∈[t,t+2]时,
求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
h
9
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
t
t +2
–1 0 1 2 3 4 x
h
7
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
(4)若x∈[
1
,
3
],求
y
22
函数f(x)的最值;
y
–1 0 1 2 3 4 x
h
3
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[ –2,0],求函数f(x)的最值; (2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求
y
22
函数f(x)的最值;
1
5
2
2
–1 0 1 2 3 4 x
h
4
例1、已知函数f(x)= x2 –2x – 3
相关文档
最新文档