二次函数在闭区间上的值域问题

合集下载

二次函数闭区间最值(二)1-20

二次函数闭区间最值(二)1-20

五、课堂小结:
课后巩固
A组:
1.设函数 的定义域为 ,对任意 ,求函数 的最小值 的解析式
2、求函数 在[t,1]上的值域。
B组:
3.已知 ,是否存在实数m(m>0),使f(x)的定义域为[m,3],值域为
[1,3m],若存在,求出m的值,若不存在,说明理由。
课前预习
一、基础练习:
1.函数 在区间 上的最大值是_________,最小值是_______。
2.已知函数 ,求 上的最小值h(a)。
课堂探究
二、典例探究(自主学习、合பைடு நூலகம்探究)
例1.如果函数 定义在区间 上,求 的最小值。.

变式训练:已知 ,当 时,求 的最大值
四、当堂检测:
1、函数 在 最大值是3,最小值是2,则m的范围
高一课时教(学)案
学科___数学__班级____小组_____姓名_______编号020审批____________
课题
二次函数区间最值(二)
编制人
审核人
学习目标
知识目标:会求二次函数的区间最值。
能力目标:培养学生分析问题和解决问题的能力;
情感目标:初步培养实事求是、扎实严谨的科学态度。
学习(教学)反思

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题湖北省荆州中学 鄢先进二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。

影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。

本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。

类型一 定轴定区间例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =-变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。

分析:由图像可知,函数)(x f 在[2,4]为增函数,min ()(2)0f x f ∴==变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值.分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。

max ()(3)3f x f ∴==例2.已知二次函数f x ax ax a ()=++-2241在区间[]-41,上的最大值为5,求实数a 的值。

解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。

很明显,其顶点横坐标在区间[]-41,内。

x①若a <0,函数图像开口向下,如下图1所示。

当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去图1 图2②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去综上可知:函数f x ()在区间[]-41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。

2023年高考数学一轮复习精讲精练(新高考专用)专题:二次方程根的分布与二次函数在闭区间上的最值归纳

2023年高考数学一轮复习精讲精练(新高考专用)专题:二次方程根的分布与二次函数在闭区间上的最值归纳

专题06:二次方程根的分布与二次函数在闭区间上的最值归纳精讲温故知新1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a例1:1.(多选)若关于x 的方程2(1)+2=0x m x m ---的两根为正数(包含等根),则m 的取值可以是( )A .122--B.-C .1.9 D .1.99【答案】BCD 【解析】 【分析】由一元二次函数零点的分布可得答案. 【详解】由题意,构建函数2()(1)2f x x m x m =--+-,因为关于x 的方程2(1)20x m x m --+-=的两根为正数(包含等根), 所以()()()2Δ142010200m m m f ⎧=---⎪-⎪>⎨⎪>⎪⎩, 解得122m -+<, 故选:BCD. 2.已知函数()2()23f x x ax a a R =-+-∈.(1)若1a =时,求()f x 在区间1[,3]2上的最大值和最小值; (2)若()f x 的一个零点小于0,另一个零点大于0,求a 的范围. 【答案】(1) max 5y =;min 1y = ;(2)3a > 【分析】(1)求出函数的对称轴,再判断对称轴与区间的位置关系,从而得到函数的最值; (2)由题意得(0)0f <,即可得到答案; 【详解】(1)当1a =时,函数的对称轴为11[,3]2x =∈,∴min ()(1)1f x f ==,15(),(3)524f f ==, ∴max ()5f x =。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

二次函数方程不等式的含参问题

二次函数方程不等式的含参问题

二次含参模块已知单调区间求参问题............................................................................................................. - 2 - 含参二次函数在闭区间内最值问题........................................................................................... - 3 - 解含参一元二次不等式........................................................................................................... - 12 - 一元二次不等式恒成立问题................................................................................................... - 17 - 二次方程根的分布..................................................................................................................... - 27 -已知单调区间求参问题【例1】,对称轴为,判断,,的大小?【答案】【例2】,在上单调递增,上单调递减,则下列说法正确的是不确定【答案】B.【例3】在上单调,求的范围?【答案】∞,,.含参二次函数在闭区间内最值问题一、含参求最值........................................................................................................................... - 4 -(一)轴定区间定............................................................................................................... - 4 - (二)轴动区间定............................................................................................................... - 5 - (三)轴定区间动............................................................................................................... - 6 - (四)相关练习................................................................................................................... - 6 - 二、已知最值求参....................................................................................................................... - 8 -(一)已知最值求参——先斩后奏................................................................................... - 8 - (二)已知值域求参......................................................................................................... - 10 -一、含参求最值设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:⎪⎪⎩⎪⎪⎨⎧+>-+≤-=22)(22)()(maxn m a b m f n m a b n f x f()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤-≤-<-=n a b n f n a b m a b f m abm f x f 2)(2)2(2)(min;(一)轴定区间定【例1】函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。

考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)

考点08  二次函数在闭区间上的最值(值域)问题的解法(解析版)

专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)

分析:将 f ( x ) 配方,得顶点为 - , ( [ ]( 1 )当 - ∈ m ,n 时,f ( x ) 的最小值是 f - ⎪=[ ]若 - < m ,由 f ( x ) 在 m ,n 上是增函数则 f ( x ) 的最小值是 f (m ) ,最大值是学习必备欢迎下载二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设 fx ) = ax 2 ++bxc (a ≠ 0) ,求 f ( x ) 在 x ∈[m ,n] 上的最大值与最小值。

⎛ b 4ac - b 2⎫ b⎪ 、对称轴为 x =-⎝ 2a 4a ⎭ 2a当 a > 0 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f ( x ) 的最值:b ⎛b ⎫4ac - b22a ⎝ 2a ⎭ 4a,f ( x ) 的最大值是f (m ) 、f (n ) 中的较大者。

(2)当 -b∉[m ,n ]时2ab 2af (n )若 n < -b,由 f ( x ) 在[m ,n ]上是减函数则 f ( x ) 的最大值是 f (m ) ,最小值是 f (n )2a当 a < 0 时,可类比得结论。

二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例 1. 函数 y = - x 2 + 4 x - 2 在区间[0,3]上的最大值是_________,最小值是_______。

练习.已知2x2≤3x,求函数f(x)=x2+x+1的最值。

二次函数的最值和区间

二次函数的最值和区间

二次函数的最值和区间
最值问题
对于一个二次函数 $f(x) = ax^2 + bx + c$,其中 $a$、$b$、
$c$ 是实数且 $a \neq 0$。

我们可以通过求导数或配方法求出函数的
最值。

最值的判断
首先,我们来判断二次函数的最值。

如果 $a > 0$,则二次函
数开口向上,最值为最小值;如果$a < 0$,则二次函数开口向下,最值为最大值。

最值的计算
要计算二次函数的最值,可以通过以下步骤:
1. 求出顶点坐标:函数的顶点坐标为 $(h, k)$,其中 $h = -
\frac{b}{2a}$,$k = f(h)$。

2. 判断最值类型:根据 $a$ 的正负判断最值类型。

3. 计算最值:根据最值类型和顶点坐标求得最值。

区间问题
二次函数的定义域和值域也是我们需要关注的问题。

定义域
二次函数的定义域是 $x$ 的取值范围。

对于任意二次函数 $f(x) = ax^2 + bx + c$,其定义域为实数集 $\mathbb{R}$。

值域
二次函数的值域是$y$ 的取值范围。

对于开口向上的二次函数,值域为一切大于等于顶点 $k$ 的实数。

对于开口向下的二次函数,
值域为一切小于等于顶点 $k$ 的实数。

总结
二次函数的最值和区间问题是数学中一个基础但重要的概念。

通过计算最值和确定定义域、值域,我们可以更好地理解和分析二次函数的特性和应用。

希望本文对二次函数的最值和区间问题有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数在闭区间上的值域问题
题型一【定函数定区间】
例1.函数f (x )=2x 2-6x +3在区间[-1,1]上的最小值是-1,最大值是11.
f (x )=2x 2-6x +3=2(x -32)2-32
,x ∈[-1,1]. 练习:若函数f (x )=x 2-3x -4的定义域为[0,m ],值域为[-254
,-4],则m 的取值范围是 [32,3]_________
. 题型二【动函数定区间】
例2.求函数y =x 2+tx +1在区间[-1,1]上的最值;
【分类讨论】
解:(1)函数y =x 2+tx +1的对称轴为直线x =-t 2
. 1°若-t 2
≤-1,即t ≥2时,函数在[-1,1]上单调增, 当x =-1时,y min =2-t ,当x =1时,y max =2+t ;
2°当-1<-t 2
<0,即0<t <2时, 当x =-t 2时,y min =1-t 24
,当x =1时,y max =2+t ; 3°当0≤-t 2
<1,即-2<t ≤0时, 当x =-t 2时,y min =1-t 24
,当x =-1时,y max =2-t ; 4°当-t 2
≥1,即t ≤-2时,函数在[-1,1]上单调减, 当x =1时,y min =2+t ,当x =-1时,y max =2-t .
例3.已知函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.
解:f (x )=4x 2-4ax +a 2-2a +2=4(x -a 2
)2-2a +2,x ∈[0,2]. (1)当a 2
<0,即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得a =1-2或a =1+2(舍); (2)当0≤a 2≤2,即0≤a ≤4时,f (x )min =f (a 2)=-2a +2=3,解得a =-12
(舍); (3)当a 2
>2,即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得a =5+10或a =5-10(舍). 综上,a =1-2或a =5+10.
题型三【定函数动区间】
例4.函数f (x )=x 2-4x -4在区间[t ,t +1](t ∈R )上的最小值记为g (t ).试写出g (t )的表达式,作出g (t )的图象,并求g (t )的最小值.
【分类讨论】
函数f (x )=(x -2)2-8.
1°当t >2,函数f (x )在区间[t ,t +1]上是增函数,g (t )=f (t )=t 2-4t -4;
2°当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8;
3°当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上是减函数,g (t )=f (t +1)=t 2-2t -7.
所以g (t )=⎩⎪⎨⎪⎧t 2-2t -7,t <1,
-8, 1≤t ≤2,t 2-4t -4,t >2.
分段函数g (t )的最小值是-8.
【小结】含参数的函数值域问题,注意对称轴与给定区间的关系——分类讨论
应用: 如图,用长为16米的篱笆,借助墙角围成一个矩形ABCD ,
在P 处有一棵树与两墙的距离分别为a 米(0<a <12)和4米.若此树不圈在矩形外,求矩形ABCD 面积的最大值M .
【注意理解题目含义】【定函数动区间的二次函数】
解:设AB =x ,则AD =16-x , 要求x ≥4,16-x ≥a ,即4≤x ≤16-a (0<a <12),
S ABCD =x (16-x )=64-(x -8)2,
(1)当16-a >8时,即0<a <8时,f (x )max =64; (2)当16-a ≤8时,即8≤a <12时,f (x )max =-a 2+16a ,因此M =⎩⎨⎧64,0<a <8, -a 2+16a ,8≤a <12.
解:设AD =x ,则AB =16-x ,
要求x ≥a ,16-x ≥4,即a ≤x ≤12(0<a <12),S ABCD =x (16-x )=64-(x -8)2,
(1)当0<a <8时,f (x )max =64;
(2)当8≤a <12时,f (x )max =-a 2+16a ,因此M =⎩⎨⎧64,0<a <8, -a 2+16a ,8≤a <12.
练习.已知函数f (x )=-x 2+ax -a 4+12
在区间[-1,1]上的最大值为2,求a 的值. 【解析】f (x )=-x 2
+ax -a 4+12=-(x -a 2)2+a 24-a 4+12,x ∈[-1,1]. (1)当a 2<-1,即a <-2时,f (x )max =f (-1)=-12-5a 4
=2,解得a =-2(舍); (2)当-1≤a 2≤1,即-2≤a ≤2时,f (x )max =f (a 2)=a 24-a 4+12
=2,解得a =-2或a =3(舍); (3)当a 2>1,即a >2时,f (x )max =f (1)=-12+3a 4=2,解得a =103.综上,a =-2或a =103. 已知函数f (x )=-x 2+ax +3,x ∈[-2,2],
(1)当a =6时,求f (x )的最大值;
(2)a ∈R ,设f (x )的最大值为g (a ),求g (a )的取值范围.
(3) a ∈R ,设f (x )的最大值为h (a ),求h (a )的取值范围.
解:(1)当a =6时,f (x )=-x 2+6x +3=-(x -3)2+12,当x =2时,f (x )max =11.
(2)f (x )=-x 2
+ax +3=-(x -a 2)2+a 24+3, a 米 4米 B
A D C
P
①当a 2≤-2,即a ≤-4时,当x =-2时,f (x )max =-2a -1;
②当-2<a 2<2,即-4<a <4时,当x =a 2时,f (x )max =a 24+3;
③当a 2≥2,即a ≥4时,当x =2时,f (x )max =2a -1.
所以g (a )=⎩⎨⎧-
2a -1,a ≤-4,a 24+3,-4<a <4,2a -1, a ≥4.当a ≤-4时,g (a )≥7;当-4<a <4时,3≤g (a )<7;当a ≥4时,g (a )≥7.所以g (a )的值域为[3,+∞).。

相关文档
最新文档