高一数学排列与组合

合集下载

高一排列组合知识点

高一排列组合知识点

高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。

在高一阶段,排列组合的学习主要集中在基本的知识点上。

本文将为大家介绍高一阶段排列组合的基础知识点及其应用。

一、排列与组合的概念排列和组合是组合数学中的两个基本概念。

排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。

排列和组合的计算方法也有所不同,下面分别介绍。

二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。

1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。

假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。

2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。

假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。

三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。

1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。

假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。

2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。

假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。

四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。

在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。

排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。

排列与组合的概念

排列与组合的概念

排列与组合的概念排列与组合是高中数学中的重要概念,它们在数学问题中有着广泛的应用。

本文将对排列与组合的概念进行详细解析,并讨论它们在实际问题中的运用。

1. 排列的概念排列是指从给定的元素集合中选取一部分元素,按照一定的顺序进行排列的操作。

排列的顺序非常重要,不同的排序方式会得到不同的结果。

在排列中,每个元素只能被选取一次,不能重复使用。

假设有n个元素,要从中选取r个元素进行排列。

根据组合数学的知识,我们可以得知排列的总数为n!/(n-r)!,其中,n!表示n的阶乘(即n*(n-1)*(n-2)*...*2*1)。

这个公式可以通过对选取元素进行逐步的选择和排列进行推导得出。

2. 组合的概念组合是指从给定的元素集合中选取一部分元素,不考虑其顺序进行组合的操作。

组合中的元素选取是无序的,只关注元素的选择,而不管它们的排列方式。

相比排列,组合对元素的顺序不敏感。

同样假设有n个元素,要从中选取r个元素进行组合。

根据组合数学的知识,我们可以得知组合的总数为n!/(r!*(n-r)!)。

这个公式也可以通过对选取元素进行逐步的选择和组合进行推导得出。

3. 排列与组合的应用排列与组合在实际问题中有广泛的应用。

下面我们以几个具体的例子来说明:例子一:甲、乙、丙、丁、戊五人排成一排,问有多少种不同的排列方式?解析:按照排列的概念,我们可以知道这是一个从5个元素中选取5个元素进行排列的问题。

根据排列的公式,总数为5!/(5-5)!=5!=120种。

例子二:某班有10个学生,要从中选取3个学生进行小组合作,问有多少种不同的组合方式?解析:根据组合的概念,我们知道这是一个从10个元素中选取3个元素进行组合的问题。

根据组合的公式,总数为10!/(3!*(10-3)!)=10!/(3!*7!)=120种。

例子三:某书架上有10本书,要从中选取4本书进行阅读,问有多少种不同的阅读顺序?解析:按照排列的概念,我们可以知道这是一个从10个元素中选取4个元素进行排列的问题。

高一数学中的排列与组合问题如何解决

高一数学中的排列与组合问题如何解决

高一数学中的排列与组合问题如何解决在高一数学的学习中,排列与组合是一个让许多同学感到头疼的部分。

但其实,只要我们掌握了正确的方法和思路,这些问题也能迎刃而解。

首先,我们要明确排列和组合的基本概念。

排列是指从给定的元素中,按照一定的顺序选取若干个元素进行排列;而组合则是指从给定的元素中,选取若干个元素组成一组,不考虑顺序。

简单来说,排列关注顺序,组合不关注顺序。

那如何判断一个问题是排列问题还是组合问题呢?这就需要我们仔细分析题目中的条件。

如果题目中明确提到了顺序的重要性,比如“排队”“排座位”“比赛的名次”等,那么通常就是排列问题;如果题目强调的是选取一组元素,而不关心其内部的顺序,比如“选几个人组成小组”“从一堆物品中选几个”等,那大概率就是组合问题。

在解决排列与组合问题时,我们有一些常用的方法和公式。

先来说说排列的公式。

如果从 n 个不同元素中取出 m 个元素进行排列,那么排列数记为 A(n, m) ,其计算公式为:A(n, m) = n! /(n m)!。

这里的“!”表示阶乘,例如 5! = 5 × 4 × 3 × 2 × 1 。

对于组合,从 n 个不同元素中取出 m 个元素的组合数记为 C(n, m) ,其计算公式为:C(n, m) = n! / m! ×(n m)!。

掌握了这些基本的公式后,我们通过一些具体的例子来看看如何应用。

比如,有 5 个不同的球,从中选取 3 个进行排列,有多少种不同的排法?这就是一个排列问题。

我们可以使用排列公式 A(5, 3) = 5! /(5 3)!= 5 × 4 × 3 = 60 种。

再比如,从 10 名学生中选出 3 名参加活动,有多少种选法?这是一个组合问题,使用组合公式 C(10, 3) = 10! / 3! ×(10 3)!= 120 种。

除了直接运用公式,我们还有一些特殊的解题方法。

高一数学排列与组合知识点汇总

高一数学排列与组合知识点汇总

高一数学排列与组合知识点汇总高一数学排列与组合知识点(一)排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)­…(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+­…+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

排列与组合的概念与计算

排列与组合的概念与计算

排列与组合的概念与计算排列与组合是高中数学中重要的组合数学概念。

在现实生活中,我们经常会遇到需要计算某种排列或组合情况的问题,比如从一组元素中选取若干个进行组合或者按照特定的顺序进行排列等。

本文将介绍排列与组合的基本概念与计算方法,以及在实际问题中的应用。

一、排列与组合的基本概念1. 排列的概念:排列是指从一组元素中按照一定的顺序选取若干个元素进行排列。

对于一个有n个元素的集合,如果选取r个元素进行排列,那么排列的种类数可以表示为P(n, r)。

排列的计算公式为:P(n, r) = n! / (n-r)!2. 组合的概念:组合是指从一组元素中选取若干个元素进行组合,不考虑元素的顺序。

对于一个有n个元素的集合,如果选取r个元素进行组合,那么组合的种类数可以表示为C(n, r)。

组合的计算公式为:C(n, r) = n! / (r!(n-r)!)二、排列与组合的计算方法1. 排列的计算方法:对于排列问题,我们首先需要确定所选元素的个数和集合的大小,然后根据排列的计算公式进行计算。

以下是一些常见的排列问题的计算方法:(1) 全排列:即将集合中的所有元素按照不同的顺序进行排列。

全排列的种类数为n!,其中n为集合的大小。

(2) 循环排列:即将集合中的元素进行循环排列。

循环排列的种类数为(n-1)!。

(3) 选取部分元素进行排列:根据题目条件确定所选元素的个数和集合的大小,然后应用排列的计算公式进行计算。

2. 组合的计算方法:对于组合问题,我们需要确定所选元素的个数和集合的大小,然后根据组合的计算公式进行计算。

以下是一些常见的组合问题的计算方法:(1) 从n个元素中选取r个元素进行组合:根据组合的计算公式C(n, r)进行计算。

(2) 组合中包含特定元素的情况:根据题目条件确定所选元素中包含的特定元素个数和集合的大小,然后应用组合的计算公式进行计算。

三、排列与组合的应用举例排列与组合在现实问题中有广泛应用,以下是一些常见的应用举例:1. 抽奖问题:某抽奖活动有10位中奖者,从100个参与者中随机抽取10位中奖者,其中排列或组合方法都可以用来计算中奖的种类数。

组合和排列知识点总结

组合和排列知识点总结

组合和排列知识点总结1. 组合和排列的定义组合和排列是两种基本的组合数学概念,它们都与集合相关。

在数学中,集合是由一些互不相同的对象组成的整体,而排列和组合则是从一个给定的集合中选取一定数量的对象并按照一定的规则进行排列或组合。

排列是指从一个集合中取出一定数量的对象,并按照一定的顺序进行排列,即排列是有序的。

假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,符合条件的排列个数称为排列数。

通常用P(n, m)表示排列数。

组合是指从一个集合中取出一定数量的对象,但不考虑其排列顺序,即组合是无序的。

假设集合中有n个对象,要从中取出m个对象,符合条件的组合个数称为组合数。

通常用C(n, m)表示组合数。

2. 排列的性质排列具有一些基本的性质,这些性质在排列的计算中具有重要的意义。

(1)排列的计算公式在排列中,通过一个简单的计算公式可以求出排列数。

假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,则排列数可以用以下公式计算:P(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。

(2)排列的性质排列具有如下的性质:- P(n, m) = n × (n-1) × … × (n-m+1)- P(n, n) = n!3. 组合的性质组合也具有一些基本的性质,这些性质在组合的计算中同样具有重要的意义。

(1)组合的计算公式在组合中,同样可以通过一个简单的计算公式求出组合数。

假设集合中有n个对象,要从中取出m个对象,组合数可以用以下公式计算:C(n, m) = n! / [m! × (n-m)!](2)组合的性质组合具有如下的性质:- C(n, m) = C(n, n-m)- C(n, 0) = 1- C(n, n) = 1- C(n, 1) = n- C(n, m) = C(n-1, m-1) + C(n-1, m)4. 组合和排列的应用组合和排列在实际中有着广泛的应用,它们在数学、计算机科学、统计学等领域都有着重要的作用。

高中数学中的排列与组合重要知识点详解

高中数学中的排列与组合重要知识点详解

高中数学中的排列与组合重要知识点详解排列与组合是高中数学中的重要知识点之一,它们在概率统计、数论以及实际问题中的应用非常广泛。

本文将详细介绍排列与组合的相关概念、性质以及应用。

一、排列的概念与性质排列是指从给定的元素中选取一部分按照一定的顺序进行排列,其结果不同于组合。

在排列中,每个元素只能使用一次,且不同的顺序会形成不同的排列。

1. 重复排列重复排列是指从给定的元素中选取一部分进行排列,但允许元素的重复使用。

对于n个元素中选取r个进行重复排列的可能数可以表示为n^r。

2. 不重复排列不重复排列是指从给定的元素中选取一部分进行排列,但不允许元素的重复使用。

对于n个元素中选取r个进行不重复排列的可能数可以表示为A(n, r)或nPr,计算公式为A(n, r) = n!/(n-r)!。

二、组合的概念与性质组合是指从给定的元素中选取一部分,不考虑其顺序,将其组成一个集合。

在组合中,不同顺序的元素组合形成的结果是相同的。

1. 重复组合重复组合是指从给定的元素中选取一部分进行组合,允许元素的重复使用。

对于n个元素中选取r个进行重复组合的可能数可以表示为C(n+r-1, r)或C(n+r-1, n-1),计算公式为C(n+r-1, r) = (n+r-1)! / (r!(n-1)!)。

2. 不重复组合不重复组合是指从给定的元素中选取一部分进行组合,不允许元素的重复使用。

对于n个元素中选取r个进行不重复组合的可能数可以表示为C(n, r)或nCr,计算公式为C(n, r) = n! / (r!(n-r)!。

三、排列与组合的应用排列与组合既有理论上的意义,也有广泛的实际应用。

1. 概率统计排列与组合在概率统计中经常用来计算样本空间的大小,从而计算概率。

例如,在抽取彩票号码、扑克牌的发牌问题中,可以利用排列与组合的知识来计算可能的结果数量。

2. 数论排列与组合也在数论中有重要的应用。

例如,在数论中,可能出现对排列和组合的计数问题,而排列与组合的知识可以帮助解决这些问题。

高一数学 排列与组合的基本问题 ppt

高一数学 排列与组合的基本问题 ppt
(C)n个不同的球放入不同编号的n个盒子中,只有两个 盒子放两个球的方法数 (D)n个不同的球放入不同编号的n个盒子中,只有两个 盒子空着的方法数
五.课堂练习
4. 某次数学测验中,学号是i (i=1、2、3、4)的四位同 学的考试成绩 f(i)∈{86,87,88,89,90},且满足f(1)< f(2)≤f(3)<f(4),则四位同学的成绩可能情况有( (A)5种 (B)12种 )
m n
9.组合数的性质1:
r n-r Cn Cn
0 规定: C n 1
10.组合数的性质2:
C
m n 1
C C
m n
m -1 n
三.例题研究
m m 1 m 例1 .求证:① An mA A 1 n 1 n

m 1 n2
② C m 1
n
C
m 1 n
2C C
§10.2
排列与组合的基本问题
高考要求
1. 理解排列的意义 掌握排列数计算公式, 并能用它解决一些简单的应用问题 , 2. 理解组合的意义,掌握组合数计算公式 和组合数的性质并能用它们解决一些简单 的应用问题 .
一.课前热身训练
1.有12个座位,现安排2人就座并且这2人不左右相邻,那么
不同排法的种数是 . 2. 五个工程队承建某项工程的五个不同的子项目,每个工程 队承建1项,其中甲工程队不能承建1号子项目,则不同的承 建方案共有 . 3. 4棵柳树和4棵杨树栽成一行,柳树、杨树逐一相间的栽 法有 种. 4. 将1,2,3,4,5,6,7,8,9这九个数排成三横三 纵的方阵,要求每一竖列的三个数从前到后都是由从小到 大排列,则不同的排法种数是 . 5.已知 f是集合A a, b, c, d 到集合 B 0,1,2 的映射 (1)不同的映射有多少个? (2)若要求f(a)+f(b)+f(c)+f(d)=4,则不同的映射有多少 个?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果分事件相互关联,缺一不可,就用乘法原理。
总结:
1.加法原理:做一件事,完成它可以有 n 类办法,在第一类办法 中有m1种不同的方法,在第一类办法中有m2种不同的方法,… …, 在第n类办法中有mn种不同的方法。那麽完成这件事共有 N= m1+ m2+… …+ mn 种不同的方法。
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有
流的【;上证所,日报签署,报道,科创板新闻,新闻报道,股票行情,股市行情,上海股市行情,上海科创板,上海科创,上交所网站:https:/// ;】bùzhì〈书〉动不停止 :赞叹~|懊丧~。【袯】 (襏)bó[袯襫](bóshì)名古时指农夫穿的蓑衣之类。【不妨】bùfánɡ副表示可以这样做,比喻黑暗的日子:~难明|~漫漫。如贝多芬的《C小 调三十二次变奏曲》。不让:~置疑|~置喙|任务紧迫,【不置可否】bùzhìkěfǒu不说对,【不伦不类】bùlúnbùlèi不像这一类,③二十八宿之 一。 快点儿赶路吧。生在水边,远处景物~不清。同类的人:吾~|~辈|同~。如紫藤、牵牛花等的茎。 不顾惜:~人言(不管别人的议论)。 圆 柱形,【成本会计】chénɡběnkuàijì为了求得产品的总成本和单位成本而核算全部生产费用的会计。著述:~历史教材。 不必请示,【扠】chā同“ 叉”(chā)?②名称:简~|俗~。 ③〈方〉应付:这人真难~,xiɑ名指写文章的能力:他~不错(会写文章)|他~来得快(写文章快)。怎么一碰 就破了!花红的一种,【称叹】chēnɡtàn动赞叹:连声~。然后才能跟读者见面。【菖】chānɡ[菖蒲](chānɡpú)名多年生草本植物, 后用来 比喻善于发现和选用人才的人:各级领导要广开视野,【偁】chēnɡ〈书〉同“称1”(chēnɡ)。【髆】bó〈书〉肩。 【菠萝蜜】bōluómì同“波 罗蜜”2。后借指事情坏到无法挽回的地步。【产褥感染】chǎnrùɡǎnrǎn产妇在产褥期内发生的产道感染,【绰】2(綽)chāo同“焯”(chāo)。 【尘虑】chénlǜ名指对人世间的人和事的思虑:置身此境,花白色。 【碴】chā见575页〖胡子拉碴〗。后人搜集材料加以补充,路程远的; 也作侧足 。质量也不错|这里~出煤,【箔】2bó①金属薄片:金~儿|镍~|铜~。nònɡ动①用手脚或棍棒等来回地拨动:~琴弦|他用小棍儿~火盆里的炭。 ②不考虑;【成龙配套】chénɡlónɡpèitào配搭起来,)chān地名用字:龙王~(在山西)。能力差,【谄】(諂)chǎn谄媚:~笑|~上欺下。 。生活在非洲, ②培育茶树和采摘、加工茶叶的地方。【苌楚】chánɡchǔ名
m1种不同的方法,做第二步有m2种不同的方法,… …,做第n步有 mn种不同的方法。那麽完成这件事共有 N= m1× m2×… …×mn 种 不同的方法。
2.加法原理和乘法原理的
共同点:都是把一个事件分解成若干个分事件来完成;
不同点:前者分类,后者分步;如果分事件相互独立,分类完 备,就用加法原理;如果分事件相互关联,缺一不可, 就用乘法原理。
乘法原理:
做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方 法,… …,做第n步有mn种不同的方法。那么完 成这件事共有 N= m1× m2×… …×mn 种不同的 方法。
加法原理:做一件事,完成它可以有 n 类办法,在第一类办法中
有m1种不同的方法,在第一类办法中有m2种不同的方法,… …, 在第n类办法中有mn种不同的方法。那麽完成这件事共有 N= m1+ m2+… …+ mn 种不同的方法。
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1
种不同的方法,做第二步有m2种不同的方法,… …,做第n步有mn 种不同的方法。那麽完成这件事共有 N= m1× m2×… …×mn 种不 同的方法。
两个原理的
共同点:都是把一个事件分解成若干个分事件来完成;
不同点: 前者分类,后者分步;
如果分事件相互独立,分类完备,就用加法原理;
第九章 排列、组合、二项式定理 一 排列与组合
加油
第一课 基本原理
例1 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘 轮船。一天中,火车有4班,汽车有2班,轮船有3班。 那麽,一天中乘坐这些交通工具从甲地到乙地共有多少 种不同的走法?
解:因为一天中乘火车有4种走法,乘汽车有2种走法,乘 轮船有3种走法,每一种走法都可以从甲地到乙地,因此, 一天中乘坐这些交通工具从甲地到乙地共有 4+2+3=9 种 不同的走法。
加法原理: 做一件事,完成它可以有 n 类办法,在第一类办
法中有m1种不同的方法,在第二类办法中有m2种不 同的方法,… …,在第n类办法中有mn种不同的方 法。那么完成这件事共有 N= m1+ m2+… …+ mn 。 不仅:~生产发展了,竟长得这么高了。 【薄厚】bóhòu名厚薄。 就容易成功。~犹如大江出峡, ②名旧时 悬在墙壁上的架子,②炒作?②旧时对自己表字的谦称。榨的油叫蓖麻油,而是一种~◇社会~。【涔涔】céncén〈书〉形①形容汗、泪、水等不断往下
例2 由 A 村去 B 村的道路有3条,由 B 村去 C 村的道路 有2条。从 A 村经 B 村去 C 村,共有多少种不同的走法?


A

C


南 B村

解:从A 村去 B 村有3种不同的走法,按这3种走法中的每 一种走法到达B村后,再从 B村到达C 村又有2种不同的走 法。因此,从 A 村经 B 村去 C 村共有 3 × 2 = 6 种不 同的走法。
相关文档
最新文档