排列组合题型归纳
排列组合经典题型及解法

排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。
下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。
2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。
3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。
4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。
5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。
以上是一些常见的排列组合题型及其解法。
在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。
排列组合的题型与方法

(二)分组分配问题 5.限制条件的分配问题分类法: 例6.某高校从某系的10名优秀毕业生中选4人分别到西 部四城市参加中国西部经济开发建设,其中甲同学不 到银川,乙不到西宁,共有多少种不同派遣方案?
A 60 种。 A
5 5 2 2
(一)排序问题 4.定位问题优先法:某个或几个元素要排在指定位 置,可先排这个或几个元素;再排其它的元素。
例4.现有1名老师和4名获奖同学排成一排照相留念, 若老师不站两端则有不同的排法有多少种?
解析:老师在中间三个位置上选一个有 A1 种 ,
3
种,4名同学在其余4个位置上有 A4 种方法; 4
解析、(1)先从10人中选出2人承担甲项任务,再从剩下的8人中 选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务, 2 1 1 不同的选法共有 C10 C8C7 2520 种
(二)分组分配问题 2.有序分配问题逐分法:有序分配问题指把元素分成若 干组,可用逐步下量分组法.
例3、(2)12名同学分别到三个不同的路口进行流量的 调查,若每个路口4人,则不同的分配方案有( A )
(2)5本不同的书,全部分给4个学生,每个学生至少 一本,不同的分法种数为( B ) A、480种 B、240种 C、120种 D、96种
2 4 C5 A4 240
(二)分组分配问题
4.名额分配问题隔板法(无差别物品分配问题隔板法): 例5:10个三好学生名额分到7个班级,每个班级至少 一个名额,有多少种不同分配方案?
完整版排列组合题型归纳

排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1. 进一步理解和应用分步计数原理和分类计数原理。
2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3. 学会应用数学思想和方法解决排列组合问题.复习巩固1. 分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有:N mi m2 L m n种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有口种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有:N mi m2 L m n种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C3然后排首位共有C 4最后排其它位置共有A 3由分步计数原理得C 4C 1A 3 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素•若以位置分析为主,需先满足特殊位置的要求 ,再处理其它位 置。
排列组合题型总结

【一】特殊对象问题:
在处理排列问题时,所要研究的对象 有两组,一是要被排列的对象,一是位置, 在这两组对象中有时候会出现一个或者多 个特殊的对象: 若有一个特殊对象,一般先把特殊的对象 优先进行处理 ,然后再对其他的没有特殊 要求的对象进行全排列;
特殊对象问题:
如果出现了 两个特殊要求 ,一般使用 分类 的方法处理,针对其中的一个的位置不同 进行分类来处理,再或者用间接法 例1、有5人排成一列,其中甲不在第一的 位置,有多少种排法? 例2、有5人排成一列,其中甲不能在第一, 乙不能在最后,有多少种排法?
【十一】相对顺序固定问题
相对顺序固定问题,常用两种方法: (1)一般要先处理掉没有相对顺序要求的 元素,再把剩下的有相对顺序要求的元 素按照要求摆放, (2)先随意地进行排列,再除以随意摆放 过程中相对顺序固定部分的顺序
【十一】相对顺序固定问题
例1、书架上6本不同的书,现在要放上去3本, 但要保持原来6本的相对顺序不变,有多少种放 法?
【五】不相邻问题
例1、某人射击训练,8枪命中3枪,恰 好没有任何2枪连续命中,有多少种情况? 例2、8人排成一列,甲乙丙三人不可相 邻,有多少种排法? 例3、8盏灯关掉3盏,不许关掉相邻的, 也不许关掉两端,多少种方法? 例4、某人射击训练,8枪命中3枪,恰 好2枪连续命中,有多少种情况?
【六】成双成对问题
【二】名额分配问题
这种问题处理时,要注意两个特征: 1、名额之间没有什么不同 2、名额分配时的具体要求是什么 当问题中要求分配时每人至少一个时,只需要在 所有名额形成空隙中选取比人数少一个的空隙, 放入相同的挡板即可 若问题中没有具体分配要求时,可以补上和人数 相同的名额转化成第一组问题来处理
排列组合题型总结

排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。
在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。
1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。
解决排列问题时,可以使用如下的排列公式。
公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。
2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。
解决组合问题时,可以使用如下的组合公式。
公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。
3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。
解决重复排列问题时,可以使用如下的重复排列公式。
公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。
4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。
解决重复组合问题时,可以使用如下的重复组合公式。
公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。
排列组合经典题型及解析

排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合总结(含答案)

1.(站队模型)4男3女站成一排:①女生相邻;5353A A ⋅②女生不相邻;4345A A ⋅③女生从高到低排;47A④甲不在排头,乙不在排尾;解析:当甲在排尾时有66A ;当甲不在排尾时有115555A A A ⋅⋅2.(组数模型)由0到9这10个数字组成没有重复数字的四位数: ①奇数;末位有112588A A A②偶数;解析:末位为0,有39A ;末位不为0,有112488A A A ⋅⋅③被5整除的数;解析:末位为0,有49A ;末位为5,有1288A A ⋅④比3257大的数; 解析:首位为4到9时有396A ;首位为3时281749A ⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩百位为到时有6十位为6到9时有4A 百位为2时十位为5时有2 ⑤被3整除的三位数.12333311123322111333332A A A C C C A C C C A ⎧⋅+⎪⎧⋅⋅⋅⎨⎪⎨⎪⋅⋅⋅⎪⎩⎩都从一个集合中选时有含0时有各选一个时有不含0时有3.(分组分配问题)6个不同的小球:①放入三个不同的盒子;解析:63②放入三个不同的盒子,每盒不空;解析:4363321363132226426222:A C C C A C C C ⎧⎪⋅⋅⋅⎨⎪=++⋅⋅⎩6=4+1+1:有C 6=3+2+1:有有③分三组(堆),每组至少一个;解析:41162122321631222642336222:C C A C C C C C C A ⎧⋅⋅⎪⎪⎪⋅⋅⎨⎪⋅⋅⎪=++⎪⎩C 6=4+1+1:有6=3+2+1:有有4.6个相同的小球:①放入三个不同的盒子;解析:相当于分名额,盒子可空:插板法:28C ②放入三个不同的盒子,每盒不空;25C ③恰有一个空盒.解析:相当于两个盒子不空:1253C C ⋅5.6名同学报名三科竞赛:①每人限报一科;63②每科限报一人;366.(选派问题)5男3女:①选2人开会;28C②选正副班长,至少1女;2285A A - ③选4人开会,至多2男;解析:即至少2女,22313535C C C C ⋅+⋅④选4人跑4×100接力,至少2女.解析:()2231435354C C C C A ⋅+⋅⋅。
排列组合12种题型归纳(解析版)

第30讲 排列组合12类【题型一】 人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,22423245C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
主要典型题:1.捆绑法;2.插空法;3.染色。
出现两个实践重叠,必要时候,可以使用容斥原理来等价处理:容斥原理()n A B ⋃=()()()n A n B n A B +-⋂【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为 A .30 B .36 C .60 D .72【答案】C【分析】记事件:A 2位男生连着出场,事件:B 女生甲排在第一个,利用容斥原理可知所求出场顺序的排法种数为()()()()5555A n A B A n A n B n A B ⎡⎤-⋃=-+-⋂⎣⎦,再利用排列组合可求出答案.【详解】记事件:A 2位男生连着出场,即将2位男生捆绑,与其他3位女生形成4个元素,所以,事件A 的排法种数为()242448n A A A ==,记事件:B 女生甲排在第一个,即将甲排在第一个,其他四个任意排列,所以,事件B 的排法种数为()4424n B A ==,事件:A B ⋂女生甲排在第一位,且2位男生连着,那么只需考虑其他四个人,将2位男生与其他2个女生形成三个元素,所以,事件A B 的排法种数为232312A A =种,因此,出场顺序的排法种数()()()()5555A n A B A n A n B n A B ⎡⎤-⋃=-+-⋂⎣⎦()12048241260=-+-=种,故选C .2.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.48【答案】B【分析】先求出只有3个歌舞类节目不相邻的方法,然后求出3个歌舞类节目不相邻且2个小品类节目相邻的排法,相减可得.【详解】先考虑只有3个歌舞类节目不相邻,排法有3334144A A=种,再考虑3个歌舞类节目不相邻,2个小品类节目相邻的排法有:22322324A A A=,因此同类节目不相邻的排法种数是14424120-=.故选:B.3.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【答案】B【分析】由题意,对高校甲排在第二或第三个进行分类讨论,接着考虑乙和丙的排法,最后考虑其他两所高校的排法,综合利用分类和分步计数原理进行分析即可.【详解】根据题意:分成以下两种情况进行分类讨论高校甲排在第二个时,高校丁必排在第三个,当乙或丙排在第一个时共有132312C A=种排法,当乙或丙不排在第一个时,乙和丙只能排在第四个和第六个,此时共有22224A A=种排法,所以高校甲排在第二个时共有16种排法;高校甲排在第三个时,高校丁必排在第四个,乙或丙只能一个排在第一二个,一个排在第五六个,则共有1112 222216C C C A=种排法;综上:共有32种排法满足题意.故选:B.【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7 答案:D55315232553555351235125122404==4207;(2)4----+++2A C C A C C C C C ----⨯⨯涂色法:(1)用了几种颜色;(2)尽量先图相邻多的“三角形”:本题先把ABE 作为“三角形”1、用了5色:A 、用了4色:(1)先涂ABE:A 用第色:(3)D 用第4种:(相同)3、用了3色:同先涂ABE:A 结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合题型总结
一.直接法
1.特殊元素法
例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个
(1)数字1不排在个位和千位
(2)数字1不在个位,数字6不在千位。
二.间接法当直接法求解类别比较大时,应采用间接法。
例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书
三.插空法当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法
四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种
练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种
五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法
例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。
练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法()
六.平均分堆问题
例6 6本不同的书平均分成三堆,有多少种不同的方法
七.合并单元格解决染色问题
练习1将3种作物种植
在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种(以数字作答)
2.某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).
图3 图4
3.如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.
4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种
图5 图6
5.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共种
十.先选后排法
例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有()
种种种种
十二.转化命题法
例17 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各
十三.概率法
例18 一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法
十四.除序法例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个
(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个
巩固练习
1.相邻问题捆绑法
1.六名同学站成一排,其中甲、乙两人必须在一起的不同排法共有()
;;;。
2.相离问题插空法
2. 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少钟不同的排法
3.定序问题缩倍法
3. 信号兵把红旗和白旗从上到下挂在旗杆上表示信号,现有3面红旗,2面白旗,把这5面旗都挂上去,可表示不同信号的种数
4.定位问题优先法:所谓“优先法”即有限制条件的元素(或位置)优先考虑。
例4.计划展出10幅画,其中一幅水彩画,4幅油画,5幅国画,排成一列陈列,要求同一品种
的画必须相邻,并且水彩画不放在两端,那么不同的陈列方法共有( )钟
A.5544A A ;
B.354433A A A ;
C. 554413A A C ;
D.5
54422A A A 。
5.至少问题间接法:含“至多、至少”的排列组合问题:是需要分类问题,可用间接法,即
排除法(总体去杂)但仅适用于反面情况明确且易于计算的情况。
5. 从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各一台,
则不同的取法共有( )种
A. 140 ;
B. 80 ;
C. 70 ;
D. 35 。
6.选排问题先取后排:对于排列组合的混合应用问题,一般是先取(组合)后排(排列)
6. 4个不同的小球放入编号为1、2、3、4的四个盒子中,则有一个空盒的放法共有 种
(用数字作答)
7. 多元问题分类法:元素多,取出的情况也多种多样,可按结果要求,分成互不相容的几
类情况分别计算,最后总计。
7. .由数字0、1、2、3、4、5组成没有重复数字的6位数,其中个位数字小于十位数
字的共有( )
个;个;个;个;
9.有序分配问题逐分法:有序分配是指元素按要求分成若干组,常采用逐步下量分组法求解。
9 .有甲、乙、丙三项任务,甲需2人承担,乙、丙各需一人承担,从10人中选派四人
承担这三项任务,不同的选法共有( )种;种;种;种。
练习
1.将编号为1,2,……,10的10个球放入编号为1,2,……,10的10个盒子里,每个盒
子里放一个球,则恰好有3个球的标号与其所在的盒子标号不同的方法有多少种(以数字作
答)
2.从a 、b 、c 、d 、e ,5个元素中,取出4个放在4个不同的盒子里,且元素b 不能放在第
二个盒子里,问共有多少种方法
3.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字
的四位数,其中能被5整除的四位数共有 个。
4.某天某班的课程表要排入数学、语文、英语、物理、化学、体育六门课程,第一节不安排体育,第六节不安排数学,一共有多少种排法
5.有11名外语翻译人员,其中有5名会英语,4名会日语,另外2名英、日语都精通,从中选出8人,组成2个翻译小组,其中4人翻译英语,另4人翻译日语,问共有多少种不同的选派方法
6.一个小组有10名同学,其中4女6男,现选出3名代表,其中至少有一名女生去的有多少种方法
8.有5个男生和3个女生,从中选出5个担任5门学科代表,求符合下列要求的选法数。
(1)有女生但人数小于男生人数。
(2)某女生担任语文课代表。
(3)某男生必须在内,但不担任数学课代表。
(4)某女生一定要语文课代表,某男生必须担任课代表,但不担任数学课代表。
9.
9.对某种产品的6件不同的正品和4件不同的次品,每次取出一件测试,直到4件次品全部被测出为止,则第4件次品在第5次测试时被发现的不同情况有多少种9.
10.在7名运动员中选4名组成接力队参加4×100米接力赛,那么甲、乙两人都不跑中间两棒的安排方法有多少种
11.从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连接且顺序不变)的不同排列有多少种
12. 8个人排成一排,其中甲、乙、丙3人中,有两个相邻,但这3个不同时相邻排列,求满足条件的所有不同排列的种数。
13(1)4男3女排成一排,男、女生必须相间而排的方法有多少种(2)4男4女排成一排,男、女生必须相间而排有多少种排法
17.4个不同的红球和6个不同的白球放入袋中,现从中取出4个:(1)若取出的红球个数
不少于白球个数,则有多少种不同的取法(2)取出一个红球记2分,取出一个白球记1分,若取出4球的总分不少于5分,则有多少取法
18.从5位男教师和4位女教师中选出3人,派到3个班担任班主任(每班一位),要求3个班主任有男有女,则不同的方案共有多少种
种种种种
19. 5人站成一排,如果甲必须站在乙的左边,则不同的排法共有多少种
20.按以下要求分配6本不同的书,各有几种方法(1)分成1本、2本、3本三组;(2)平均分成三组,每组2本;(3)分成3组,一组4本,另外两组各1本
21.按以下要求分配6本不同的书,各有几种方法(1)平均分给甲、乙、丙三人,每人两本;(2)甲1本,乙2本,丙3本;(3)甲、乙、丙三人一人1本,一人2本,一人3本;(4)甲、乙、丙三人中,一人4本,另两人各1本。
22. 5个不同小球,分到3个不同的盒子里,每个盒子至少一个,有几种不同的方法
23.将组成篮球队的10个名额分配给7个学校,每校至少一名,问共有多少种方法
人排成前后两排,每排4人,其中有2个女生要排在前排,另外两个因个子高排在后排,问共有多少种排法
只要求相临的省颜色不同,问共有多少种。