pall公司的聚醚砜膜
聚醚砜膜改性 国外

Hydrophilic modification of poly(ether sulfone)ultrafiltration membrane surface by self-assembly of TiO 2nanoparticlesMing-Liang Luo a ,*,Jian-Qing Zhao a ,Wu Tang b ,Chun-Sheng Pu caCollege of Materials Science and Engineering,South China University of Technology,Guangzhou 510640,ChinabLASMIS,University de Technologie de Troyes,Troyes Cedex 10010,France cCollege of Petroleum Engineering,Xi’an Shiyou University,Xi’an 710065,ChinaReceived 1June 2004;received in revised form 17November 2004;accepted 17November 2004Available online 25December 2004AbstractMembrane fouling is one of the major obstacles for reaching the ultimate goal,which realizes high flux over a prolonged period of ultrafiltration (UF)operation.In this paper,TiO 2nanoparticles of a quantum size (40nm or less)in anatase crystal structure were prepared from the controlled hydrolysis of titanium tetraisopropoxide and characterized by X-ray diffraction (XRD)analysis and transmission electron microscopy (TEM).The hydrophilic modification of poly(ether sulfone)UF membrane was performed by self-assembly of the hydroxyl group of TiO 2nanoparticle surface and the sulfone group and ether bond in poly(ether sulfone)structure through coordination and hydrogen bond interaction,which was ascertained by X-ray photoelectron spectroscopy (XPS).The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM)and contact angle test,respectively.The composite UF membrane was also characterized in terms of separation behavior for polyethylene glycol-5000solute.The experimental results show that the composite UF membrane has good separation performance and offers a strong potential for possible use as a new type of anti-fouling UF membrane.#2004Elsevier B.V .All rights reserved.Keywords:Ultrafiltration;Self-assembly;Anti-fouling membrane;TiO 2nanoparticles;Hydrophilicity1.IntroductionIn recent years,more and more attention in ultrafiltration (UF)membrane has been attracted for a variety of applications in waste-water treatment,substance separation,solute concentration,and so on.The major drawback in the extensive use of membranes includes membrane fouling,which results in flux decline during operation [1].Several types of fouling could occur in the membrane system,e.g.crystalline fouling,organic fouling,particulate and colloidal fouling,and microbial fouling,etc.[2].Many approaches to control membrane fouling have been performed,which generally involve pretreatment of the feed solution,surface modification of the membrane (like hydrophobic or hydrophilic and/locate/apsusc*Corresponding author.Tel.:+862087113576;fax:+862087113576.E-mail address:yfsailing_wxg@ (M.-L.Luo).0169-4332/$–see front matter #2004Elsevier B.V .All rights reserved.doi:10.1016/j.apsusc.2004.11.054electronegative or electropositive modification),opti-mization of module arrangement and process condi-tions,and periodic cleaning[3,4].Even after the development for decades,particulate and colloidal fouling still remains the main reason forflux decline in the process of industrial wastewater treatment[3,5].Poly(ether sulfone)(PES)is a kind of special engineering plastics with good performances.The structure of PES used in the paper was shown in Fig.1. It can be imagined that PES has crystalline to some degree because of harder benzene ring and softer ether bond existed in the structure.PES possesses many good performances such as high mechanical property and heat distortion temperature,good heat-aging resistance,environmental endurance and processing. It has become one of important separation membrane materials,but its hydrophobicity controlled by PES structure leads to low membraneflux and fouling easily,which has greatly effect on applicationfield and usage life of separation membrane.It is necessary to modify PES membrane surface by physical and chemical methods and improve its hydrophilicity. Recently,modification methods of UF membrane involve ultraviolet irradiation[6],graft polymeriza-tion[7,8],glow discharge[9],and ozone[1,10,11]on membrane surface,and so on.The hydrophilicity and anti-fouling capability of UF membrane increase to some degree,but some of them are complicated and it is difficult to control the hydrophilicity of membrane, others may make some performances of UF membrane loss.A new approach to modify PES ultrafiltration membrane by self-assembly of TiO2nanoparticles is presented in this paper.Titanium dioxide(TiO2)has been the focus of numerous investigations in recent years,because its high hydrophilicity[12,13],stable chemical property, innocuity and low cost,etc.Most of researches carried out in thisfield have focused on the use of TiO2 powder suspended in the water as a catalyst[14].The method of TiO2self-assembly on the surface with the terminal functional groups(for example,single-crystal silicon,quartz,and glass substrates)has been used to fabricate multilayer ultrathinfilms[15–17]. The self-assembly behavior of TiO2on the surface of polymer with COOH,SO2OH,sulfone group and ether bond may be explained by two different adsorption schemes.One scheme is that TiO2was bound with oxygen atoms of these groups via coordination to Ti4+cations.The other scheme is to form a hydrogen bond between these groups and the hydroxyl group of TiO2surface[18].Thus,it is probable to self-assemble the TiO2nanoparticles on membrane sur-face.In this paper,TiO2nanoparticles were prepared from the controlled hydrolysis of titanium tetraiso-propoxide.The particle structure and size were characterized by X-ray diffraction(XRD)analysis and transmission electron microscopy(TEM).The composite UF membrane was prepared by self-assembly of TiO2on the membrane surface.X-ray photoelectron spectroscopy(XPS)was performed with the UF-tested membrane after the actual UF operation conditions.The morphology and hydrophilicity of composite UF membrane were characterized by scanning electron microscopy(SEM)and contact angle test,respectively.The composite ultrafiltration membrane was also characterized in terms of separa-tion behavior for polyethylene glycol-5000solute.The anti-fouling and fouling mitigation of the composite UF membrane was examined and verified.2.Experimental2.1.Preparation of the nanosized TiO2particlesTiO2nanoparticles were prepared from the con-trolled hydrolysis of titanium tetraisopropoxide at acidic condition[19].A 1.25ml sample of Ti(OCH(CH3)2)4(AR;Chengdu Unite-chemcial Company,China)dissolved in25ml of absolute ethanol was dropped to250ml of distilled water (48C),adjusted to pH1.5with hydrochloric acid under vigorous stirring.After this mixture was stirred overnight,a transparent colloidal suspension was obtained.Powdered sample was obtained by evapor-ating(358C)using a rotavapor and by drying(508C) under vacuum.The gel powder was annealed in muffle furnace at5008C and the nanosized TiO2particles were obtained.M.-L.Luo et al./Applied Surface Science249(2005)76–8477 Fig.1.Molecular structure of the PES.2.2.Preparation of PES/TiO2compositeultrafiltration membranesThe PES ultrafiltration membrane was made via phase inversion method[20].The UF membrane was rinsed in a sodium carbonate solution(0.2wt.%)and then washed with distilled water.The neat PES membrane with an area of38.5cm2was dipped in the transparent TiO2colloidal solution,stirred for1min by ultrasonic method and placed for1h to deposit TiO2nanoparticles on the membrane surface and then washed with distilled water.2.3.Characterization2.3.1.Characterization of the nanosized TiO2 particlesThe crystal structure of TiO2nanoparticle was characterized by X-ray diffraction(XRD).XRD analysis was performed on TiO2powder samples with a PHI-5400X-ray diffractometer using18kW Cu K a(l=0.15418nm)radiation.The particle size was determined by a JEOL transmission electron micro-scope(TEM,JEOL JEM-200CX)at120kV.For the TEM observation,TiO2powder in distilled water solution(0.5g lÀ1)was dropped on a carbon-coated grid and then dried at room temperature.2.3.2.Characterization of the PES/TiO2composite UF membraneThe surface topologies of the PES membrane containing TiO2nanoparticle were investigated with a JSM-5800scanning electron microscope(SEM).The surface morphology of the neat PES membrane was also examined and was compared with that of the TiO2 self-assembled version.For the SEM observation,the membrane samples were cut into appropriate sizes and the surfaces were coated with platinum or gold by a sputter coating machine.The pore size distribution of composite membrane was measured by mercury displacement method with Autopore9220II aperture-testing meter.X-ray photoelectron spectroscopy(XPS)was performed on the surface of composite membrane with a PHI-5400spectrometer using Mg K a X-ray (1253.6eV).The X-ray gun was operated at10kVand 1mA.The spectra were taken at the takeoff angle (defined as the angle between the detected photoelec-tron beam and the membrane surfaces)of458to give a sampling depth of ca.2.3nm.The sensitivity factors of individual elements for quantitative analyses were taken with the values from the standard vision library provided by the manufacturer,which were based on a combination of photoelectric cross-section,transmis-sion function,and inelastic mean free path.Static contact angles of the composite membrane surface were measured using the captive air bubble technique.Membranes were inverted in deionized water and air bubbles were placed in contact with the surface. The static angle was measured using an Eromag-1 contact angle testing apparatus.The contact angle was determined from the average value of10-times measurements and the measurement error wasÆ38.2.3.3.Separation performance of the PES/TiO2 composite UF membraneThe mass transfer characteristics of UF membrane for200ppm polyethylene glycol(PEG-5000)aqueous solution were determined in laboratory at0.2MPa, 258C for30min with the apparatus of a continuous flow type.The waterflux was calculated by direct measurement of the mass of the permeateflow:J¼V=At(1) where J is the membraneflux(L mÀ2hÀ1),V the permeate volume(L),A the membrane area(m2) and t the ultrafiltration time(h).The solute rejection was defined as follows:R¼ð1Àc p=c fÞÂ100%(2) where R is the solute rejection,c f the feed concentra-tion,c p the permeate concentration.3.Results and discussion3.1.Crystal structure and size of synthesized TiO2 nanoparticleFig.2shows the X-ray diffraction spectrum of TiO2 particles.The synthesized particles are composed entirely of anatase compared with those reported for rutile(110)(2u of27.458)and anatase(101) (25.248)[21].The particle size is determined by transmission electron microscopy(TEM)explicitly. The particles size is about5–42nm(Fig.3).M.-L.Luo et al./Applied Surface Science249(2005)76–84 783.2.Microstructure and pore size distribution of the composite membraneThe microstructure of the composite membrane is shown in Fig.4.As shown in Fig.4a (SEM of the composite membrane cross-section),the sectional structure of composite membrane has asymmetry and many smaller pores,which shape looks like the finger,are filled in the membrane.When the dope solution is coated on the smooth glass plate,the pore size formed towards the air is smaller due to the solution evaporation,but the pore size formed towards the glass plate is larger because the exchange happened quickly between the solvent phase and the non-solvent phase and immediately phase inversion starts and after few minutes thin polymeric composite film separated out from the glass.Fig.4b and c are the SEM graphs of the membrane surface before and after treated by TiO 2colloidal solution,respectively.The neat PES mem-brane has the typical surface morphology of a characteristic ridge-and-valley structure (Fig.4b),but the ridge-and-valley structure is not so visible.Fig.4c displays the surface morphology of the TiO 2self-assembled composite membrane,where TiO 2nanoparticles appear to exist as nodular shapes of ca.40nm or less on the surfaces of the ridges and the membrane surface has clear ridge-and-valley struc-ture.The pore size distribution of the composite membrane is shown in Fig.5.As shown in Fig.5,the composite membrane has narrow pore size distribution,small pore size and average pore size 27.1nm.3.3.Surface characterization of the composite membraneTo con firm the self-assembly TiO 2nanoparticles on the composite membrane surface and further to estimate the abrasive resistance of the membrane surface,X-ray photoelectron spectroscopic (XPS)analyses were carried out for the PES/TiO 2composite membrane treated under various conditions.The constituent elements of the composite membrane surface are hydrogen,carbon,oxygen,sulfur,chlorine,and titanium.Thus,XPS analyses were performed on the elements of carbon,oxygen,sulfur,chlorine,and titanium,but not on hydrogen because its photoelec-tron cross-section was too small to be characterized by XPS.The core-electron binding energies of the constituent elements are typically 287eV (C 1s),537eV (O 1s),23eV (O 2s),229eV (S 2s),270eV (Cl 2s),199eV (Cl 2p)and 458eV (Ti 2p)[22].Fig.6shows the resulting spectrum,in which all the photoelectron peaks appear at positions similar to the above values and the presence of Ti peaks.The results provide evidence of TiO 2self-assembly on the composite membrane surface.On the basis of the observed photoelectron peaks and corresponding sensitivity factors,the relative atomic concentrations of the individual elements can be calculated:C i ¼A i =S iP mj A j =S j(3)where A i is the photoelectron peak area of the element i ,S i the sensitivity factor for the element i ,and m theM.-L.Luo et al./Applied Surface Science 249(2005)76–8479Fig.2.XRD spectrum of the synthesized TiO 2.Fig.3.TEM micrograph of the TiO 2nanoparticles.number of the elements in the sample.In Table 1,the elemental compositions determined by an angle-resolved XPS analysis were summarized for the com-posite membranes with different washing conditions and UF operation time.There was an initial drop in the relative atomic concentration of Ti element after washing the composite membrane,which had been just formed from dipping into the TiO 2colloidal solution.An additional loss of TiO 2nanoparticles was observed upon further UF operation with run time of 3h.The UF process was operated in the cross-flow mode where the feed solution was pumped across the composite membrane parallel to its surface.It was found that TiO 2particles were wiped out after 3h UFM.-L.Luo et al./Applied Surface Science 249(2005)76–8480Fig.4.SEM micrographs of the UF membrane:(a)cross-section;(b)neat surface;(c)surface treated by TiO 2colloidalsolution.operation and thought the loosely bound TiO2parti-cles cannot overcome the shear force.However,the TiO2loss did not continue to progress as the UF operational time increased more,and the amount of TiO2leveled-off after10h of UF operation.This result indicates that a considerably substantial amount of TiO2nanoparticles remains tightly bound on the surface of the membrane under actual UF running conditions,which is expected to improve the hydro-philicity of PES membrane and prevent from the membrane fouling.3.4.Design of TiO2nanoparticle self-assembled composite membraneTiO2nanoparticle in the anatase form is very hydrophilic,photoactive and practical for the wide-spread environmental applications such as water purification,wastewater treatment,hazardous waste control,air purification,and water disinfection [19,23,24].In this research,composite UF membrane was devised by the self-assembly between TiO2 nanoparticle and polymer with the ether bond and sulfone group(Fig.7)because of the strong electronegative of oxygen in the ether bond and sulfone group of the PES.As UF process was operated in the cross-flow mode under high pressure,simply adsorbed particles may be detached from membrane surface.XPS results in Table1indicate that some TiO2 particles in composite membrane have a sufficient binding strength for the actual operation,which agree with other researches on the interaction behavior of TiO2nanoparticle[18,25].It is concluded that a novel organic–inorganic membrane is successfully prepared by self-assembly process.3.5.Hydrophilicity and UF performance of the composite membraneThe hydrophilic and separation performance of the membrane surface untreated and treated by TiO2 colloidal solution are presented in Table2.The area of UF membrane is38.5cm2,applied pressure 0.2MPa,operational temperature258C and feed concentration200ppm(PEG-5000)in this experi-ment.As shown in Table2,the contact angle of the membrane treated by TiO2colloidal solution become small and theflux and the retention increase greatly.M.-L.Luo et al./Applied Surface Science249(2005)76–8481Fig.6.XPS spectra of the elements on the composite membrane. Table1Elements compositions of the PES/TiO2composite membrane undervarious washing conditions and UF operational timeSample a Takeoff angle(8)Relative atomic concentration(%)C O S Ti Cl14543.9530.8810.77 5.728.6824541.8032.8410.77 5.169.4334540.9534.5210.97 3.589.9844540.9534.5410.97 3.569.98a Analyses were performed for the TiO2self-assembled UFmembranes(1)just after preparation,(2)after washing withflowingwater,(3)after UF operation of3.0h,(4)after UF operation ofanother10.0h.The initial structure of the UF membrane is changed due to the self-assembly of TiO 2nanoparticles and the ridge-and-valley structure on the membrane surface is more clear.The roughness of the membrane surface increases.Generally,the hydrophilicity of membrane surface increases with the increase of roughness [26].On the other hand,the hydroxylcontent of membrane surface increases due to incorporate TiO 2nanoparticles into membrane sur-face.The hydroxyl is polarity and can interact well with water molecules through van der Waals ’force and hydrogen bond.So the probability of water permeated through the composite membrane enhances and the probability of PEG-5000permeated through the composite membrane drops off.Fig.8shows that the fluxes of the neat PES membrane and the treated PES membrane vary with time.As seen in Fig.8,the PES membrane treated by TiO 2colloidal solution always keeps higher flux.This experimental result shows that the anti-fouling performance of the PES ultra filtration membrane is improved remarkably due to TiO 2nanoparticles self-assembly.A strong potential for possible use as a new type of anti-fouling UF membrane is offered.M.-L.Luo et al./Applied Surface Science 249(2005)76–8482Fig.7.Mechanism of self-assembly of TiO 2nanoparticles:(I)by a coordination of sulfone group and ether bond to Ti 4+;(II)by a H-bond between sulfone group and ether bond and surface hydroxyl group of TiO 2.Table 2Contact angle and UF performance of membrane Sample a Contact angle (8)Flux (L m À2h À1)Retention (%)539.670.221.9619.2102.934.5aAnalyses were performed for (5)the neat and (6)the TiO 2self-assembled UF membranes.4.ConclusionsMembrane fouling by hydrophobic substances has been known to be the main cause to deteriorate the UF performance of PES membranes.It was developed that a new type of composite membrane as an approach to solve fouling problem.Its anti-fouling effect was characterized.The TiO2nanoparticle of a quantum size(40nm or less)in anatase form was prepared by the controlled hydrolysis of titanium tetraisopropoxide.The particle structure and size were characterized by X-ray diffraction(XRD)analysis and transmission electron microscopy(TEM).TiO2 nanoparticles were incorporated onto the poly(ether sulfone)membrane surface by self-assembly.X-ray photoelectron spectroscopy(XPS)demonstrated quantitatively that TiO2particles were tightly self-assembled with a sufficient bonding strength for the actual UF process.The contact angle test of the composite membrane shows that the hydrophilicity of the membrane surface improves remarkably.The fouling experiment verified a substantial prevention of the composite membrane against the hydrophobic substances fouling,suggesting a possible use as a new type of anti-fouling composite membrane. AcknowledgementsThe authors wish to acknowledge thefinancial support from the National Basic Research Program-2001CB-2091grant for this project.Thanks are also due to Environmental Science Research Institute, Chinese Academy of Sciences for supplying us with the PES membrane and Xi’an Modern Chemistry Research Institute for access to the XRD,XPS,TEM and SEM equipments.We also would like to thank Prof.Fengji LU for many valuable discussions. References[1]Y.Wang,J.H.Kim,K.H.Choo,Y.S.Lee,C.H.Lee,Hydro-philic modification of polypropylene microfiltration mem-branes by ozone-induced graft polymerization,J.Membr.Sci.169(2000)269.[2]H.C.Flemming,Reverse osmosis membrane biofouling,Exp.Therm.Fluid Sci.14(1997)382.[3]M.Mulder,Basic Principles of Membrane Technology,Kluwer Academic Publishers,Dordrecht,1996.[4]R.Sheikholeslami,Fouling mitigation in membrane processes,Desalination123(1999)45.[5]J.E.Kilduff,S.Mattaraj,J.P.Pieracci,G.Belfort,Photoche-mical modification of poly(ether sulfone)and sulfonated poly(sulfone)nanofiltration membranes for control of fouling by natural organic matter,Desalination132(2000)133. [6]M.Nystrom,P.Jarvinen,Modification of polysulfone ultra-filtration membranes with UV irradiation and hydrophilicity increasing agents,J.Membr.Sci.60(1991)275.[7]Y.Wu,Y.Shi,Polysulfone ultrafiltration membranes modifiedby irradiation grafting with acrylic acid monomer,Technol.Water Treat.1(1995)21(in Chinese).[8]K.Fujimoto,Y.Takebayashi,H.Inoue,Y.Ikada,Polyurethanesurface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion,Biomaterials 14(1993)442.[9]M.Suzuki,A.Kishida,H.Iwata,Y.Ikada,Graft copolymer-ization of acrylamide onto a polyethylene surface pretreated with a glow discharge,Macromolecules19(1986)1804. [10]K.Fujimoto,Y.Takebayashi,H.Inoue,Y.Ikada,Ozone-induced graft polymerization onto polymer surface,J.Polym.Sci.Polym.Chem.31(1993)1035.[11]J.Yamauchi, A.Yamaoka,K.Ikemoto,T.Matsui,Graftcopolymerization of methyl methacrylate onto polypropylene oxidized with ozone,J.Appl.Polym.Sci.43(1991)1197.[12]A.Fujishima,K.Honda,Electrochemical photolysis of waterat a semiconductor electrode,Nature238(1972)37. [13]Q.Hu,Fabrication and characterization of poly(amide-imide)/TiO2nanocomposite gas separation membranes,Ph.D.Thesis,Virginia Polytechnic Institute and State University, 1997.[14]T.Matsunaga,R.Tomoda,T.Nakajima,N.Nakamura,T.Komine,Continuous-sterilization system that uses photosemi-conductor powders,Appl.Environ.Microbiol.54(1988)1330.[15]Y.Liu,A.Wang,R.Claus,Molecular self-assembly of TiO2/polymer nanocompositefilms,J.Phys.Chem.B101(1997) 1385.[16]R.Rizza,D.Fitzmaurice,Self-assembly of monolayers ofsemiconductor nanocrystallites,Chem.Mater.9(1997)2969.[17]N.Kovtyukhova,P.J.Ollivier,S.Chizhik,A.Dubravin,E.Buzaneva,A.Gorchinskiy,A.Marchenko,N.Smirnova,Self-assembly of ultrathin composite TiO2/polymerfilms,Thin Solid Films337(1999)166.[18]S.J.Lee,S.W.Han,M.Yoon,K.Kim,Adsorption character-istics of4-dimethylaminobenzoic acid on silver and titania: diffuse reflectance infrared Fourier transform spectroscopy study,Vib.Spectrosc.24(2000)265.[19]W.Choi,A.Termin,M.R.Hoffmann,The role of metaliondopants in quantum-sized TiO2:correlation between photo-reactivity and charge carrier recombination dynamics,J.Phys.Chem.98(1994)1366.[20]M.Luo,Preparation and characterization of polyethersulfone/TiO2nanoparticles composite ultrafiltration membrane with high hydrophilicity and its pollution mechanisms,Ph.D.The-sis,Xi’an Jiaotong University,2003.M.-L.Luo et al./Applied Surface Science249(2005)76–8483[21]J.Lima-de-Faris,Structural Mineralogy,Kluwer AcademicPublishers,Dordrecht,1994.[22]J.Wang,W.Wu,Q.Zhao,Electron Spectroscopy,NationalDefence Industry Press,Beijing,1992.[23]M.R.Hoffmann,S.T.Martin,W.Choi,D.W.Bahnemann,Environmental application of semiconductor photocatalysis, Chem.Rev.95(1995)69.[24]ls,R.H.Davies,D.Worsley,Water purification bysemiconductor photocatalysis,Chem.Soc.Rev.22(1993)417.[25]ls,S.L.Hunte,An overview of semiconductor photo-catalysis,J.Photochem.Photobiol.A:Chem.108(1997)1.[26]J.Yu,X.Zhao,Q.Zhao,Effects of surface morphology ofphotocatalytic porous TiO2thinfilms on hydrophilicity,J.Chin.Ceram.Soc.3(2000)245.M.-L.Luo et al./Applied Surface Science249(2005)76–84 84。
聚醚砜膜的应用

聚醚砜膜的应用1、聚醚砜膜概述聚醚砜膜是一种高分子材料,具有优异的化学稳定性、耐高温、能耐强酸、强碱环境等优点。
因此,它广泛应用于各种工业、生产领域中,如电池隔膜、水净化、药品过滤、催化剂载体等。
2、聚醚砜膜在电池隔膜中的应用电池隔膜是电池中的重要组成部分,用于隔离正、负极之间的电解质,防止短路和过充,保证电池的安全性和性能。
在电动汽车、智能手机等电子器件中,聚醚砜膜被广泛应用于锂离子电池隔膜材料中,其优异的氧化、还原稳定性,以及高温、耐化学性能,能有效延长电池的寿命,提高电池的性能。
3、聚醚砜膜在水净化中的应用水是生命之源,水净化是保障人类健康生活和经济发展的重要工作。
而目前,市场上使用较为广泛的膜分离技术,例如超滤、微滤、反渗透等都需要用到分离膜。
而聚醚砜膜因其具有优异的耐酸碱性、耐高温、机械强度高、化学稳定性好等特点,成为膜分离中的重要材料。
在水处理中,聚醚砜膜主要应用于海水淡化、地下水处理、污水回用、水中重金属去除等领域。
4、聚醚砜膜在药品过滤中的应用药品过滤是药品生产中的一道重要工序,目的是将药品中的杂质和微粒去除,保障药品的质量和安全性。
而聚醚砜膜因具有微孔、颗粒大小均匀、压力降低等优点,被广泛应用于药品过滤领域。
除了过滤颗粒,聚醚砜膜还可以用于药物的富集、分离、纯化等。
聚醚砜膜还可以用于医疗领域,如人工耳蜗等医疗器械的制造。
5、聚醚砜膜在催化剂载体中的应用催化剂是化学反应中的重要角色,而催化剂载体则是催化剂的支撑体,能使催化剂更好地发挥其作用。
而聚醚砜膜因具有大的比表面积、优异的化学稳定性等特点,成为催化剂载体的新材料。
聚醚砜膜的强韧特性能保障载体的稳定性和催化剂的寿命。
6、结束语聚醚砜膜具有多种高性能特点,这使得它在不同的领域中都有着广泛的应用。
未来,聚醚砜膜的应用方向将更为多元化和细分化,例如在纳米材料制备、电化学测量、生物传感器等领域的应用。
聚醚砜膜(PES)折叠式滤芯的详细介绍

b.B 型:一般型<80℃ 高温型<90℃(内嵌不锈钢支撑体*) 125℃蒸汽消毒,每次半小时;
可耐最大压差(25℃)
0.40MPa 正向 0.20MPa 反向
*随使用温度升高,可耐最大压差相对降低;
适用 PH 值:1~13
注意事项 一般不适合下列情况: 某些温度高于 80℃的极性溶液,如酮类、酯类; 某些卤化碳氢化合物,如二氯甲烷等; 浓硝酸; 温度高于 80℃的浓硫酸(96%)。 应用领域 高纯水终端过滤; 医用大输液、针剂等药液除菌过滤; 消毒液的除菌过滤; 食品、饮料等除菌过滤。
接剂的热熔焊技术,熔封构成完整整体,无介质脱落。
3.过滤精度
0.22um~0.45um 4.优点
亲水性膜,流量大;
具有良好的耐高温和耐酸碱性能;
产品出厂之前经过 100%完整性测试; 每支滤芯都Fra bibliotek营高纯水冲洗。
5.使用条件
工作温度
a.A 型:一般型<50℃,(压差:0.3MPa)
高温型 <80℃,(压差:0.2MPa)(内嵌不锈钢支撑体*)
产品特性
聚醚砜膜(PES)折叠式滤芯的详细介绍
1.材质
膜堆由进口 PES 滤膜及进口纺布导流层组成,具有优良的耐热性和耐化学性。A 型的端盖、 外壳及中心杆均为聚丙烯材质。
B 型的端盖、外壳及中心杆均为 PVDF 材质,可应用于耐高温的的场所。
2.结构 折叠式滤层,过滤面积大,精细无纺布支撑层对滤膜提供最佳保护,各部分密封均采用无粘
巴斯夫拟在韩建Ultrason聚醚砜新厂

月 6 日 ) 巴斯 夫集 团宣布 将
在 其 位 于 韩 国 丽水 市 的生 产 基地 内新 建 一 座 工 厂 来 生产 Ulr sn聚 醚砜 ( F U) ta o P, S 聚合 物 产 品 。 新 厂 年 产 能 将 为 60 0 0吨 , 约 有 员 工 5 0人 。 该 厂将在 21 0 2年 初 动 工 建 设 , 预 计 将 在 2 1 0 4年 初 投
的 客户 用 于 生 产 耐 热 的轻 质 零 部 件 ,还 被 水 处理 行 业 客
国 际 汽 车 零 部 件 集 团 总 部 位 于 美 国 密 歇 根 州
S u h ed, 其 设 在 印 度 P n o tf l i u e的 分 公 司 谢 绝 公 布 新 厂 的确 切 位 置 。 印 度 分 公 司 的 高 级 副 总 裁 兼 执 行 董 事 Gaa a jn n V.
古 吉 拉 特 邦 现 正快 速 发展 成 为 印度 西 部 的 新 兴 汽车
中心 , 因此 在 这 一 地 区 建 新 厂 能 够 迎 合 塔 塔 、 通 用 汽 车 、福 特 、马 鲁 蒂 铃 木 和标 致 等 OE 的 需 求 。 M Ga d e说 : “ 厂 将 成 为 I n h 新 AC在 新 兴 市 场 业
Ga d e在 印度 孟 买 召 开 的 2 1 nh 0 1车 用 塑 料 大 会上 说 道 : “ 建 的新 厂 将 在 未 来几 年里 建 成 。 拟 ”
延 锋伟世通收 购美国伟世 通全球 内饰 业务
上 海 ( 0 2 1 1年 1 2月 6日) 中国 的延 锋 伟 世 通 汽车
伟 世通 全 球 内饰 业 务 的 多数 股 份 卖 给 延 锋 伟 世 通 。交 易
PALL过滤原理

PALL过滤原理首先是湿润步骤。
在使用PALL过滤器之前,需要将滤芯进行湿润处理,以提高过滤效率并防止滤芯的破损。
常见的湿润方法包括用溶液浸泡滤芯或使用显微镜滑片上的水滴使滤芯均匀湿润。
接下来是过滤步骤。
将待过滤液体通过装有滤芯的过滤器系统,微生物和颗粒物将会被滞留在滤芯的表面,而纯净的液体则会通过滤芯的微孔进入下游。
PALL过滤器的滤芯一般由聚酯、聚丙烯或聚醚砜膜制成,这些材料具有优异的化学和机械稳定性,能够有效去除微生物和颗粒物。
然后是冲洗步骤。
当滤芯上的微生物和颗粒物积累到一定程度时,会影响过滤器系统的通量和过滤效率。
为了清除滤芯表面的污染物,需要对过滤器进行冲洗。
冲洗的方法包括倒流冲洗和正向冲洗。
倒流冲洗是将清洗液通过相反的方向从滤芯底部注入,以清除滤芯上的污染物;而正向冲洗是将清洗液从滤芯顶部注入,以清除滤芯内部的污染物。
最后是回收步骤。
在完成滤芯清洗后,可以把滤芯恢复到初始状态,以便下一次过滤使用。
回收的方法包括将清洗液从滤芯顶部或底部排出,并对滤芯表面进行再次湿润处理。
PALL过滤器的主要应用领域包括生物制药、食品和饮料、水处理、微电子和电池等。
在生物制药领域,PALL过滤器被广泛用于病毒和细菌的去除,以确保制药产品的纯净性和安全性。
在食品和饮料领域,PALL 过滤器可以去除悬浮颗粒、细菌和固体颗粒,保证产品的品质和安全性。
在水处理领域,PALL过滤器可以有效去除水中的微生物和颗粒物,使水达到国家标准的安全要求。
在微电子和电池领域,PALL过滤器用于去除微粒和有害物质,以提高产品的质量和使用寿命。
总之,PALL过滤器是一种高效、可靠的微生物过滤技术,通过膜过滤的原理,可以去除微生物、颗粒物和溶解性物质,广泛应用于生命科学和工业领域。
通过湿润、过滤、冲洗和回收等步骤,PALL过滤器能够实现高效、连续和可重复的过滤操作。
在不同的应用领域中,PALL过滤器发挥着重要的作用,确保产品的纯净性和安全性,提高工业过程的效率和可持续发展。
聚醚砜pes 反渗透ro基膜

聚醚砜pes 反渗透ro基膜
聚醚砜(PES)是一种高性能工程塑料,具有优异的耐热性、耐化
学性和机械性能。
它常被用于制造反渗透(RO)膜。
反渗透膜是一种
高效的膜分离技术,通过在高压作用下将水从溶液中分离出来。
PES
反渗透膜是一种常见的RO膜类型,具有优异的水处理性能。
PES反渗透膜在水处理领域有着广泛的应用。
它可以用于海水
淡化、饮用水净化、工业废水处理等领域。
PES材料的优异性能使
得RO膜具有较高的除盐率和较长的使用寿命,同时还具有较好的抗
污染能力,能够有效地去除水中的溶解盐、重金属离子和有机物质。
除了在水处理领域,PES反渗透膜还被广泛应用于生物医药、
食品饮料和电子工业等领域。
在生物医药领域,PES膜常被用于生
物制药的分离纯化过程中,具有较好的生物相容性和稳定性。
在食
品饮料领域,PES膜则常被用于酿酒、浓缩果汁和乳制品的生产过
程中,能够有效地分离和浓缩所需的成分。
在电子工业领域,PES
膜则常被用于制备电子元件和光学器件。
总的来说,PES反渗透膜具有广泛的应用前景,其优异的性能
使其成为各种领域中重要的膜分离材料。
随着技术的不断发展和创新,PES反渗透膜的应用领域还将不断拓展和深化。
聚醚砜反渗透膜的结构

聚醚砜反渗透膜的结构
聚醚砜反渗透膜是一种应用广泛的高效膜材料,其结构对其性
能和应用具有重要影响。
这种膜的结构是由聚合物链构成的,其中
聚合物链之间的间隙形成了微孔结构,这些微孔可以让水分子通过,但阻止盐分和其他溶质通过,从而实现了反渗透的目的。
聚醚砜反渗透膜的结构通常可以分为三个层次,支撑层、中间
层和皮层。
支撑层通常由一种强韧的聚合物材料构成,用于提供膜
的机械强度和稳定性。
中间层是膜的关键部分,由聚醚砜等高分子
材料构成,这些高分子材料具有微孔结构,可以选择性地允许水分
子通过,但排斥盐分和其他杂质。
最外层是皮层,通常是一层非常
薄的聚醚砜膜,用于进一步提高膜的选择性和防止杂质的渗透。
聚醚砜反渗透膜的微孔结构对其性能具有重要影响。
微孔的大小、形状和分布密度决定了膜的通透性和选择性,而聚醚砜分子链
的排列方式和结晶度也会影响膜的性能。
因此,对聚醚砜反渗透膜
结构的深入研究可以帮助我们更好地理解其性能和优化其应用。
总之,聚醚砜反渗透膜的结构是其性能和应用的关键,通过对
其结构的深入理解和优化,可以更好地发挥其在水处理、海水淡化、废水处理等领域的作用,为人类的可持续发展做出重要贡献。
聚醚砜膜综述

聚醚砜膜综述:Kenker Polyethersulfone聚醚砜膜(PESM)具有良好的亲水性和通量,很好的化学稳定性和惰性,碱性PH稳定,具高药物相容性。
具有很好的温度稳定性能,整片滤膜可以在保证完整性的情况下在高温下进行灭菌消毒。
并在此过程中保持良好的抗收缩性能,避免在滤器中发生膜的撕裂、流速的降低和整个过滤量的减少。
Kenker Polyethersulfone聚醚砜膜(PESM)在严格控制的条件下生产和检测,以保证用户足够好的使用体验。
kenker membranes微孔滤膜具有多种不同的材质和规格,给实验者提供了更多的选择,并适应世界各地不同类型的过滤器,即使客户使用的是非Kenker或非标准的过滤容器,也能在kenker membranes中发现合适的滤膜。
kenker membranes的出色性能,能够最大限度的帮助实验者获得所希望的实验效果。
今天,越来越多的用户倾向于选择kenker membranes 的产品。
精确的孔径和良好的韧性,保证了再现性和一致性的良好表现。
应用:·离子色谱溶液过滤·常规过滤低蛋白吸附过滤·药液过滤·医药行业生物和血清的过滤、大输液抗菌素等终端过滤·食品行业饮料、酒等终端过滤·超纯水终端过滤·对组织培养基、添加剂、缓冲液和其它水溶液进行快速除菌过滤技术指标:PESM(Depending on the data obtained from sample testing, there may be注意事项:1、 PESM不能用于酮类、酯类、油类等极性溶液的过滤2、不能用于卤化、碳氢化合物、高浓度酸的过滤3、kenker membranes尽可能的为用户提供更多类型的产品,但在某些时间并非所有孔径的膜都有不同尺寸滤膜可选,请联系于您最便利的kenker membranes销售商以确认最新的产品讯息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Description
For Covalent Protein Attachment
Our activated polyethersulfone (PES) membrane offers rapid covalent protein immobilization via an aldehyde chemistry. The membrane possesses stable aldehyde functional groups on its inner and outer
surfaces, which provide for effective covalent binding to amine groups on
proteins. Proteins can be efficiently attached to this surface without prior chemical derivatization over wide pH ranges. The membrane can immobilize immunoglobulin to a density of 135 µg/cm 2.
The aldehyde functionality is stable and inert to moisture and heat, eliminating the need for special storage.The membrane is available in two formats, supported and unsupported, to accommodate your manufacturing needs.
Application
Applications
Ligand attachment Affinity chromatography Solid phase ELISA Dot blots
Sealing
Mechanical Heat
Specifications
Typical Membrane Characteristics
Base Material
Pore Size (µm)Thickness (mils)Thickness (µm)Supported polyethersulfone (Ultrabind®) 0.45 6.0-9.5 152.4-241.3Unsupported polyethersulfone (Ultrabind) 0.45 4.5-7.0 114.3-177.8Unsupported polyethersulfone (Ultrabind)
0.8
4.5-8.0
114.3-203.2
Typical Performance Characteristics
Base Material Pore Size (µm)Water Bubble Point (psi)Water Bubble Point (bar)Water Flow (mL/min/cm 2 @0.7 bar, 10 psi)Supported
polyethersulfone (Ultrabind) 0.45
> 25.0
> 1.72
> 55.7
Unsupported
0.45 30.0-49.0 2.07-3.38 31.0-52.9
Contact Us: /contact
Polyethersulfone (Activated) Membrane
S80247 UB-SV-450 supported membrane 0.45 µm, 8" x 10" sheet 1/pkg
S80452 UB-US-450 unsupported membrane, 0.45 µm, 8" x 10" sheet 1/pkg
S80300 UB-US-800 unsupported membrane, 0.8 µm, 8" x 10" sheet 1/pkg
Contact Information
© 2012, Pall Corporation, Pall, and other names are trademarks of Pall Corporation.
® indicates a registered trademark in the USA.。