实验二、SIMULINK仿真(报告完整版)

合集下载

Simulink实验报告

Simulink实验报告

实验一:AM 信号的调制与解调实验目的:1.了解模拟通信系统的仿真原理。

2.AM 信号是如何进行调制与解调的。

实验原理:1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。

+m(t)S AM (t)A 0cos ωc tAM 信号的时域和频域的表达式分别为:()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+=式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++-++=210 式(4-2)在式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

其频谱是DSBSC-AM 信号的频谱加上离散大载波的频谱。

2.解调原理:AM 信号的解调是把接收到的已调信号还原为调制信号。

AM 信号的解调方法有两种:相干解调和包络检波解调。

AM 相干解调原理框图如图。

相干解调(同步解调):利用相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。

LPF m0(t)S AM(t)cosωc tAM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成:(1)整流:只保留信号中幅度大于0的部分。

(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。

实验内容:1.AM相干解调框图。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

matlab中Simulink 的仿真实验报告

matlab中Simulink 的仿真实验报告

Simulink 的仿真实验报告1.实验目的:熟悉使用Simulink的各种使用方法及仿真系统2.数学建模:假设系统的微分方程为:r''(t)+3r'(t)+2r(t)=e(t) , 其中e(t)=u(t)求该系统的零状态响应令等式右边为零,则可求得方程的两个特征根为:r1=-1, r2=-2所以设该系统的零状态响应为:r(t)=Ae^-t+Be^-2t+C其中C为方程的一个特解,由微分方程可知,等式右边没有冲激函数及冲激函数的微分,故系统在零负到零正的过程中没有发生跳变,则C为一个常数。

将C带入方程可解得C=1/2由于零状态响应时系统的初值都为零即r(0-)=0 , r'(0-)=0,且系统无跳变,则r(0+)='(0+)=0.带入r(t)得:A+B+1/2=0-A-2B+1/2=0解得:A=-3/2 B=1所以系统的零状态响应为:r(t)=-3/2e^-t+e^-2t+1/2Simulink仿真:根据系统的微分方程可编辑仿真模型如下图打开开始按键,可以得到波形图:验证仿真结果:由前面得到的系统零状态响应结果:r(t)=-3/2e^-t+e^-2t+1/2可编辑仿真模型:>> t=(0::10);>> plot(t,((-3)/2)*exp((-1)*t)+exp((-2)*t)+1/2)实验结论:Simulink仿真结果和函数仿真结果基本一致,所以simulink仿真是正确的。

实验心得:1.此实验是利用matlab对一个微分方程进行建模求解,既要求我们掌握对微分方程的求解,又要求掌握用matlab对微分方程进行建模,所以要求我们对软件得熟悉。

2.信号与系统的实验主要是用matlab分析或验证书上的东西,前提当然是学好书本上的知识,再学好matlab这个软件。

3.用simulink仿真的时候,对函数用积分器较好,不知为什么用微分器做不出来,报错显示不出图形。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告一、实验目的本次实验的主要目的是通过使用Simulink软件来进行仿真实验,掌握Simulink仿真工具的基本使用方法,并且了解如何应用Simulink软件来进行系统建模和仿真分析。

二、实验内容1. Simulink软件的基本介绍2. Simulink仿真工具的使用方法3. Simulink模型建立与参数设置4. Simulink仿真结果分析三、实验步骤及方法1. Simulink软件的基本介绍Simulink是一种基于模块化编程思想的图形化编程工具,可以用于建立各种系统模型,并且进行系统仿真分析。

在Simulink中,用户可以通过拖动不同类型的模块来搭建自己所需要的系统模型,并且可以对这些模块进行参数设置和连接操作。

2. Simulink仿真工具的使用方法首先,在打开Simulink软件后,可以看到左侧有一系列不同类型的模块,包括数学运算、信号处理、控制系统等。

用户可以根据自己需要选择相应类型的模块,并将其拖入到工作区域中。

然后,用户需要对这些模块进行参数设置和连接操作,以构建出完整的系统模型。

最后,在完成了系统模型的构建后,用户可以进行仿真分析,并且观察系统的运行情况和输出结果。

3. Simulink模型建立与参数设置在本次实验中,我们主要是以一个简单的控制系统为例来进行仿真分析。

首先,我们需要将数学运算模块、控制器模块和被控对象模块拖入到工作区域中,并将它们进行连接。

然后,我们需要对这些模块进行参数设置,以确定各个模块的输入和输出关系。

最后,在完成了系统模型的构建后,我们可以进行仿真分析,并观察系统的运行情况和输出结果。

4. Simulink仿真结果分析在完成了Simulink仿真实验之后,我们可以得到一系列仿真结果数据,并且可以通过Simulink软件来对这些数据进行进一步的分析和处理。

例如,在本次实验中,我们可以使用Simulink软件来绘制出控制系统的输入信号、输出信号和误差曲线等图形,并且可以通过这些图形来判断系统是否满足预期要求。

matlab simulink仿真实验报告

matlab simulink仿真实验报告

matlab simulink仿真实验报告[Abstract]本篇报告介绍了一项利用Matlab和Simulink进行仿真实验的过程和结果。

实验主要涉及对加速度计数据的滤波和降噪处理,以及利用观测器估计一个非线性系统的状态变量。

本文介绍了实验设计的思路和步骤,详细讲解了实验中所使用到的算法和模型,并对实验结果进行了分析和总结。

[Keywords][Introduction]在自动化控制、机器人技术、航天航空、汽车电子等领域中,传感器和估计器是广泛应用的两类算法。

传感器可以测量物理量,如位置、速度、加速度等,并将其转化为电信号输出。

估计器则通过对物理模型的建模和输出信号的处理,来推测和估计系统的状态变量。

加速度计可以测量物体在三个轴向上的加速度,同时可以进行数据滤波和降噪。

估计器可以用于非线性系统的状态估计,具有广泛的应用前景。

[Simulation Process]1. 数据采集处理加速度计可以用于测量物体在三个轴向上的加速度。

由于传感器的噪声和误差,采集的数据往往不够准确和稳定,需要通过滤波和降噪等算法进行处理。

本实验中采用了常用的Butterworth低通滤波器和移动平均滤波器来对加速度计数据进行处理。

Butterworth低通滤波器是一种线性相位滤波器,可以将高频信号滤去,降低信号噪声。

在Matlab中,可以通过函数[b,a] = butter(n,Wn,'low')生成Butterworth低通滤波器。

其中,n为滤波器的阶数,Wn为截止频率。

移动平均滤波器是一种简单有效的滤波方法,可以对信号进行平均处理,消除信号的高频成分和噪声。

在Matlab中,可以通过函数smooth(x,n)生成移动平均滤波器。

其中,x为待处理的信号,n为滤波器窗口大小。

2. 状态估计模型状态估计模型是一种建立在数学模型基础上的估计方法,常常用于非线性系统的状态估计。

本实验中,给定了以下非线性系统的模型:$$\begin{cases}x_{1}' = x_{2} \cos(x_{1}) \\x_{2}'= u\end{cases}$$其中,x1和x2为系统状态变量,u为系统的控制输入。

simulink实验报告

simulink实验报告

simulink实验报告Simulink实验报告引言:Simulink是一种功能强大的图形化建模和仿真环境,广泛应用于控制系统设计、信号处理和通信系统等领域。

本实验报告将介绍Simulink的基本概念和使用方法,并通过一个具体的示例来展示Simulink的应用。

一、Simulink简介Simulink是MathWorks公司开发的一款基于模块化的仿真工具,它可以与MATLAB紧密集成,为系统建模和仿真提供了强大的支持。

相比于传统的编程方法,Simulink使用图形化界面,使得系统建模更加直观和易于理解。

Simulink 提供了丰富的模块库,用户可以通过拖拽和连接不同的模块来构建系统模型,并进行仿真和分析。

二、Simulink的基本概念1. 模块库:Simulink提供了各种各样的模块库,包括数学运算、信号处理、控制系统等。

用户可以从库中选择所需的模块,将其拖拽到工作区,并进行连接和参数配置。

2. 模块:模块是Simulink中的基本单元,它代表了系统中的一个功能模块或组件。

每个模块都有输入和输出端口,用户可以通过连接不同的模块来构建系统模型。

3. 信号:信号是模块之间传递的数据,可以是连续的或离散的。

Simulink支持多种信号类型,如模拟信号、数字信号、布尔信号等。

4. 仿真:Simulink提供了强大的仿真功能,用户可以通过设置仿真参数和模型参数,对系统进行仿真和分析。

仿真结果可以以图表、曲线等形式展示,帮助用户理解系统的行为和性能。

三、Simulink的应用示例:PID控制器设计以PID控制器设计为例,演示Simulink的应用过程。

1. 建立模型首先,我们需要建立一个PID控制器的模型。

在Simulink的模块库中,我们可以找到PID控制器的模块,并将其拖拽到工作区。

然后,我们需要连接输入信号、输出信号和反馈信号,并设置PID控制器的参数。

2. 设置仿真参数在进行仿真之前,我们需要设置仿真参数。

实验报告5Simulink仿真[推荐五篇]

实验报告5Simulink仿真[推荐五篇]

实验报告5Simulink仿真[推荐五篇]第一篇:实验报告 5 Simulink仿真实验五 Simulink仿真(一)一、实验目的1、熟悉Simulink仿真环境2、了解Simulink基本操作3、了解Simulink系统建模基本方法3、熟悉Simulink仿真系统参数设置和子系统封装的基本方法二、实验内容1、在matlab命令窗口中输入simulink,观察其模块库的构成;2、了解模块库中常用模块的使用方法;3、已知单位负反馈系统的开环传递函数为G=100s+2s(s+1)(s+20)建立系统的模型,输入信号为单位阶跃信号,用示波器观察输出。

4、建立一个包含Gain、Transfer Fcn、Sum、Step、Sine Wave、Zero-Pole、Integrator、Derivative等模块构成的自定义模块库Library1;5、建立如图7-12所示的双闭环调速系统的Simulink的动态结构图,再把电流负反馈内环封装为子系统,建立动态结构图。

三、实验结果及分析:图5-1图5-2图5-3图5-4双闭环调速系统的Simulink的动态结构图图5-5把电流负反馈内环封装为子系统的动态结构图双击Subsystem模块,编辑反馈电流环Subsystem子系统,如图5-6所示:图5-6分析:Simulink是Mathworks开发的MATLAB中的工具之一,主要功能是实现动态系统建模、仿真与分析。

可以在实际系统制作出来之前,预先对系统进行仿真与分析,并可对系统做适当的适时修正或按照仿真的最佳效果来调试及整定控制系统的参数,达到提高系统性能。

减少涉及系统过程中的反复修改的时间、实现高效率地开发系统的目标。

Simulink提供了建模、分析和仿真各种动态系统的交互环境,包括连续系统、离散系统和混杂系统,还提供了采用鼠标拖放的方法建立系统框图模型的图形交互界面。

第二篇:仿真实验报告仿真软件实验实验名称:基于电渗流的微通道门进样的数值模拟实验日期:2013.9.4一、实验目的1、对建模及仿真技术初步了解2、学习并掌握Comsol Multiphysics的使用方法3、了解电渗进样原理并进行数值模拟4、运用Comsol Multiphysics建立多场耦合模型,加深对多耦合场的认识二、实验设备实验室计算机,Comsol Multiphysics 3.5a软件。

simulink仿真实验报告

simulink仿真实验报告

Simulink仿真实验报告1. 引言本报告旨在对Simulink仿真实验进行全面、详细、完整且深入地探讨。

Simulink 是一种基于模型的设计和仿真环境,广泛应用于工程领域。

本实验通过使用Simulink进行系统建模和仿真,以验证系统的性能和可行性。

2. 实验目的本实验的主要目的是熟悉Simulink的基本操作和功能,并通过实际案例来了解系统建模和仿真的过程。

具体目标如下: 1. 掌握Simulink的界面和基本操作; 2. 学习如何建立系统模型; 3. 了解如何进行仿真和分析。

3. 实验步骤3.1 Simulink介绍Simulink是一种图形化的建模和仿真环境,可以用于设计和分析各种系统。

它提供了丰富的工具箱和模块,使得系统建模变得更加简单和直观。

3.2 Simulink界面Simulink的界面由多个窗口组成,包括模型窗口、库浏览器、信号浏览器等。

模型窗口是主要的工作区域,用于建立和编辑系统模型。

3.3 系统建模在Simulink中,系统模型由各种模块和连接线组成。

模块可以是数学运算、信号源、控制器等。

通过拖拽和连接这些模块,可以建立系统的结构。

3.4 仿真设置在进行仿真前,需要设置仿真参数,如仿真时间、步长等。

这些参数会影响仿真的准确性和效率。

3.5 仿真分析仿真完成后,可以对系统的性能进行分析。

Simulink提供了丰富的工具和图表,可以用于绘制系统的输出响应、频谱分析等。

4. 实验案例本实验选取了一个简单的控制系统作为案例,用于说明Simulink的应用过程。

4.1 系统描述控制系统包括一个输入信号、一个控制器和一个输出信号。

输入信号经过控制器后,通过输出信号进行输出。

4.2 模型建立在Simulink的模型窗口中,通过拖拽和连接模块,可以建立控制系统的模型。

首先添加输入信号模块,然后添加控制器模块,最后添加输出信号模块。

4.3 仿真设置设置仿真参数,如仿真时间为10秒,步长为0.01秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同的性能
由两种方法可以看出,运用函数编程编写代码进行试验时比较麻烦,调试比较
麻烦,但是运用 SIMULINK 模型来搭建系统,可视化比较好,而且在调试参数 时可以很简单的进行调整,即调试系统是比较简单。
SIULINK 模型与现实中的方框图的整体结构很相似,运用起来更加简单。因此在
进行控制模型调试过程最好运用 SIMULINK 方法。 3. 蹦极跳的数学模型为:
系统的 SIMULINK 模型如图(9)所示:
图(9)
x(t),x'(t)的曲线波形如图(10)所示:
图(10)
4. 建立单闭环调速系统的 SIMULINK 模型,并对 PID 控制器进行封装和对 P,I,D 参数进行设置。
单闭环调速系统的 SIMULINK 模型如图(11)所示,其中各个模块的参数可以再模
图(5)
(2)将(1)中的开环传递函数转换为状态空间模型。
实验代码:
[A,B,C,D]=tf2ss(1,[1 0.6 0])
执行结果:
A = -0.6000 1.0000 B = 1 0 C = 0 0
0 D = 0
1
2. 系统的微分方程为: x x(r ay ) y y (d bx) 设 r=1,d=0.5,a=0.1,b=0.02,x(0)=25,y(0)=2 1) 利用 MATLAB 所提供的函数,编写求解上述微分方程的 M 文件,求出 x(t),y(t);
mx mg b( x) x a1 x a2 x x
Kx x 0 b( x ) x0 0 其中 m 为物体的质量,g 为重力加速度,x 为物体的位置,第二项表示绳索的 弹力,K 为绳索的弹性系数,第三项和第四项表示空气的阻力。 设蹦极者的初始位置为 x(0)= -30, 起始速度为 x(0)'=0; 其余的参数为 a1=a2=1, m=70mg,g=10m/s2.试建立系统的 SIMULINK 模型,并给出 x(t),x'(t)的曲线波形
实验代码:
function DY=Fun(t,Y) DY=zeros(2,1); DY(1)=Y(1)*(1-0.1*Y(2)); DY(2)=Y(2)*((-0.5)+0.02*Y(1));
然后再在命令窗口输入以下命令:
[t,Y]=ode45('Fun',[0 20],[25;2]); plot(t,Y(:,1),'r-',t,Y(:,2),'b-')
实验二、SIMULINK 仿真
姓名:
一、 实验目的
熟悉 SIMULINK 模块库中常用标准模块的功能及其应用,利用 SIMULINK 标准模 块建立系统仿真模型,模型封装步骤和参数设置等。
学号:
二、 实验题目
1. 建立单位负反馈二阶系统的 SIMULINK 仿真模型,当输入信号源分别为阶跃信 号、斜坡信号、抛物线信号、正弦信号时,给出系统输出的波形图 (1)开环传递函数如下所示 1 2 s 0.6s
执行结果如图(6)所示:
图(6)
2) 试建立系统的 SIMULINK 模型,并给出 x(t),y(t)的曲线波形
系统的 SIMULINK 模型如图(7)所示:
图(7)
x(t),y(t)的曲线波形如图(8)所示:
图(8)
3) 比较上面两种方法的结果 Nhomakorabea 由图(7)和图(8)可以看出两种方法的结果是一致的,说明两种方法是实现了相
当输入信号源分别为阶跃信号、斜坡信号、抛物线信号、正弦信号时开环传递
函数 SIMULINK 仿真模型如下图(1)所示:
图(1)
当把开关打到相应的档位后输入信号源分别为阶跃信号、斜坡信号、抛物线信
号、正弦信号时系统输出波形分别如图(2)、图(3)、图(4)、图(5)所示:
图(2)
图(3)
图(4)
块属性里面进行改变设置、调试:
图(11)
对 P、I、D 调节装置进行子系统封装,然后对其属性参数进行设置,进行 P、
I、D 参数调节(如图(12)所示)封装后的模型如图(13)所示:
图(12)
图(13)
对子系统中的 PID 参数进行调节使系统趋于稳定,稳定曲线如图(14)所示:
图(14)
相关文档
最新文档