九年级上学期数学期末考试试题
人教版九年级上学期期末考试数学试卷(解析版)

人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。
江西省九江市2023-2024学年九年级上学期期末数学试题[答案]
![江西省九江市2023-2024学年九年级上学期期末数学试题[答案]](https://img.taocdn.com/s3/m/95a750f7294ac850ad02de80d4d8d15abe2300e7.png)
九江市2023-2024学年度上学期期末考试九年级数学试题卷本试卷满分120分,考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.方程2520x x +-=的二次项系数、一次项系数和常数项分别是( )A .0,5,2B .0,5,2-C .1,5,2-D .1,5,22.如图是一根空心方管,它的俯视图是( )A .B .C .D .3.在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为( )A .16B .18C .20D .244.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF =( )A .13B .12C .23D .15.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等6.如图,在平面直角坐标系中,Rt ABC D 的顶点A ,B 分别在y 轴、x 轴上,2OA =,1OB =,斜边//AC x 轴.若反比例函数(0,0)k y k x x=>>的图象经过AC 的中点D ,则k 的值为( )A .4B .5C .6D .8二、填空题(本大题共有6小题,每小题3分,共18分)7.关于x 的一元二次方程22=0x x m -+的一个根为-1,则m 的值为 .8.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .9.如图,在菱形ABCD 中,5AB =,60ABC Ð=o ,则BD 的长为 .10.如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边的中点,连接EF ,若矩形ABFE 与矩形ABCD 相似,4AB =,则矩形ABCD 的面积为 .11.如图,是反比例函数y=1x 和y=3x在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,则S △ABC = .12.如图,ABC V 为边长为7cm 的等边三角形,6cm BD =,2cm CE =,P 为BC 上动点,以0.25cm/s 的速度从B 向C 运动,假设P 点运动时间为t 秒,当t = 秒时,BDP△与CPE △相似.三、(本大题共5小题,每小题6分,共30分)13.解一元二次方程:(1)2420x x +-=(2)()2362x x-=-14.小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.(1)请画出此时小丽在阳光下的影子;(2)若已知小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,求小丽的身高.15.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?16.如图,四边形ABCD 为矩形,且有AE DE =.请用无刻度直尺完成下列作图,保留必要的画图痕迹.(1)在图1中求作BC 边的中点F ;(2)在图2中的边BC 上求作点H ,使BG CH =.17.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD ;求证:△ABE ∽△ACD .四、(本大题共3小题,每小题8分,共24分)18.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,AD 上,BE DF =,AC EF =.(1)求证:四边形AECF 是矩形;(2)若2CE BE =且AE BE =,已知2AB =,求AC 的长.19.已知A ,B ,C ,D ,E 五个红色研学基地,某地为了解中学生的意愿,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该地区有1000名中学生参加研学活动,则愿意去A 基地的大约有___________人;(3)甲、乙两所学校计划从A ,B ,C 三个基地中任选一个基地开展研学活动,请利用树状图或表格求两校恰好选取同一个基地的概率.20.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=¹在一,三象限分别交于C ,D 两点,且AB AC BD ==,连接CO ,DO .(1)求k 的值;(2)求CDO V 的面积.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程()()220a c x bx a c +++-=,其中a 、b 、c 分别为ABC V 三边的长.(1)如果=1x -是方程的根,试判断ABC V 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC V 的形状,并说明理由;(3)如果3a =,4b =,2c =,求这个一元二次方程的根.22.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点M 从点C 出发,以2cm/s 的速度沿CA 向点A 匀速运动,点N 从点B 出发,以1cm/s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN 的面积等于△ABC 面积的25?(2)经过几秒,△MCN 与△ABC 相似?六、(本题共1小题,共12分)23.[模型探究]Ð=,对角线AC、BD相交于点O.在线段AO上任取一点如图1,菱形ABCD中,ABC a=,则P(端点除外),连接PD、PB.Q为BA延长线上一点,且有PQ PBÐ=__________(用a表(1)PD_________PQ(用>、<、=填写两者的数量关系),DPQ示).[模型应用](2)如图2,当60Ð=o,其他条件不变.ABCV为等边三角形;①连接DQ,运用(1)中的结论证明PDQ②试探究AQ与CP的数量关系,并说明理由.[迁移应用]当90Ð=o,其他条件不变.探究AQ与OP的数量关系,并说明理由.ABC【分析】本题考查了一元二次方程的一般形式,注意找各项的系数时,要带着前面的符号.根据一元二次方程的一般形式得出答案即可.【详解】解:方程2520x x +-=的二次项系数、一次项系数和常数项分别是1,5,2-,故选:C .2.C【分析】根据从上面往下看得到的图形是俯视图,可得答案.【详解】解:如图所示,俯视图为:故选C .【点睛】本题考查了三视图,解题的关键是注意看到的线用实线表示,看不到的线用虚线表示.3.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,100%=20%4n´,解得:20n =,经检验20n =是原方程的根,故C 正确.故选:C .【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c ,∴12DE AB EF BC ==.故选:B .【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成5.B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.6.B【分析】作CE x ^轴于E ,根据作图即可得出2OA CE ==.又易证OAB CBE Ð=Ð,即证明AOB BEC D D ∽,得出BE CE OA OB=,从而求出BE 的长,即得到C 点坐标,进而得出D 点坐标.将D 点坐标代入反比例函数解析式,求出k 即可.【详解】解:作CE x ^轴于E ,//AC x Q 轴,2OA =,1OB =,2OA CE \==,90ABO CBE OAB ABO Ð+Ð=°=Ð+ÐQ ,OAB CBE \Ð=Ð,AOB BEC Ð=ÐQ ,AOB BEC \D D ∽,\BE CE OA OB=,即221BE =,4BE \=,5OE \=,Q 点D 是AC 的中点,5(2D \,2).Q 反比例函数(0,0)k y k x x=>>的图象经过点D ,5252k \=´=.故选:B .【点睛】本题考查相似三角形的判定和性质,反比例函数图象上的点的坐标特征.作出常用的辅助线是解答本题的关键.7.-3【分析】把x =-1代入原方程,解关于m 的一元一次方程即可.【详解】∵关于x 的一元二次方程22=0x x m -+的一个根为-1,∴2(1)2(1)=0m --´-+,解得m =-3,故答案为:-3.【点睛】本题考查了一元二次方程根的定义即使得一元二次方程左右两边相等的未知数的值,正确理解定义,灵活代入计算是解题的关键.8.59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.9.【分析】本题主要考查了菱形的性质以及含特殊角的三角函数的计算.由四边形ABCD 为菱形,60ABC Ð=o ,可得出1302ABO ABC =Ð=а,AC BD ^,BO DO =,进一步可求出cos BO ABO ABÐ=,则根据特殊三角函数可求出BO 以及BD .【详解】解:设AC 与BD 交于点O ,如下图:∵四边形ABCD 为菱形,60ABC Ð=o ∴1302ABO ABC =Ð=а,AC BD ^,BO DO =,在Rt AOB V 中,cos Ð∴cos 5BO AB ABO =×Ð=,∴22BD BO ===故答案为:.10.【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设AE =x ,则AD =2AE =2x ,∵矩形ABFE 与矩形ABCD 相似,∴AE AB AB AD=,即442x x =,解得,x 1=2x =-舍),∴AD =2x =,∴矩形ABCD 的面积为AB •AD ==,故答案为:.【点睛】考查了相似多边形的性质,解题的关键是根据相似多边形的性质列出比例式,难度不大.11.1【分析】设A 点的纵坐标是m ,则B 的纵坐标是m ,代入解析式即可求得A 、B 的横坐标,则AB 的长度即可求得,然后根据三角形的面积公式即可求解.【详解】设A 点的纵坐标是m ,则B 的纵坐标是m ,把y m =代入1y x =得:1x m =,把y m =代入3y x =得:3x m=,则312AB m m m =-=,则1212ABC S m mV =´×=.故答案为:1.【点睛】本题考查了反比例函数的比列系数的意义,正确设出A 的纵坐标,表示出AB 的长是关键.12.12或16或21【分析】本题主要考查了相似三角形的性质和判定,等边三角形的性质,先根据等边三角形的性质得60B C Ð=Ð=°,再分BD BP CP CE =和B D B P C E C P=两种情况求出答案即可.【详解】∵ABC V 是等边三角形,∴60B C Ð=Ð=°,7cm BC =,∴=0.25cm B P t ,()=-70.25cm C P t .当BD BP CP CE =时,BDP CPE ∽△△,即60.2570.252t t =-,解得12t =或16t =;当B D B PC E C P =时,P BDP CE △△∽,即60.25270.25t t=-,解得21t =.∴12t =或16或21.故答案为:12或16或21.13.(1)12x =,22x =(2)13x =,21x =【分析】(1)由配方法解方程即可得出答案;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2420x x +-=,242x x +=,24424x x ++=+,()226x +=,2x +=.∴12x =,22x =;(2)()2362x x -=-,()()2323x x -=-,()()23230x x -+-=,()()310x x --=,∴30x -=或 10x -=,∴13x =,21x =.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.14.(1)图形见解析;(2)1.4 m .【详解】试题分析:(1)利用阳光是平行投影进而得出小丽在阳光下的影子进而得出答案;(2)利用相同时刻身高与影子成正比进而得出即可.试题解析:(1)如图,线段CA 即为此时小丽在阳光下的影子.(2)∵小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,设小丽的身高为x m ,∴1.6=2 1.75x ,解得x =1.4.答:小丽的身高为1.4 m .15.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步,根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)\当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.16.(1)见解析(2)见解析【分析】本题主要考查了矩形的性质,线段垂直平分线的性质和判定:(1)连接,AC BD ,过,AC BD 的交点与点E 作直线,交BC 于点F ,即可;(2)方法一:连接AG ,并延长AG 交EF 于点P ,连接DP 交BC 于点H ,即可;方法二:连接AH ,交EF 于点Q ,连接DQ ,并延长DQ 交BC 于点H ,即可;【详解】(1)解:如图,点P 即为所求;(2)解:如图,点H即为所求.17.见解析【分析】根据角平分线的定义可得∠BAD=∠CAD,根据BE=BD,由等边对等角可得∠BED =∠BDE,根据邻补角可得∠AEB=∠ADC,即可证明△ABE∽△ACD.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE=BD,∴∠BED=∠BDE,∴∠AEB=∠ADC,∴△ABE∽△ACD.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.18.(1)见解析=即可证明出四边形【分析】(1)首先证明四边形AECF是平行四边形,然后结合AC EFAECF 是矩形;(2)首先根据勾股定理得到AE =2CE BE ==,然后利用勾股定理求解即可.【详解】(1)证明:在ABCD Y 中AD BC \=,AD BC ∥,BE DF =Q ,AD DF BC BE \-=-,即AF EC =,\四边形AECF 是平行四边形,AC EF =Q ,\四边形AECF 是矩形;(2)∵四边形AECF 是矩形∴90AEC Ð=°∴90AEB Ð=°∵AE BE =,2AB =∴222AE BE AB +=,即2222AE =解得AE =∴BE AE ==∴2CE BE ==∵90AEC Ð=°∴AC ==【点睛】本题考查了矩形的判定与性质,平行四边形的判定、勾股定理,熟练掌握矩形的判定与性质是解题关键.19.(1)见详解(2)14.4°(3)13【分析】本题主要考查了条形统计图和扇形统计图的相关知识以及用树状图或列表法求概率.(1)先根据扇形统计图以及条形图中选择C 基地的人数以及占比求出抽取学生的总人数,然后再求出选择B 基地的人数即可补全条形统计图.(2)直接用360°乘以选择D 基地人数得占比即可求出D 所在的扇形的圆心角的度数,用总体乘以选项A 基地的占比即可推知整体.(3)列出树状图或表格然后用概率公式即可求出两校恰好选取同一个基地的概率.【详解】(1)本次抽取的学生有:1428%50¸=(人),其中选择B 的学生有:5010142816----=(人),补全的条形统计图如右图所示;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为:236014.450°´=°,该市有1000名中学生参加研学活动,愿意去A 基地的大约有:10100020050´=(人),(3)树状图如下所示:由上可得,一共有9种等可能性,其中两校恰好选取同一个基地的可能性有3种,\两校恰好选取同一个基地的概率为3193=.20.(1)8k =(2)6【分析】本题考查了反比例函数与一次函数的交点问题,(1)过点C 作CH x ^轴于点H ,则OA CH ∥,先求出点A ,B 的坐标,再根据题意表示出点C 的坐标,再根据待定系数法求解即可;(2)联立两个解析式,求出点D 的坐标,再由三角形面积公式求解即可;熟练掌握知识点并添加适当的辅助线是解题的关键.【详解】(1)过点C 作CH x ^轴于点H ,则OA CH ∥,2y x =+Q 与坐标轴交于A ,B 两点,()0,2A \,()2,0B -,则2OA =,2OB =,12AB BC =Q,又OA CH ∥,12BA AO BO BC CH BH \===4BH \=,4CH =,∴2OH =,()2,4C \,Q 点C 在双曲线()0k y k x=¹上,42k \=,∴8k =;(2)令82x x =+,解得24x y =ìí=î或42x y =-ìí=-î,∴()4,2D --,()1112246222CDO AOC AOD C D S S S OA y OA y \=+=×+×=´´+=V V V .21.(1)ABC V 是等腰三角形;理由见解析(2)(3)1x =2x =【分析】(1)把=1x -代入原方程,可得到a b 、的数量关系,即可判断ABC V 的形状;(2)根据方程有两个相等的实数根得到()()()2Δ240b a c a c =-+-=,从而得到222a b c =+,由勾股定理的逆定理即可得到答案;(3)把3a =,4b =,2c =代入原方程,利用公式法解方程即可.【详解】(1)解:ABC V 是等腰三角形,理由如下:Q =1x -是方程的根,()()()()21210a c b a c \+´-+´-+-=,20a c b a c \+-+-=,0a b \-=,即a b =,ABC \V 是等腰三角形;(2)解:ABC V 是直角三角形,理由如下:Q 方程有两个相等的实数根,()()()2Δ240b a c a c \=-+-=,2224440b a c +-\=,222a b c \=+,ABC \V 是直角三角形;(3)解:将3a =,4b =,2c =代入方程得:25810x x ++=,,∴1x ==【点睛】本题考查了一元二次方程的解、勾股定理的逆定理、一元二次方程的根的判别式、等腰三角形的判定、解一元二次方程,熟练掌握以上知识点是解此题的关键.22.(1)4秒;(2)167或4013秒【分析】(1)分别表示出线段MC 和线段CN 的长后利用S △MCN =25S △ABC 列出方程求解;(2)设运动时间为t s ,△MCN 与△ABC 相似,当△MCN 与△ABC 相似时,则有MC NC BC AC =或MC NC AC BC=,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒,△MCN 的面积等于△ABC 面积的25,则有MC =2x ,NC =8-x ,∴12×2x (8-x )=12×8×10×25,解得x 1=x 2=4,答:经过4秒后,△MCN 的面积等于△ABC 面积的25;(2)设经过t 秒,△MCN 与△ABC 相似,∵∠C =∠C ,∴可分为两种情况:①MC NC BC AC =,即28810t t -=,解得t =167;②MC NC AC BC =,即28108t t -=,解得t =4013.答:经过167或4013秒,△MCN 与△ABC 相似.【点睛】本题考查一元二次方程的应用,相似三角形的判定与性质,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(1)=;a ;(2)①证明见解析;②AQ CP =,证明见解析;(3)AQ =,证明见解析;【分析】(1)利用菱形性质,线段垂直平分线的性质、等腰三角形的性质可知PD PB =,继而得到本题答案;(2)①利用含60°的等腰三角形即为等边三角形判定即可;②利用全等三角形判定及性质可证;(3)利用相似三角形判定及性质即可求出.【详解】解:(1)∵四边形ABCD 是菱形,ABC a Ð=,∴AC BD ^,DO BO =,12ABO CBO a Ð=Ð=,∴AC 垂直平分BD ,∴PD PB =,∵PQ PB =,∴PD PQ =,∴PDB PBD PQB PBQ Ð=Ð=Ð=Ð,∴()11801802QPB PQB PBQ DPB a Ð=°-Ð+Ð=°-=Ð,∴13603602(180)2DPQ QPB DPB a a Ð=°-Ð-Ð=°-°-=,综上所述:PD PQ =,DPQ a Ð=;(2)①证明:由(1)得,PQ PD =,60DPQ Ð=°,DPQ \△为等边三角形;②AQ CP =,,证明:设1ADP Ð=Ð,60ABC Ð=°Q ,60ADC \Ð=°,601ADQ CDP \Ð=°-Ð=Ð,又DQ DP =Q ,DA DC =,()QDA PDC SAS \V V ≌,AQ CP \=;(3)AQ =,理由如下:连接DQ ,即DPQ V 、ADO △为等腰直角三角形,,证明:设2QDA Ð=Ð,3PDO Ð=Ð,由题意,四边形ABCD 是正方形,则45ADO Ð=°,由(1)知,90DPQ ABC Ð=Ð=°,PD PQ =,则45QDP Ð=°,24513\Ð=°-Ð=Ð,答案第15页,共15页又::DQ DP DA DO ==Q ,QDA PDO \△∽△,:AQ OP \=,即:AQ =.【点睛】本题考查菱形性质,正方形的判定与性质,三角形内角和定理,等腰三角形的判定与性质,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形判定及性质,熟练掌握相关知识的联系与运用是解答的关键.。
九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
浙江省温州市2023-2024学年九年级上学期期末数学试题

温州市2023学年第一学期九年级(上)学业水平期末检测数学试卷本试卷分为选择题和非选择题两个部分,共4页,考试时间90分钟,全卷满分100分.答题时请在答题纸答题区域作答,不得超出答题区域边框线.选择题部分一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.抛物线()2345y x =−−+的顶点坐标是( ) A .()4,5B .()4,5−C .()4,5−D .()4,5−−2.已知点P 到圆心O 的距离为5,若点P 在圆内,则O 的半径可能为( ) A .3B .4C .5D .63.如图是海上风力发电装置,相同的三个转子叶片呈均匀分布.若图案绕中心旋转n °后能与原图案重合,则n 可以取( )(第3题) A .90B .120C .150D .1804.图1是《墨经》中记载的“小孔成像”实验图,图2是其示意图,其中物距2m BF =,像距1m CE =.若像的高度CD 是0.9m ,则物体的高度AB 为( )图1 图2 (第4题) A .1.2mB .1.5mC .1.8mD .2.4m阅读背景素材,完成5~6题.一个不透明的盒子内装有1个红球,1个黄球,1个蓝球,它们除颜色外其余均相同.现从中随机摸出一球,记下颜色后放回搅匀,如此继续.5.右表是小温前两次摸球的情况,当小温第三次摸球时,下列说法正确的是( )次数 第1次 第2次 第3次 颜色红球红球(第5题) A .一定摸到红球B .一定摸不到红球C .摸到黄球比摸到蓝球的可能性大D .摸到红球、黄球和蓝球的可能性一样大6.小州摸球两次,则出现相同颜色的概率为( ) A .19B .16C .13D .127.已知二次函数()20y ax bx c a ++≠的图象如图所示,则点(),A a b c +所在的象限是( )(第7题) A .第一象限 B .第二象限C .第三象限D .第四象限8.如图,ABC △内接于O ,AC 为直径,半径OD BC ∥,连结OB ,AD .若AOB α∠=,则BAD∠的度数为( )(第8题)A .2αB .902α°−C .904α°−D .1802α°−9.如图,在ABC △中,AB AC =,在AC 上取点D ,使CBD BAC ∠=∠,延长BC 至点E ,使得DE DB =.若BE k BC =,则ADAB等于( )(第9题) A .1k −B .11k − C .kD .1k10.已知抛物线()20y ax bx b a a =++−>,当03x ≤≤时,50y −≤≤.若将抛物线向左平移4个单位后经过点()1,0−,则b 的值为( )A .1−B .32−C .2−D .52−二、填空题(本题有6个小题,11-15每小题3分,16题4分,共19分)11.若一个正多边形的一个外角为36°,则这个正多边形的边数是______. 12.若扇形的圆心角为120°,半径为4,则它的弧长为______.(结果保留π) 13.某次踢球,足球的飞行高度h (米)与水平距离x (米)之间满足2560h x x =−+,则足球从离地到落地的水平距离为______米.14.如图,四边形ABCD 内接于圆,点E 在 CD 上,若 AB AD =,BC CE ED ==,105BCD ∠=°,则CDE ∠为______度.(第14题)15.如图,在ABC △中,90C ∠=°,点D 在AB 上,作DE BC ⊥于点E ,将BDE △绕点D 逆时针旋转至FDG △,点G ,F 分别落在AB ,AC 上.若2DG =,3FG =,则CE =______.(第15题)16.【情境】图1是某庭院所砌的一堵带有月洞门的墙,其设计图(图2)是轴对称图形,对称轴GH 交圆弧于点G ,墙面ABCD 为正方形,门洞上方匾额的中点M ,N ,P ,Q 分别是上方两个矩形对角线的交点.已知154AB =米,32EF =米,218GH =米,38EK =米.【问题】月洞门所在圆的半径为______米,匾额的长与宽之比为______.图1 图2 (第16题)三、解答题(本题有6小题,共51分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题5分)已知线段..a ,b ,满足23a b=. (1)求3a bb−的值. (2)当线段..x 是线段a ,b 的比例中项,且4a =时,求x 的值.18.(本题6分)某校七年级社会实践,安排三辆车,编号分别为A ,B ,C .小温与小州都可以从这三辆车中任意选择一辆搭乘.(1)求小温没有搭乘C 车的概率.(2)若小温没有搭乘C 车,请用画树状图或列表的方法,求出小温与小州不同车的概率. 19.(本题6分)如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(图1) (图2) (第19题)(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.20.(本题10分)如图,抛物线2y x bx c =−++经过点()1,0A −,()3,0B ,与y 轴交于点C .(第20题)(1)求抛物线的表达式及C 点坐标.(2)点(),3D m 是抛物线上一点,且当x m ≥时,y 的最大值为3,求BCD △的面积.21.(本题12分)如图,在ABC △中,90ACB ∠=°,点D 在BC 边上,ACD △的外接圆O 交AB 于点E ,AC CE =,过点C 作CG AD ⊥于点G ,延长CG 交AB 于点F .(第21题)(1)求证:FAC ACG ∠=∠.(2)求证:GC AGCA BC=.(3)若3CF FG =,AC =BD 的长.22.(本题12分)综合与实践:设计公交车停靠站的扩建方案.【素材1】图1为某公交车停靠站,顶棚截面由若干段形状相同的抛物线拼接而成.图2为某段结构示意图,1C ,2C 皆为轴对称图形,且关于点M 成中心对称,该段结构水平宽度为8米.图1 图2 图3【素材2】图3为停靠站部分截面示意图,两根长为2.5米的立柱11M N ,22M N 竖直立于地面并支撑在对称中心1M ,2M 处.小温将长为2.8米的竹竿AB 竖直立于地面,当点A 触碰到顶棚时,测得2N B 为1米. 【素材3】将顶棚扩建,要求截面为轴对称图形,且水平宽度为27米.计划在顶棚两个末端到地面之间加装垂直于地面的挡风板.【任务】(1)确定中心:求图2中点M到该结构最低点的水平距离l.C的函数表达式.(2)确定形状:在图3中建立合适的直角坐标系,求1(3)确定高度:求挡风板的高度.2023-2024学年浙江省温州市九年级(上)期末数学试卷(参考答案及评分标准)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBCDCBCAD二、填空题(11-15每小题3分,16题4分)11.十 12.8π313.1214.2515 16.54;7:3三、解答题(共51分,5分+6分+6分+10分+12分+12分)17.解:(1)23a b = ,3323113a b a b b b b −∴=−=×−=(2)334622b a ==×= ,24624x ab ==×=,x ∴18.解:(1)计算:P (小温未搭乘C )23=(2)列表如下:由表可知,共有6种等可能结果,其中小温和小州搭不同车的结果有4种,∴小温和小州搭不同车的概率为4263=.19.解:(1)(2)注:答案不唯一.20.解:(1)把1x =−,0y =;3x =,0y =代入,得()()2011b c =−−+×−+,()2033b c =−+×+解得2b =,3c =223y x x ∴=−++;点C 为()0,3.(其他解法,相应给分) (2)由题意得,二次函数经过点(),3D m 由(1)得,()2221b a −=−=×−012m +∴=,2m =; 2CD ∴=,3OC = 12332BCD S ∴=××=△(第20题) 21.(本题12分)(第21题) (1)证明:AC CE= FAC ADC ∴∠=∠ 90ACB =°∠ ,CG AD ⊥90ACG DCG ADC DCG ∴∠+∠=∠+∠=° ACG ADC ∴∠=∠FAC ACG ∴∠=∠(2)证明:CG AD ⊥ ,90AGC BCA ∴∠=∠=°FAC ADC ∠=∠ AGC BCA ∴∽△△GC AGAC BC∴= (3)解:3CF FG = 设FG a =,3FA FC a ==在AFG Rt △中,AG ==ABC ACG ∽△△,AC =BC ACAG CG ∴==∴90AGC ACD ∠°∠== ,CAG DAC ∠=∠ ACG ADC ∴∽△△,CG CD AG AC ∴==CD ∴BD BC CD ∴=−=.(利用重心的性质得出D 为中点相应得分) 22.(本题12分)解:(1)由中心对称性得:824÷=米,由轴对称性得:422÷=米. (2)以2M 点为原点,按如图形式建立直角坐标系,由条件得,1C 过()0,0、()1,0.3,对称轴为2x =,设顶点式为()22y a x h =−+,将()0,0、()1,0.3代入得()()220020.312a ha h=−+ =−+ ,解得:0.4h =,0.1a =−.()210.120.4C y x =−−+(3)27833m −×=,332m 2÷=(图3) 情况①:当37222x =+=时,()120.120.40.175m C y x =−−+=, 2.5 2.675m h y =+=情况②:将31222x =−=−时,()220.120.40.175m C y x =+−=−, 2.5 2.325m h y =+=法二:由图形为轴对称图形可知,图形必由若干个图2结构和一个1C 或者2C 构成;48328+×=,28271−=,120.5÷=米,只需将0.5x =;0.5x =−相应代入1C ,2C 即可()120.10.520.40.175C y =−−+=米, 2.5 2.675m h y =+= 或()220.10.520.40.175m C y =−+−=−, 2.5 2.325m h y =+=. 建系二:按如图形式建立直角坐标系,(2)由条件得,1C 过()0,0.3、()1,0−,210.10.20.3C y x x =−++(3)27833m −×=,332m 2÷=. 情况①:当352122x =+−=时,120.10.20.30.175m c y x x =−++=, 2.5 2.675m h y =+=.情况②:将332122x=−+−=− 时,220.10.60.50.175m C y x x =++=−, 2.5 2.325m h y =+=.建系三:以A 为原点,按如图形式建立直角坐标系,(2) 由条件得,1C 过()0,0、()1,0.3−−,120.10.2C y x x =−+(3)27833m −×=,332m 2÷= 情况①:当352122x =+−=时,120.10.20.125m C y x x =−+=−, 2.8 2.675m h y =+=.情况②:将332122x=−+−=−时,220.10.60.20.475mCy x x=++=−, 2.8 2.325mh y=+=.。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
贵州省遵义市2023-2024学年九年级上学期期末数学试题

贵州省遵义市2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在3,1,0,1-四个数中最小的一个数是( ) A .3B .1C .0D .1-2.下列几何图形既是中心对称图形又是轴对称图形的是( ) A .B .C .D .3.已知2x =是一元二次方程280ax -=的解,则a 的值是( ) A .2B .1C .1-D .2-4.如图,ABC V 是等腰直角三角形,a b ∥.若1125∠=︒,则2∠的度数是( )A .30︒B .35︒C .40︒D .45︒5.下列计算正确的是( ) A .22a a -=B .824a a a ÷=C .()236a a =D .3412a a a ⋅=6.《九章算术》中有这样一道题,大意是:假设有5头牛、2只羊,值10两金;2头牛、5只羊,值8两金.问1头牛、1只羊各值多少金?设1头牛、1只羊分别值x ,y 金,则列方程组正确的是( ) A .510,58.x y x y +=⎧⎨+=⎩B .5210,258.x y x y +=⎧⎨+=⎩C .58,510.x y x y +=⎧⎨+=⎩D .528,2510.x y x y +=⎧⎨+=⎩7.如图,O e 是PAB V 的外接圆,OC AB ⊥,连接OB .若50BOC ∠=︒,则APB ∠的度数是( )A .45︒B .50︒C .55︒D .60︒8.在一列数1,8,x ,4,9,4,11中,众数是4,平均数是7,中位数是8,则数x12182448(4)若ABC V 是直角三角形,则20ax bx c ++=的判别式4∆≥.A .(1)(3)B .(2)(3)C .(2)(4)D .(3)(4)三、解答题24(2)当6AB =,30C ∠=︒时,求图中阴影部分的面积.22.某商品每件的成本为100元,销售价(元/件)与时间(天)之间的函数关系如下图所示,商家预测未来30天的日销售量(件)与时间(天)满足函数表达式2140y x =-+.(1)求销售价(元/件)与时间(天)之间的函数表达式,写出自变量的取值范围; (2)在未来30天中哪天销售利润最大?求出该天销售利润.23.如图,在平面直角坐标系中,AOB V 为等腰直角三角形,90B ??,点A 的坐标为()2,0,将AOB V 绕点O 逆时针旋转90︒得到A OB ''△(A 的对应点为A ',B 的对应点为B ').(1)写出图中一个度数为45︒的角:______;(2)在平面直角坐标系中画出A OB ''△,点B '的坐标是______;(3)以()2,0M -为圆心的圆与A OB ''△三边中的一边所在直线相切,求M e 的半径. 24.如图,在正方形ABCD 中,点Q 在射线DC 上(不与C ,D 重合),点P 为直线BC 上一点,DAQ PAQ ∠=∠.图① 图②(1)如图①,若30DAQ ∠=︒,3AB =,DQ 的长是______,AP 的长是______; (2)如图②,当Q 在线段DC 上时,猜想AP ,BP ,DQ 之间的数量关系并证明; (3)当Q 在线段DC 的延长线上时,第(2)问中的结论是否成立?若成立,说明理由:若不成立,请探究AP ,BP ,DQ 之间的数量关系.25.初中阶段学习函数的方法:通过“列表、描点、连线”的方法画函数图象,根据图象(1)根据表中数据求21y x bx c=++中b ,c的值,并在图中画出函数在直线1x =右侧的大致图象;。
2023—-2024学年上学期九年级期末考试数学试卷

准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上学期期末考试数学试题
一、选择题(每小题3分,共36分) 1、在函数2-=
x y 中,自变量x 的取值范围是( )
A 、x ≥2
B 、x ≥-2
C 、x ≤-2
D 、x>2 2、下列二次根式是最简二次根式的是( )
A 、2ab
B 、5.0
C 、22b a +
D 、b
a 3、下列计算准确的是( ) A 、532=
+ B 、632=• C 、48= D 、3)3(2-=-
4、实数在数轴上对应点的位置如图所示,则化简()
()
()
2
2
2
a c
b a
c -+
--
+的结果
为( )
A 、-2a+b
B 、2a -b+2c
C 、b
D 、-b 5、关于x 的方程(k-2)2
2-k x
+3x -5=0是一元二次方程,则k 的值为( )
A 、±2
B 、2
C 、-2
D 、±1 6、一元二次方程x 2+3x+4=0的根的情况是( )
A 、有两个不相等的实数根
B 、有两个相等的实数根
C 、有两个实数根
D 、没有实数根
7、一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个 方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是
A .12
B .13
C .14
D .15
8、在△ABC 中,∠A ,∠B 都是锐角,且sinA =1
2
,cosB =
3
2
,则此三角形是 A.锐角三角形 B.直角三角形 C.钝角三角形 D.形状不能确定 9、对于y=x 2
-6x+11的图象,下列叙述准确的是
A.顶点坐标是(-3,2)
B.对称轴为x =-3
C.当x ≥3时,y 随x 的增大而增大
D.函数有最大值 10、某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比 为2:3,路基顶宽3米,高4米,则路基的下底宽为
A.7m
B.9m
C.12m
D.15m
11、如图,小正方形的边长均为1,则图中三角形(粗线)与左图中△ABC 相似的是( )
D.
B A
C
A.
B. C.
b
c a
(第7题)
12、如图,在梯形ABCD中,AD∥BC,中位线EF与对角线BD交于点G。
若EG﹕GF=2﹕3,且AD=8,则BC的长是()
A、12
B、24
C、6
D、16
二、填空题:(每小题3分,共15分)
13、已知x
x-
=
-2
)2
(2,则x的取值范围是
14、如图所示,已知点E F
、分别是ABC
△中AC AB
、边的中点,
BE CF
、相交于点G,2
FG=,则CF的长为
15.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是_________.
16.在平面直角坐标系中,△ABC的顶点A的坐标为(2,3),若以原点O为位似中心,画△ABC的位似图形△A/B/C/,使△ABC与△A/B/C/的相似比等于
1
2
,则点A/的坐标为__________.
17.在Rt△ABC中,∠C=90°,cosA=
3
3
,AB=12cm,则△ABC的面积为_____________cm2.
三、解答题(共69分)
19.(6分)现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则
是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.
A
第12题图
B
F
E
D
C
G
第14题图
A
F E
C
B
G
F
E
D
C
B
O
A
20.(6分)
21.(6分)某商店从厂家以每件18元的价格购进一批商品,该商店能够自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价x 元,则可卖出()32010x -件,但物价部门限定每件商品加价不能超过进货价的25%.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价-进货价)
22.(本题满分8分)如图,AB 是⊙O 的直径,AD 是弦,OC ⊥AD 于F , 交⊙O 于点E ,∠BED =∠C . ⑴求证:AC 为⊙O 的切线;
⑵若OA =6,AC =8,求cos ∠D 的值.
23.(8分)如图所示,在⊙O 中,
=
,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点
F ,连接BC .
(1)求证:AC 2=AB •AF ;
(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.
24.如图,在矩形ABCD中,AB =6,AD =11.直角尺的直角顶点P在AD上滑动时(点P 与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.
(1)△CDP与△P AE相似吗?如果相似,请写出证明过程;
(2)当∠PCD =30°时,求AE的长;
(3)是否存有这样的点P,使△CDP的周长等于
△P AE周长的2倍?若存有,求DP的长;若不存有,
请说明理由.
P
A
E
B
C
D。