扫描探针显微镜(scanning

合集下载

第10章 扫描探针显微镜

第10章 扫描探针显微镜

STM工作原理说明 STM工作原理说明
• 对于如此微小的扫描移动和精确的距离控制, 对于如此微小的扫描移动和精确的距离控制, STM的实现方法 依靠压电陶瓷。压电陶瓷是一种 STM的实现方法—依靠压电陶瓷。 的实现方法 依靠压电陶瓷 性能奇特的材料, 性能奇特的材料,当在压电陶瓷对称的两个端面加上 电压时,压电陶瓷会按特定的方向伸长或缩短。 电压时,压电陶瓷会按特定的方向伸长或缩短。而伸 长或缩短的尺寸与所加的电压的大小呈线形关系。 长或缩短的尺寸与所加的电压的大小呈线形关系。既 可以通过改变电压来控制压电陶瓷的微小伸缩。 可以通过改变电压来控制压电陶瓷的微小伸缩。把三 个分别代表X,Y,Z方向的压电陶瓷块组成三角架的 个分别代表X 形状。通过控制X 形状。通过控制X,Y方向伸缩达到驱动探针在样品 表面扫描的目的; 表面扫描的目的;通过控制 Z 方向压电陶瓷的伸缩 达到控制探针与样品之间距离的目的。 达到控制探针与样品之间距离的目的。
扫描探针显微镜家族成员
显微镜名称 扫描隧道顕微鏡 STM:Scanning Tunneling Microscopy 原子力顕微鏡 AFM:Atomic Force Microscopy 近接場光学顕微鏡 NSOM:Near-field Scanning Optical Microscopy 磁力顕微鏡 MFM:Magnetic Force Microscopy 摩擦力顕微鏡 FFM:Friction Force Microscopy 检测的物理量 隧道电流 原子力 近接場光 磁力 摩擦力
STM工作原理说明 STM工作原理说明
• STM探针的尖端是非常尖锐的,通常 STM探针的尖端是非常尖锐的 探针的尖端是非常尖锐的, 只有一两个原子。 只有一两个原子。因为只有原子级锐度的 针尖才能得到原子级分辨率的图象, 针尖才能得到原子级分辨率的图象,STM 探针通常是用电化学的方法制作的。 探针通常是用电化学的方法制作的。也有 人用剪切的简单方法得到尖锐的针尖。 人用剪切的简单方法得到尖锐的针尖。

SPM(扫描式探针显微镜)一般用语

SPM(扫描式探针显微镜)一般用语

SPM(扫描式探针显微镜)一般用语●SPM(扫描式探针显微镜;Scanning Probe Microscope)于试料表面以微小探针扫描,探针与试料间相互作用的物理量(穿隧电流、原子间力、摩擦力、磁力力等)检测,对于微小领域的表面形状检测及物性分析等行为的总称。

主要代表SPM 的有STM(扫描式穿隧电流显微镜)、AFM(原子力显微镜)等。

●STM(扫描式穿隧电流显微镜;Scanning Tunneling Microscope)使用导电性探针与试料间微小电流的利用,对探针与试料间的距离扫描控制,以分析试料表面形状,获得原子级图像的SPM。

使用测定试料必须为导电性材质。

●AFM(原子力显微镜;Atomic Force Microscope)于挠性微悬臂先端的探针与试料表面微小作用力的接触,控制微悬臂的受力值,对探针与试料间的距离扫描控制,以分析试料表面形状,获得原子级图像的SPM 表面形状。

另外可区分为接触式(DC mode) 与非接触式(AC mode) 二种类型的AFM。

使用测定试料可为导电性材质或绝缘体,亦可探测试料表面物性(摩擦力粘弹性表面电位等)的应用。

●LFM(侧向摩擦力显微术;Lateral Force Microscopy)接触式AFM 模式下可探测试料的摩擦力分布,LFM 属于SPM 的探测方式之一。

针对试料的Y 轴方向侧振动,此时探针连杆产生的扭转角度讯号可求得摩擦力分布的图像。

试料面的凹凸对连杆扭曲的形状影响较小。

●FFM(摩擦力显微术;Friction Force Microscopy)接触式AFM 模式下可探测试料的摩擦力分布,FFM 属于SPM 的探测方式之一。

主要根据探针连杆扭转方向变化(扭转角度范围的设定值为-90°至90°),此时产生的扭转角度讯号(FFM讯号) 可求得摩擦力分布的图像。

主要应用于无法试料表面形状判别的材质性问题,如参杂物分布的状况调查。

扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用量子隧穿效应的高分辨率显微镜。

它采用的是一根极细的金属探头和样品之间的隧穿电流来获取样品表面的信息。

STM具有非常高的分辨率,能够在原子尺度下的样品表面进行观测和操纵,因此在材料科学、表面物理、纳米技术等领域有着广泛的应用。

一、工作原理STM的工作基于量子力学中的隧穿效应。

隧穿效应是一种粒子从一个区域超越到另一个区域的现象。

在STM中,金属探头和样品之间形成一个电势差,并使用一个反馈电路来保持电流恒定。

隧穿电流是通过探头和样品之间的隧穿效应产生的。

探头与样品之间的距离非常小,约为几个纳米,隧穿电流的大小取决于两者之间的距离。

当探头在样品表面上移动时,由于样品表面具有不同的高度和电性特征,因此隧穿电流的大小也会发生变化。

这种变化通过反馈电路测量并转换为高度和电性的信息,然后通过计算机处理并呈现出来。

样品表面的信息在计算机中显示为一个图像。

二、应用A.材料科学STM被广泛应用于材料科学领域,如表征材料表面和分析材料电子结构等。

在纳米材料研究中,STM可以检测材料中的特定原子和分子,并且可以通过组装单个原子或分子来设计新的材料。

B.表面物理STM是表面物理学中非常有用的工具。

它可以研究各种表面效应,例如表面扭转、重排和易于惯性传输的晶格振动模式。

此外,STM还可以用于表面缺陷和缺失等杂质的检测和定位。

C.纳米技术STM在纳米技术领域具有广泛应用。

纳米材料、纳米结构的制备和表征在纳米技术领域是非常重要的。

通过STM可以定量地观察单个原子和分子,这对于设计和制备纳米材料和纳米器件非常有帮助。

D.生物学STM可以在原子和分子的尺度上进行生物学实验。

在生物领域,STM可用于研究DNA分子的结构和功能,以及在膜结构中的蛋白质微区域中检测生物分子等。

E.电子学STM还可以用作电子学中的电极,例如调制电流分布、表征器件中的界面和自旋极化等方法。

扫描探针显微镜spm、afm

扫描探针显微镜spm、afm

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介:该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。

●分辨率原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能样品尺寸:最大可达直径12mm,厚度8mm扫描范围:125X125μm,垂向1μm●型号:Veeco NanoScope MultiMode扫描探针显微镜本次培训着重介绍该设备常用模式:Contact Mode AFM二、AFM独特的优点归纳如下:(l)具有原子级的超高分辨率。

理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。

,从而可获得物质表面的原子晶格图像。

(2)可实时获得样品表面的实空间三维图像。

既适用于具有周期性结构的表面,又适用于非周期性表面结构的检测。

(3)可以观察到单个原子层的局部表面性质。

直接检测表面缺陷、表面重构、表面吸附形态和位置。

2012is coming(4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。

三、AFM的基本原理:AFM基于微探针与样品之间的原子力作用机制。

以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。

与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。

扫描探针显微镜原理

扫描探针显微镜原理

扫描探针显微镜原理扫描探针显微镜(Scanning Probe Microscope,SPM)是一种通过扫描探测器表面的探针来获取样品表面形貌和性质的显微镜。

它的工作原理基于根据样品表面的形貌变化,通过探测器与样品表面之间的相互作用力测量来获得显微图像。

在扫描探针显微镜中,探测器通过一系列控制机构移动并探测样品表面的特征。

其中最常使用的探测器是探针,它通常是由纳米尺寸的针状探头构成,例如扫描电子显微镜中的原子力显微镜(Atomic Force Microscopy,AFM)和扫描隧道显微镜(Scanning Tunneling Microscopy,STM)。

在AFM中,探针通过控制探测器的位置,使得探针与样品表面保持一定的距离,并通过弹性变形或电力作用测量样品表面与探针之间的相互作用力。

这个相互作用力的变化可以通过探测器的位置和力传感器来测量,从而得到样品表面形貌的信息。

通过扫描探针与样品表面的相对运动,可以逐点测量并构建出样品表面的三维形貌图像。

在STM中,探针与样品之间的相互作用力主要是电荷之间的库仑作用力。

当探针和样品表面之间存在一定的电压差时,电子会通过隧道效应穿过探针与样品之间的空隙,形成隧道电流。

根据隧道电流的强度,可以推断出样品表面的形貌信息。

通过调整电压和探针的位置,可以扫描整个样品表面,并获得高分辨率的原子级图像。

与传统的光学显微镜相比,扫描探针显微镜具有更高的分辨率和更强的表面灵敏度。

它不依赖于样品的透明性或反射性,可以用于观察各种类型的样品,包括生物样品、纳米材料和表面结构复杂的材料等。

因此,扫描探针显微镜在材料科学、生物学和纳米技术等领域具有广泛的应用前景。

扫描探针显微镜成像原理

扫描探针显微镜成像原理

扫描探针显微镜成像原理扫描探针显微镜(Scanning Probe Microscopy, SPM)是一种高分辨率的表面分析和制备技术,目前已经成为材料科学、物理学、化学、生物学等领域中不可或缺的工具。

其主要原理是利用探针在样品表面进行扫描,并通过感知器测量样品表面力、电流、电压等信号,以获得样品表面形貌、电荷分布、力和磁性等物理数据,从而实现对样品表面微观结构的观测和操纵。

SPM技术主要分为场发射扫描电子显微镜(Field Emission Scanning Electron Microscopy, FESEM)和扫描探针显微镜两大类。

扫描探针显微镜包括了原子力显微镜(Atomic Force Microscopy, AFM)、磁力显微镜(Magnetic Force Microscopy, MFM)、静电力显微镜(Kelvin Probe Force Microscopy, KPFM)和电荷注入记录显微镜(Scanning Capacitance Microscopy, SCM)等多种类型。

本文将主要介绍原子力显微镜的成像原理。

原子力显微镜(AFM)是20世纪80年代初期发明的一种新型扫描探针显微镜。

它采用的是一种机械测量方法,利用管壳、针、针尖等传感器进行扫描,对样品表面进行接触式的探测,可以实现纳米级别的表面形貌检测和测量。

AFM显微镜主要由扫描机构、探针和控制系统组成。

扫描机构控制扫描探针在样品表面进行扫描,探针则负责探测样品表面的形态变化和材料力学性质。

控制系统则通过信号采集与处理,将探针扫描时所接收到的信号转换成图像。

探针是AFM图像获得的关键之一。

探针直接接触样品表面,测量样品表面形貌的方法是通过探针尖端与样品表面的相互作用来实现的。

探针通常是由硅或氮化硅材料制成,尖端则是采用电子束刻蚀、化学腐蚀、电解腐蚀或氙气离子束刻蚀的方法来加工制作。

当探针尖端接触到样品表面时,由于原子间作用力的存在,会产生相互作用力的变化。

扫描探针显微镜

扫描探针显微镜

为了抑制低频振动,需要另外的悬簧。
(3) 冲气平台:通常用做光学工作台,典型 的固有频率为1—1.2Hz。对大于10Hz的 振动传递函数可达到0.1。

某些系统提供有效的振动隔离仅限于垂 直方向,也有对水平方向同样有效的气 动平台。 缺点:体积庞大,相当笨重,

1.2.2 机械系统 STM的机械系统应满足STM扫描及调 整针尖与样品距离等操作的要求。 例如: ① 在x和y方向上的扫描范围至少为 1µ m×1µ m,也可以根据使用者的要求选 择更大的使用范围10µ m×10µ m。 控制精度应达到0.1Å左右。
② 恒高模式: 探针在样品表面扫描时,使探针的 绝对高度不变,这时探针与样品表面的 相对距离就会改变,即隧道电流会改变, 通过测量电流的变化来反映样品表面的 高低起伏。这种扫描模式叫恒高模式。 (见图2.2(b)


恒电流模式是STM常用的工作模式,而恒 高模式仅适用于对起伏不大的表面进行 成像。 当样品表面起伏较大时,由于针尖离表 面非常近,采用恒高模式扫描可能造成 针尖与样品表面相撞,导致针尖与样品 表面破坏。

隧道电流的强度与针尖和样品间距S成指 数关系,对间距S的变化非常敏感,STM 就是利用这一原理来工作的。

它的工作模式有两种:
恒高模式 恒流模式

① 恒流模式: 探针在样品表面扫描时,通过反馈 回路控制隧道电流恒定不变,即探针与 样品表面相对距离保持恒定,这时探针 沿xy平面内扫描时在z轴方向的运动就反 映了样品表面的高低起伏,这种扫描模 式叫恒流模式。 见图2.2(a)
1.4 STM的应用: ①表面结构观测 STM是研究表面原子结构强有力的 工具,尽管有些时候并不能将STM图像 的结构细节简单地归结为原子的空间排 布情况,但人们利用STM可解决许多表 面科学问题。 例如:Si(111)表面的7×7重构结构。

利用扫描探针显微镜研究材料表面

利用扫描探针显微镜研究材料表面

利用扫描探针显微镜研究材料表面随着科技的不断进步,材料表面的研究变得愈发重要。

在材料科学中,材料表面的特性对于材料的性能、功能以及应用可能起着决定性的作用。

为了更好地理解材料表面的性质,人们使用了各种各样的技术,其中一种便是扫描探针显微镜。

扫描探针显微镜(Scanning Probe Microscopy,SPM)是一种基于扫描探针的显微技术,通过探测器与样品之间的相互作用来研究材料表面的形态、结构以及性质。

这种技术具有高分辨率、高灵敏度和非破坏性等特点,能够在纳米尺度下观察和测量材料表面的微观结构和性质。

其中一种常见的扫描探针显微镜是原子力显微镜(Atomic Force Microscope,AFM)。

通过探针的尖端与样品表面的相互作用力,AFM能够绘制出材料表面的拓扑图像。

AFM可以实现高分辨率的表面测量,其分辨率可以达到纳米甚至次纳米级。

AFM的工作原理基于探针的尖端与样品表面之间的相互作用力。

探针的尖端通过弹性力与样品表面保持接触,并且在扫描过程中受到表面特征的影响。

通过感应探针尖端的弯曲变化,可以获取关于样品表面形貌以及力学性质等信息。

除了原子力显微镜,扫描探针显微镜还包括场发射显微镜(Field Emission Microscope,FEM)和电子探针显微镜(Electron Probe Microscope,EPM)等。

这些显微镜在不同的研究领域中发挥着重要的作用。

利用扫描探针显微镜进行材料表面研究可以帮助我们深入了解材料的结构和性质。

例如,通过观察材料表面的拓扑图像,可以分析材料的表面形状、纹理以及粗糙度等特征。

这对于材料的制备和性能的改善非常重要。

此外,扫描探针显微镜还可以用于研究材料表面的化学性质。

通过结合特定的化学探针,可以实现对材料表面化学组成和反应的表征。

这有助于我们了解材料的化学性质,并且为材料的应用提供参考。

扫描探针显微镜在材料科学领域的应用非常广泛。

它可以应用在金属、陶瓷、半导体、生物材料等各种类型的材料中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介:
该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。

●分辨率
原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能
样品尺寸:最大可达直径12mm,厚度8mm
扫描范围:125X125μm,垂向1μm
●型号:
Veeco NanoScope MultiMode扫描探针显微镜
本次培训着重介绍该设备常用模式:Contact Mode AFM
二、AFM独特的优点归纳如下:
(l)具有原子级的超高分辨率。

理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。

,从而可获得物质表面的原子晶格图像。

(2)可实时获得样品表面的实空间三维图像。

既适用于具有周期性结
构的表面,又适用于非周期性表面结构的检测。

(3)可以观察到单个原子层的局部表面性质。

直接检测表面缺陷、表面重构、表面吸附形态和位置。

(4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。

三、AFM的基本原理:
AFM基于微探针与样品之间的原子力作用机制。

以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。

与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。

原子力变化的梯度约为10-13N/nm。

原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。

因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

图表 1 AFM原理示意图
图表 2 AFM测试点示意图
四、启用AFM(contact)功能测试步骤: 开机顺序:
z开启设备电脑开关及双屏显示器;
z开启显微镜光源;
z开启光学显微镜CRT显示器电源;
z将设备主部隔尘罩小心地取下,将显微镜调整至设备主机方向,光斑打到载物台中心处;
z打开设备主机电源,在主机controller的控制板上,确认AFM模式;
z打开pc中的 软件,激活软件与设备主机连接图标;
z在软件中设置当前样品需要的扫描范围,台阶高度,扫描速度等参数;台阶高度不可超多1μm,扫描速度设置在5μm/s以内为宜;
z倾斜着取下AFM针夹具,倒置于滤纸上,放于衣袖碰触不到的地方,以免碰伤悬臂
z放样品,样品粘于专用样品台片上,
z调整样品位置,在CRT上观察确定样品测试点位于下针位置附近;z放置AFM测试夹具,一定要小心,注意观察悬臂与样品表面的距离,若相距太近,则将测试夹具小心取出,放置妥当后,使用手动抬针方法将三个支柱抬高,同时保证三支柱设备光路台面水平;z高度调节到安全距离以后,小心地放入AFM针测试夹具,用肉眼结合CRT上观察确定样品与针的保持一段距离;
z固定夹具,此时主机显示屏上,标定激光器电压的SUM值为7V左右;
z探测器的水平偏差值(Horiz)接近0.0V,垂直偏差(Vert)接近
-2.0V;
z开始手动下针,注意时时观察光学显微镜CRT,下针过程中注意三轴的同步;
z当样品表面与悬臂焦距接近时,调节此时的horizontal deflection和vertical deflection值,分别至0V和-0.7~-0.8V 附近
z单击启动软件中自动下针控件,下针过程中注意观察主机中的水平偏差值(Horiz)和垂直偏差(Vert),示值趋势是减小的为正常;
z下针完成后,将扫描频率调低(即降低扫描速度),设置X轴与Y 轴的offset值(offset范围不得超过70μm),确定扫描位置和范围后,重新开始从上往下或从下往上扫描,并拍取图象。

z扫描完毕后,软件抬针,处理数据,保存。

z手动抬针,小心地将夹具取出,置于安全的位置,再取出样品,将载样品的圆片置于培养皿中,针测试夹具放回设备主机中。

关机顺序:
z关闭设备主控电源;
z关闭光学显微镜CRT电源、光源;
z将光学显微镜置于原本所在方向,盖上物镜盖;
z将主机隔尘罩小心的罩于主机上;
z关闭计算机电源及双屏显示器电源;
五、注意事项:
z此为精密设备,需倍加爱护;
z该设备需熟练掌握下针技巧后,才可独立操作;
z针夹具取出后,一定倒置于滤纸上,并保证放于衣袖碰触不到的地方;
z下针过程中注意观察主机中的水平偏差值(Horiz)和垂直偏差(Vert),示值趋势是减小的为正常;
z显微镜视场光斑打到样品台中心位置,保证样品台平整时,针在视场的中心位置;
z手动下针的过程中,调三轴调节钮时,注意观察水平偏差值(Horiz)和垂直偏差(Vert);
z自动下针完成后,在调节X,Y offset确定扫描位置和范围的时候,务必先将采样频率降低;
z测试过程中,密切注意测试状态:显示CRT上针的状态及软件中可能出现超限提示的部分;
z测试过程中,尽量保正环境气流稳定,请缓慢行走,轻轻关门;
六、本设备其它功能:
以下为本设备理论上可实现的各种功能(需要购买相应配件予以实施):
Appendix:
The MultiMode performs a full range of SPM techniques for surface characterization of properties like topography, elasticity, friction, adhesion, electrical and magnetic fields:
Tapping Mode
Contact Mode AFM
Phase Imaging
Lateral Force Microscopy (LFM)
Magnetic Force Microscopy (MFM)
Scanning Tunneling Microscopy (STM)
Force Modulation
Electric Force Microscopy (EFM)
Scanning Capacitance Microscopy (SCM)
Surface Potential Microscopy
Force-Distance and Force-Volume Measurements
Nanoindenting/Scratching
Electrochemical Microscopy (ECSTM and ECAFM) Phase Imaging
PicoForce Force Spectroscopy
and many more。

相关文档
最新文档