弹簧压轴题(非常实用)

合集下载

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

2020-2021中考物理(功和机械能问题提高练习题)压轴题训练及答案解析

2020-2021中考物理(功和机械能问题提高练习题)压轴题训练及答案解析

一、初中物理功和机械能问题1.如图所示,一个玩具弹簧放在斜面上端,将弹簧弯曲一定程度后释放,弹簧沿斜面向下翻滚.弹簧在运动过程中,有哪些机械能发生了转化A.只有动能和重力势能B.只有动能和弹性势能C.只有重力势能和弹性势能D.动能、重力势能和弹性势能都发生了转化【答案】D【解析】【详解】根据题意,玩具弹簧放在斜面上端,将弹簧弯曲一定程度后释放,弹簧沿斜面向下翻滚.首先将弹簧作为一个简单对象考虑,向下翻滚过程中,质量不变,但高度降低了,所以重力势能会减小;弹簧弹起后,另一端接触斜面时,动能减小,弹性势能增大,且减小的重力势能,会转化弹簧的弹性势能,即弹簧的弹性形变变大;弹簧弹起时,弹性势能又转化为动能.所以这个过程中,动能、重力势能和弹性势能都发生了转化,故D正确.2.下列说法中正确的是()A.抛出手的铅球在空中向前运动的过程中,推力对它做了功B.提着水桶在路面上水平向前移动一段路程,手的拉力对水桶做了功C.用手从地面提起水桶,手的拉力对水桶做了功D.用力推一辆汽车,汽车静止不动,推力在这个过程中对汽车做了功【答案】C【解析】【分析】【详解】A.抛出手的铅球在空中向前运动的过程中,推力已经不存在了,推力对它没有做功,A错误;B.提着水桶在路面上水平向前移动一段路程,手的拉力是竖直向上的,水桶在竖直方向上没有移动距离,即水桶在拉力的方向上没有移动距离,那么手的拉力对水桶没有做功,B 错误;C.用手从地面提起水桶,手的拉力是向上的,水桶在拉力的方向上移动了距离,所以手的拉力对水桶做了功,C正确;D.用力推一辆汽车,汽车静止不动,汽车在推力的方向上没有移动距离,那么推力在这个过程中对汽车没有做功,D 错误。

故选C 。

3.如图所示,动滑轮的质量为m ,所挂重物的质量为M ,重物在时间t 内被提升的高度为h ,不计绳重及摩擦,则( )A .滑轮组的机械效率为M M m + B .滑轮组的机械效率为2M M m + C .拉力F 的功率为Mgh t D .拉力F 的功率为()2M m gh t+ 【答案】A【解析】【分析】【详解】 AB .滑轮组做的有用功为W G h Mgh ==物有用总功为()()W G G h M m gh =+=+总物动滑轮组的机械效率为()W Mgh M W M m gh M mη==+=+总有用 故A 正确,B 错误;CD .拉力F 的功率为 ()M m gh W P t t+==总总 故CD 错误。

高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )k 1k2k2k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2.此题若求ml移动的距离又当如何求解参考答案:C和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为mA 和mB的两个小物块,mA>mB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).在上,A在上在上,B在上在上,A在上在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L 2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为Tl,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,Tlsinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )>m =m <m D.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

(完整版)高三物理《弹簧连接体问题专题训练题》精选习题

(完整版)高三物理《弹簧连接体问题专题训练题》精选习题

高三物理《弹簧连接体问题专题训练题》教材中并未专题讲述弹簧。

主要原因是弹簧的弹力是一个变力。

不能应用动力学和运动学的知识来详细研究。

但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。

即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。

而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。

所以我们只需了解一些关于弹簧的基本知识即可。

具体地说,要了解下列关于弹簧的基本知识:1、 认识弹簧弹力的特点。

2、 了解弹簧的三个特殊位置:原长位置、平衡位置、极端位置。

特别要理解“平衡位置”的含义3、 物体的平衡中的弹簧4、 牛顿第二定律中的弹簧5、 用功和能量的观点分析弹簧连接体6、 弹簧与动量守恒定律经典习题:1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( )A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 42、(双选)用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是( )A .F 1的施力者是弹簧B .F 2的反作用力是F 3C .F 3的施力者是小球D .F 4的反作用力是F 13、如图,两个小球A 、B ,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的是( )A 、绳对A 的拉力和弹簧对A 的拉力B 、弹簧对A 的拉力和弹簧对B 的拉力C 、弹簧对B 的拉力和B 对弹簧的拉力D 、B 的重力和弹簧对B 的拉力4、如图所示,质量为1m 的木块一端被一轻质弹簧系着,木块放在质量为2m 的木板上,地面光滑,木块与木板之间的动摩擦因素为μ,弹簧的劲度系数为k ,现在用力F 将木板拉出来,木块始终保持静止,则弹簧的伸长量为( )A .k g m 1μB .k gm 2μ C . k F D .k gm F 1μ-5、如图所示,劲度系数为k 的轻质弹簧两端连接着质量分别为1m 和2m 的两木块,开始时整个系统处于静止状态。

压轴题03 弹簧类专题(解析版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题03 弹簧类专题(解析版)-2020年高考物理挑战压轴题(尖子生专用)

4mg sin F mg ,F 为此时弹簧弹力,因 C 此时恰好离开地面,则有 F mg ,联立方程得
斜面倾角=30 . (2)刚开始以 B 为研究对象弹簧弹力 F0 mg kx1 ,
C 恰好离开地面时以 C 为研究对象,
弹簧弹力
F
mg
kx2 ,所以
x1
x2
mg k

由能量守恒得:
4mg
【解析】
【分析】
【详解】
(1)如图 1 所示,圆环在 D 点时,BD 弹簧处于原长,AD 弹簧的伸长量为 x= ( 3-1)R
受力分析,正交分解
F kx sin 30o
解得
k (3 3)mg 10R
(2)C 点与 D 点的高度差 h=0.5R 圆环从 C 运动到 D,弹簧弹性势能不变,根据机械能守恒
压轴题 03 弹簧类专题
1.足够长的光滑细杆竖直固定在地面上,轻弹簧及小球 A、B 均套在细杆上,弹簧下端固定在地面 上,上端和质量为 m1=50g 的小球 A 相连,质量为 m2=30g 的小球 B 放置在小球 A 上,此时 A、 B 均处于静止状态,弹簧的压缩量 x0=0.16m,如图所示。从 t=0 时开始,对小球 B 施加竖直向上 的外力,使小球 B 始终沿杆向上做匀加速直线运动。经过一段时间后 A、B 两球分离;再经过同 样长的时间,B 球距其出发点的距离恰好也为 x0。弹簧的形变始终在弹性限度内,重力加速度取 g=10m/s2。求:
的小物块(可视为质点)压缩,小物块与弹簧只接触不相连,此时小物块距斜面底端的距离 l =4.0m。
t=0 时释放小物块,图乙为小物块在斜面上运动的加速度 a 随时间 t 变化的部分图象,小物块到
达水平面并与滑块发生弹性碰撞(碰撞时间极短)。已知弹簧的劲度系数 k=75N/m,弹性势能的

中考物理压轴题专题功和机械能问题的经典综合题含答案精选全文完整版

中考物理压轴题专题功和机械能问题的经典综合题含答案精选全文完整版

可编辑修改精选全文完整版一、初中物理功和机械能问题1.如甲图所示,小球从竖直放置的弹簧上方一定高度处由静止开始下落,从a 处开始接触弹簧,压缩至c 处时弹簧最短.从a 至c 处的过程中,小球在b 处速度最大.小球的速度v 和弹簧被压缩的长度△L 之间的关系如乙图所示.不计空气阻力,则从a 至c 处的过程中,下列说法中正确的是( )A .小球所受重力始终大于弹簧的弹力B .小球的重力势能先减小后增大C .小球减少的机械能转化为弹簧的弹性势能D .小球的动能一直减小 【答案】C 【解析】 【详解】在小球向下压缩弹簧的过程中,小球受竖直向上的弹簧的弹力、竖直向下的重力;在ab 段,重力大于弹力,合力向下,小球速度越来越大;随着弹簧压缩量的增大,弹力逐渐增大,在b 处弹力与重力相等,小球的速度达到最大;小球再向下运动(bc 段),弹力大于重力,合力向上,小球速度减小;故A 错误;小球从a 至c 的过程中,高度一直减小,小球的重力势能一直在减小,故B 错误;小球下落压缩弹簧的过程中,不计空气阻力,机械能守恒,则小球减少的机械能转化为弹簧的弹性势能,故C 正确;由图乙可知,小球的速度先增大后减小,则小球的动能先增大后减小,故D 错误;故应选C .2.如图所示,粗糙的弧形轨道竖直固定于水平面上,小球由A 点以速度v 沿轨道滚下,经过另一侧高点B 后到达最高点C .下列分析不正确的是( )A .小球在A 、B 、C 三点的速度大小关系是C B A v v v <<B .小球在A 、B 两点的动能之差等于小球从A 点到B 点克服摩擦力做的功C .小球在A 、B 两点具有的重力势能相同D .整个过程只有重力对小球做功 【答案】D【解析】 【分析】 【详解】A .小球运动过程中会克服摩擦力做功,且质量不变,故从A 运动到C 的过程中,机械能减小,小球在A 与B 点的势能相同,故在A 点的动能大于B 点的动能,C 点最高,故小球在C 点的势能最大,动能最小,所以C B A v v v <<,故A 正确,不符合题意;BC .A 、B 两点高度相同,小球的质量不变,故小球的重力势能相同,小球从A 点运动到B 点,会克服摩擦力做功,动能减小,动能之差等于克服摩擦力所做的功,故B 、C 正确,不符合题意;D .整个过程中,摩擦力也会对小球做功,故D 错误,符合题意。

挑战高中物理压轴题

挑战高中物理压轴题

1、如下图,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。

*一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。

AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。

倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。

只有过山车模型的竖直圆轨道处在围足够大竖直向下的匀强电场中,场强。

〔cos37°=0.8,sin37°=0.6,取g=10m/s2〕求:〔1〕被释放前弹簧的弹性势能.〔2〕要使小球不离开轨道〔水平轨道足够长〕,竖直圆弧轨道的半径应该满足什么条件.〔3〕如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的*一点P.2、如下图,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开场沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经到达稳定速度,cd 到MP的距离为S.重力加速度为g,求:〔1〕金属棒到达的稳定速度;〔2〕金属棒从静止开场运动到cd的过程中,电阻R上产生的热量;〔3〕假设将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.3、如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它局部摩擦不计.取g=10m/s2.求:〔1〕物块经过圆轨道最高点B时对轨道的压力;〔2〕物块从Q运动到P的时间及弹簧获得的最大弹性势能;〔3〕物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.4、如下图,倾角300的光滑倾斜导体轨道〔足够长〕与光滑水平导体轨道连接,轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的一样导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.〔1〕求导体棒cd沿斜轨道下滑的最大速度的大小;〔2〕假设从开场运动到cd棒到达最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程过cd棒横截面的电荷量;〔3〕假设cd棒开场运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开场运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间,磁场Ⅱ的磁感应强度B随时间t变化的关系式.5、如下图质量为m=1kg的滑块〔可视为质点〕由斜面上P点以初动能E K0=20J沿斜面向上运动,当其向上经过Q点时动能E KQ=8J,机械能的变化量ΔE机=-3J,斜面与水平夹角α=37°。

高中物理弹簧专题典型例题

高中物理弹簧专题典型例题

高中物理弹簧专题典型例题例如图3-5,木块B 与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。

现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒【错解】以子弹、木块和弹簧为研究对象。

因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。

又因系统只有弹力做功,系统机械能守恒。

故A 正确。

【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。

二是规律适用条件不清。

【分析解答】以子弹、弹簧、木块为研究对象,分析受力。

在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。

由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B 正确。

例质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。

平衡时,弹簧的压缩量为x0,如图3-15 所示。

物块从钢板正对距离为3X0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。

已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。

错解】物块m从A 处自由落下,则机械能守恒设钢板初位置重力势能为0,则之后物块与钢板一起以v0 向下运动,然后返回O点,此时速度为0,运动过程中因为只有重力和弹簧弹力做功,故机械能守恒。

2m的物块仍从A 处落下到钢板初位置应有相同的速度v0,与钢板一起向下运动又返回机械能也守恒。

返回到O点速度不为零,设为V 则:因为m物块与2m物块在与钢板接触时,弹性势能之比2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。

之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v 为初速竖直上抛上升距离【错解原因】这是一道综合性很强的题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧压轴题(非常实用)弹簧恢复原长时,物体速度最大,弹性势能为零。

若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。

若关联物同时处在电磁场中,要注重过程分析。

5、两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零。

若物体再受阻力时,弹力与阻力相等时,物体速度最大。

针对此类问题,要立足运动和受力分析,在解题方法上以动量定理、动量守恒定律和动能定理等为首选。

下面我们结合例题来分析一下弹簧类问题的研究方法。

1.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地面上.平衡时,弹簧的压缩量为x。

,如图4所示.一物块从钢板正上方距离为3x。

处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达的最高点与O点的距离.解析:设质量为m的物块与钢板碰撞时的速度为v。

,由机械能守恒得:①设表示质量为m的物块与钢板碰撞后一起开始向下运动的速度,因碰撞时问极短,由动量守恒得:②刚碰完时弹簧的弹性势能为当它们一起回到O点时,弹簧无形变,弹性势能为零,根据题给条件,这时物块与钢板的速度为零,由机械能守恒得:设表示质量为2m的物块与钢板碰撞后开始一起向下运动的速度,则有:当质量为2m的物块与钢板一起回到O点时,弹簧的弹力为0,物块与钢板只受到重力作用,加速度为g,过O点,钢板受到弹簧向下的拉力作用,加速度大于g,由于物块与钢板不粘连,物块不可能受到钢板的拉力,其加速度仍为g,故在0点物块与钢板分离,分离后,物块只受重力作用.设:质量为2m的物块脱离钢板后,上升的最大高度为h,因机械能守恒,故有:⑦2.A 、B 两个矩形木块用轻弹簧相连接,弹簧的劲度系数为k ,木块A 的质量为m ,物块B 的质量为2m 。

将它们竖直叠放在水平地面上,如图所示。

(1)用力将木块A 竖直向上提起,木块A 向上提起多大高度时,木块B 将离开水平地面。

(2)如果将另一块质量为m 的物块从距A 高H 处自由落下,C与A 相碰后,立即与A 结合成一起,然后将弹簧压缩,也可以使木块B 刚好离开地面。

如果C 的质量减为m/2,要使B 不离开水平地面,它自由落下的高度距A 不能超过多少?18、(1)A 、B 用轻弹簧相连接,竖直放置时,弹簧被压缩,由A 受重力和弹力平衡得弹簧压缩量x1=k mg . A 提起到B 将要离开水平地面时,弹簧伸长,由B 重力和弹力平衡得弹簧伸长量x2=k mg2.A 向上提起的高度为x1+x2=k mg3(2)C 自由落下到与A 相碰前的速度为v=gH 2C 与A 相碰后一起向下运动的初速度设为v1,有mv=(m+m)v1C 和A 具有的动能为mgH v m m 21)(2121=+C 和A 将弹簧压缩后,再伸长,到B 刚好离开地面,这个过程中,A 和C 上升了x1+x2,重力势能增加了2mg(x1+x2),弹簧的弹性势能增加量设为EP 。

有 mgH 21=2mg(x1+x2)+EP若C 的质量变为m/2(称为D 物块),设D 从距A 高h 处自由落下,将使B 刚好能离开水平地面。

这时D 与A 自由落下与B 相碰前具有的动能为mgh 61。

D 与A 上升(x1+x2)距离时,速度刚好为零,则有mgh 61=23mg(x1+x2)+EP解得h=A BC H.(05年全国)如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A .B 都处于静止状态。

一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。

开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。

现在挂钩上升一质量为3m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。

若将C 换成另一个质量为)(21m m +的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。

解:开始时,A .B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有kx 2=m 2g ②B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点。

由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 ΔE =m 3g(x 1+x 2)-m 1g(x 1+x 2) ③C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得12 (m 3+m 1)v 2+12m 1v 2=(m 3+m 1)g(x 1+x 2)-m 1g(x 1+x 2)-ΔE ④ 由③ ④ 式得12(m 3+2m 1)v 2=m 1g(x 1+x 2) ⑤ 由①②⑤式得v=2m 1(m 1+m 2)g 2(2m 1+m 3)k⑥ 评分标准:①②各2分 ,③④⑤各4分 、⑥3分剖析:开始时,A 、B 静止,设弹簧压缩量为x 1,由平衡条件有 k x 1=m 1g ① 挂C 并释放后,C 向下、A 向上运动,设B 刚要离地时弹簧伸长量为x 2,由平衡条件有k x 2=m 2 g ②B 离开地面但不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由于A 、B 、C 和弹簧构成的系统机械能守恒,C 向下、A 向上移动的距离均为(x 1+ x 2),所以与初状态相比,弹簧弹性势能的增加量为ΔE = m 3g (x 1+ x 2)- m 1g (x 1+ x 2) ③同理:C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,也为ΔE . 由机械能守恒定律有 (m 1+ m 3)υ2 / 2 +m 1υ2 / 2=(m 1+ m 3)g (x 1+ x 2)- m 1g (x 1+ x 2)-ΔE ④由③④式得(2m 1+ m 3)υ2 / 2 = m 1g (x 1+ x 2)⑤由①②⑤式得 )2()(2312211m m k g m m m v ++= 答案)2()(2312211m m k g m m m v ++= 4如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为m A =1kg ,m B =1kg ,m C =2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E =9J 转化为A 和B 沿轨道方向的动能,A 和BA Bm k m 1分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求:(1)在A 追上B 之前弹簧弹性势能的最大值;(2)A 与B 相碰以后弹簧弹性势能的最大值. 【答案】(1)3J ;(2)0.5J解析:(1)塑胶炸药爆炸瞬间取A 和B 为研究对象,假设爆炸后瞬间A 、B 的速度大小分别为v A 、v B ,取向右为正方向由动量守恒:-m A v A +m B v B =0爆炸产生的热量由9J 转化为A 、B 的动能222121B B A A v m v m E += 代入数据解得v A =v B =3m/s由于A 在炸药爆炸后再次追上B 的时候弹簧恰好第一次恢复到原长,则在A 追上B 之前弹簧已经有一次被压缩到最短(即弹性势能最大),爆炸后取B 、C 和弹簧为研究系统,当弹簧第一次被压缩到最短时B 、C 达到共速v BC ,此时弹簧的弹性势能最大,设为E p1.由动量守恒,得m B v B =(m B +m C )v BC 由机械能守恒,得P Bc C B B B E v m m v m ++=22)(2121 代入数据得E P1=3J(2)设B 、C 之间的弹簧第一次恢复到原长时B 、C 的速度大小分别为v B1和v C1,则由动量守恒和能量守恒:m B v B =m B v B1+m C v C121212212121C C B B B B v m v m v m += 代入数据解得:v B1=-1m/s ,v C1=2m/s(v B1 =3m/s ,v C1=0m/s 不合题意,舍去.)A 爆炸后先向左匀速运动,与弹性挡板碰撞以后速度大小不变,反向弹回.当A 追上B ,发生碰撞瞬间达到共速v AB由动量守恒,得m A v A +m B v B1=(m A +m B )v AB解得v AB =1m/s当A 、B 、C 三者达到共同速度v ABC 时,弹簧的弹性势能最大为E P2 由动量守恒,得(m A +m B )v AB +m C v C1=(m A +m B +m C )v ABC 由能量守恒,得22212)(2121)(21P ABC C B A C AB B A E v m m m v m v m m +++=++ 代入数据得E P2 =0.5J5.如图所示,一劲度系数为k=800 N / m 的轻弹簧两端各焊接着两个质量均为m=12 kg 的物体A 、和B ,物体A 、B 和轻弹簧竖立静止在水平地面上。

现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4 s 物体B 刚要离开地面。

设整个过程中弹簧都处于弹性限度内,取g=10 m / s 2,求:(1)此过程中所加外力F 的最大值和最小值。

(2)此过程中外力F 所做的功。

A B C[解析](1)A原静止时,设弹簧压缩x1,由受力平衡和胡克定律有:kx1=mg------------①物体A向上做匀加速运动,开始时弹簧的压缩形变量最大,向上的弹力最大,则所需外力F最小,设为F1。

由牛顿第二定律:F1+kx1—mg=ma-----------②当B刚要离地时,弹簧由缩短变为伸长,此时弹力变为向下拉A,则所需外力F最大,设为F2。

对B:kx2=mg------------③对A:F2-kx2-mg=ma -----------④由位移公式对A有:----------⑤又t=0.4s------⑥由①②③④⑤⑥可得:a=3.75m/s2F1=45NF2=285N(2)0.4 s末的速度:v=at=3.75×0.4 m / s=1.5 m / s对A全程由动能定理得:W F-mg(x1+x2)=mv2解得:W F=49.5 J也可用能量守恒求解:在力作用的0.4s内,在初末状态有x1=x2,所以弹性势能相等,由能量守恒知,外力做了功,将其它形式的能转化为系统的重力势能和动能。

相关文档
最新文档