圆柱弹簧的设计计算.
圆柱弹簧计算公式

圆柱弹簧是一种常见的弹簧,由弹簧圈和螺丝组成,广泛应用于工业机械及其他领域,能有效地缓冲、支撑及传递力量。
圆柱弹簧的计算公式为:
弹簧恢复力:F=K·D;
弹簧弹性模量:K=G·d^4/8·D·n·L;
弹簧体积:V=pi·D·d·L;
弹簧转动惯量:I=pi·D^4·n·L/32;
弹簧质量:M=V·G;
其中,F表示弹簧恢复力,K表示弹簧弹性模量,G表示弹簧材料的钢材密度,d表
示圆柱弹簧螺丝直径,D表示圆柱弹簧直径,n表示圆柱弹簧圈数,L表示圆柱弹簧长度,V表示圆柱弹簧体积,I表示圆柱弹簧转动惯量,M表示圆柱弹簧质量。
从上述公式可以看出,圆柱弹簧的计算受到螺丝直径、圆柱弹簧直径、圆柱弹簧圈数
和圆柱弹簧长度等四个参数的影响。
在计算圆柱弹簧时,应考虑到这些参数,以此来确定圆柱弹簧的恢复力、弹性模量、体积、转动惯量和质量。
圆柱螺旋压缩弹簧计算公式

圆柱螺旋压缩弹簧计算公式在设计和制造圆柱螺旋压缩弹簧时,我们需要了解一些基本的计算公式。
以下是一些常用的圆柱螺旋压缩弹簧计算公式。
1.弹簧的刚度:k=(Gd^4)/(8D^3n)其中,k为弹簧的刚度;G为弹簧材料的切变模量;d为弹簧线径;D为弹簧的平均直径;n为弹簧的有效圈数。
2.弹簧的刚度系数:弹簧的刚度系数是指单位长度的弹簧所具有的恢复力除以压缩或拉伸长度的比值。
弹簧的刚度系数可以通过以下公式计算:C=k/L其中,C为弹簧的刚度系数;k为弹簧的刚度;L为弹簧的压缩或拉伸长度。
3.弹簧的自由长度:弹簧的自由长度是指在没有外力作用下,弹簧的两端之间的距离。
弹簧的自由长度可以通过以下公式计算:L0=N*d其中,L0为弹簧的自由长度;N为弹簧的有效圈数;d为弹簧线径。
4.弹簧的负荷:弹簧的负荷是指施加在弹簧上的外力。
弹簧的负荷可以通过以下公式计算:F=k*δ其中,F为弹簧的负荷;k为弹簧的刚度;δ为弹簧的变形量。
5.弹簧的变形量:弹簧的变形量是指弹簧在受外力作用下的压缩或拉伸长度。
弹簧的变形量可以通过以下公式计算:δ=F/k其中,δ为弹簧的变形量;F为弹簧的负荷;k为弹簧的刚度。
6.弹簧的应变能:弹簧的应变能是指弹簧在外力作用下储存的弹性能量。
E=(1/2)*k*δ^2其中,E为弹簧的应变能;k为弹簧的刚度;δ为弹簧的变形量。
这些公式可以用于设计和计算圆柱螺旋压缩弹簧的各种参数。
通过合理选择弹簧材料、线径、有效圈数等参数,可以满足不同机械装置的弹簧弹性需求。
需要注意的是,以上公式是基于理想情况下的计算,实际应用时还需要考虑一些实际因素的影响,如材料的疲劳性、临界应力等。
在实际应用中,计算公式只是指导性的参考,需要结合具体的工程要求和实际情况进行综合考虑和调整。
为了确保弹簧的安全可靠性和性能,通常还需要进行弹簧的强度计算、疲劳寿命评估等工作。
总而言之,圆柱螺旋压缩弹簧的计算涉及多个参数和公式,需要按照具体的工程需求和实际情况进行综合考虑和调整。
常用圆柱弹簧计算器-压缩与拉伸弹簧Excel计算表

有效圈数, n = 5
总圈数, N = 7
输出
线圈节距, p = (L - 3*d) / n
= 0.75
mm
压并高度, H = d * (N + 1)
= 3.125
mm
端部开放 + 未平切
输入
展开长度, L = 4.000
mm
线径, d = 0.125
mm
有效圈数, n = 5
总圈数, N = 7
输出
线圈节距, p = (L - d) / n
= 0.775
mm
压并高度, H = d * (N + 1)
= 3.125
mm
端部开放 + 平切
输入
展开长度, L = 4.000
mm
线径, d = 0.125
mm
有效圈数, n = 5
总圈数, N = 7
输出
线圈节距, p = L / n
= 0.8
mm
压并高度, H = d * (N + 1)
常用圆柱弹簧计算器
圆柱弹簧 - 圆线
压缩与拉伸弹簧强度计算
输入
试验载荷, P = 24.00
N
线径, d = 0.188
mm
弹簧中径, D = 2.000
mm
有效圈数, n = 10
-
材料的切变模量, G = 10,000,000
Mpa
输出
弹簧刚度系数, R = G*d^4 / (8*n*D^3)
= 19.52
= 3.125
mm
圆柱弹簧 - 方线
压缩与拉伸弹簧计算
试验载荷, 线截面厚, 线截面高, 弹簧中径, 有效圈数, 材料的切变模量,
圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算
一、圆柱螺旋压缩(拉伸)弹簧的设计原理
1、圆柱螺旋压缩(拉伸)弹簧原理
圆柱螺旋压缩(拉伸)弹簧是一种特殊的弹簧,其结构设计使用了螺
旋结构,螺旋结构的形状是一个圆柱形的圆柱螺纹。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行压缩(拉伸)力作用时,弹簧
的整个螺旋节在不同的力矩作用下会产生相应的弹性变形,从而使得弹簧
的中心轴变长,以缩短弹簧的长度。
2、圆柱螺旋压缩(拉伸)弹簧特性
圆柱螺旋压缩(拉伸)弹簧具有对同直径和外径的小变化具有很强的
适应性的特性,同时,压缩(拉伸)力也有必要时可以根据弹性变形率来
改变。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行
压缩(拉伸)力作用时,弹簧的整个螺旋节在不同的力矩作用下会产生相
应的弹性变形,从而使得弹簧的中心轴变长,从而缩短弹簧的长度。
此外,这种弹簧具有紧凑结构,能够有效地减少设备装置内的多余空间,重量轻,由于采用细小的钢、不锈钢、铜或其它有良好装配性的金属等材料,具有
良好的耐磨性、耐腐蚀性和耐臭氧性等性能。
圆柱螺旋压缩弹簧计算

展开长度L
mm
最小载荷时高度H1
mm
最大载荷时高度Hn
mm
极限载荷时高度Hj
mm
实际工作行程h
mm
h=H1-Hn=143.48-111.45=32.03≈32±1
技术要求:
1.工作圈数=10.5
2.总圈数n1=12.5
3.旋向为右旋
4.展开长度L=1735.67mm
5.硬度HRC45~50
弹簧刚度P/
N/mm
工作极限载荷下的变形量Fj
mm
Fj=nfj=10.5×6.16=64.68
节距t
mm
自由高度H0
mm
H0=nt+1.5d=10.5×14.16+1.5×8=160.68
取标准值H0=160
弹簧外径D2
mm
D2=D+d=44+8=52
弹簧内经D1
mm
D1=D-d=44-8=36
螺旋角a
圆柱螺旋压缩弹簧计算
项目
单位
公式及数据
原
始
条
件
最小工作载荷P1
N
P1=750
最大工作载荷Pn
N
Pn=2200
工作行程h
mm
h=32
端部结构
端部并紧、磨平,支承圈数为1圈
弹簧中径D
mm
44
弹簧直径d
mm
8
弹簧材料
60Si2Mn
旋绕比C
曲度系数K
mpa
材料极限切应力、材料切变模量
Тi= 471
G=78500
参
数
计
算
初算弹簧刚度P/
N/mm
圆柱螺旋压缩弹簧计算公式

圆柱螺旋压缩弹簧计算
公式
-CAL-FENGHAI.-(YICAI)-Company One1
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1 D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d压缩弹簧长细比b b=H0/D2 b在1~的范围内选取自由高度或长度H0 H0≈pn+~2)d(两端并紧,磨平)H0≈pn+(3~d(两端并紧,不磨平) H0=nd+钩环轴向长度工作高度或长度H1,H2,…,Hn Hn=H0-λn Hn= H0+λn λn--工作变形量有效圈数n 根据要求变形量按式(16-11)计算n≥2总圈数n1 n1=n+(2~(冷卷)n1=n+~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈节距p p=~D2 p=d 轴向间距δ δ=p
-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展开长度螺旋角α α=arctg(p/πD 2) 对压缩螺旋弹簧,推荐α=5°~9°质量ms ms= γ为材料的密度,对各种钢,γ=7700kg/ ;对铍青铜,γ=8100kg/。
圆柱螺旋弹簧一般计算公式

1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
圆柱弹簧的设计计算

圆柱弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式参数名称及代号计算公式备注压缩弹簧拉伸弹簧中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值内径D1 D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。
弹簧在安装时,通常预加一个压力 Fmin,使它可靠地稳定在安装位置上。
Fmin称为弹簧的最小载荷(安装载荷)。
在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。
Fmax为弹簧承受的最大工作载荷。
在Fmax作用下,弹簧长度减到H2,其压缩变形量增到λmax。
圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的工作行程h,h=λmax-λmin。
Flim为弹簧的极限载荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。
弹簧在安装时,通常预加一个压力 Fmin,使它可靠地稳定在安装位置上。
Fmin称为弹簧的最小载荷(安装载荷)。
在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。
Fmax为弹簧承受的最大工作载荷。
在Fmax作用下,弹簧长度减到H2,其压缩变形量增到λmax。
圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的工作行程h,h=λmax-λmin。
Flim为弹簧的极限载荷。
在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。
与Flim对应的弹簧长度为H3,压缩变形量为λlim。
等节距的圆柱螺旋压缩弹簧的特性曲线为一直线,亦即压缩弹簧的最小工作载荷通常取为 Fmin=(0.1~0.5)Fmax;但对有预应力的拉伸弹簧(图<圆柱螺旋拉伸弹簧的特性曲线>), Fmin>F0,F0为使只有预应力的拉伸弹簧开始变形时所需的初拉力。
弹簧的最大工作载荷Fmax,由弹簧在机构中的工作条件决定。
但不应到达它的极限载荷,通常应保持Fmax≤0.8Flim。
弹簧的特性曲线应绘在弹簧工作图中,作为检验和试验时的依据之一。
此外,在设计弹簧时,利用特性曲线分析受载与变形的关系也较方便。
圆柱螺旋拉伸弹簧的特性曲线(三) 圆柱螺旋压缩(拉伸)弹簧受载时的应力及变形圆柱螺旋弹簧受压或受拉时,弹簧丝的受力情况是完全一样的。
现就下图<圆柱螺旋压缩弹簧的受力及应力分析>所示的圆形截面弹簧丝的压缩弹簧承受轴向载荷P的情况进行分析。
由图<圆柱螺旋压缩弹簧的受力及应力分析a>(图中弹簧下部断去,末示出)可知,由于弹簧丝具有升角α,故在通过弹簧轴线的截面上,弹簧丝的截面A-A呈椭圆形,该截面上作用着力F 及扭矩。
因而在弹簧丝的法向截面B-B上则作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及扭矩Tˊ= Tcosα。
由于弹簧的螺旋升角一般取为α=5°~9°,故sinα≈0;cosα≈1(下图<圆柱螺旋压缩弹簧的受力及应力分析b>),则截面B-B上的应力(下图<圆柱螺旋压缩弹簧的受力及应力分析c>)可近似地取为式中C=D2/d 称为旋绕比(或弹簧指数)。
为了使弹簧本身较为稳定,不致颤动和过软,C 值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C值又不应太小。
C值的范围为4~16(表<常用旋绕比C值>), 常用值为5~8。
圆柱螺旋压缩弹簧的受力及应力分析常用旋绕比C值为了简化计算,通常在上式中取1+2C≈2C(因为当C=4~16时,2C>>l,实质上即为略去了τp),由于弹簧丝升角和曲率的影响,弹簧丝截面中的应力分布将如图<圆柱螺旋压缩弹簧的受力及应力分析>c中的粗实线所示。
由图可知,最大应力产生在弹簧丝截面内侧的m点。
实践证明,弹簧的破坏也大多由这点开始。
为了考虑弹簧丝的升角和曲率对弹簧丝中应力的影响,现引进一个补偿系数K(或称曲度系数),则弹簧丝内侧的最大应力及强度条件可表示为式中补偿系数K,对于圆截面弹簧丝可按下式计算:圆柱螺旋压缩(拉伸)弹簧受载后的轴向变形量λ可根据材料力学关于圆柱螺旋弹簧变形量的公式求得:式中:n—弹簧的有效圈数;G—弹簧材料的切变模量,见前一节表<弹簧常用材料及其许用应力>。
如以Pmax代替P则最大轴向变形量为:1) 对于压缩弹簧和无预应力的拉伸弹簧:2)对于有预应力的拉伸弹簧:拉伸弹簧的初拉力(或初应力)取决于材料、弹簧丝直径、弹簧旋绕比和加工方法。
用不需淬火的弹簧钢丝制成的拉伸弹簧,均有一定的初拉力。
如不需要初拉力时,各圈间应有间隙。
经淬火的弹簧,没有初拉力。
当选取初拉力时,推荐初应力τ0'值在下图的阴影区内选取。
初拉力按下式计算:使弹簧产生单位变形所需的载荷kp称为弹簧刚度,即弹簧初应力的选择范围弹簧刚度是表征弹簧性能的主要参数之一。
它表示使弹簧产生单位变形时所需的力,刚度愈大,需要的力愈大,则弹簧的弹力就愈大。
但影响弹簧刚度的因素很多,由于kp与C的三次方成反比,即C值对kp的影响很大。
所以,合理地选择C值就能控制弹簧的弹力。
另外,kp还和G、d、n有关。
在调整弹簧刚度时,应综合考虑这些因素的影响。
(四) 承受静载荷的圆柱螺旋压缩(拉伸)弹簧的设计弹簧的静载荷是指载荷不随时间变化,或虽有变化但变化平稳,且总的重复次数不超过次的交变载荷或脉动载荷而言。
在这些情况下,弹簧是按静载强度来设计的。
在设计时,通常是根据弹簧的最大载荷、最大变形、以及结构要求(例如安装空间对弹簧尺寸的限制)等来决定弹簧丝直径、弹簧中径、工作圈数、弹簧的螺旋升角和长度等。
具体设计方法和步骤如下:1) 根据工作情况及具体条件选定材料,并查取其机械性能数据。
2) 选择旋绕比C,通常可取C≈5~8(极限状态时不小于4或超过16),并算出补偿系数 K 值。
3) 根据安装空间初设弹簧中径D2,乃根据C值估取弹簧丝直径d,并查取弹簧丝的许用应力。
4) 试算弹簧丝直径d '必须注意,钢丝的许用应力决定于其σB,而σB是随着钢丝的直径变化的,又因[τ]是按估取的d值查得σB的H计算得来的,所以此时试算所得的d '值,必须与原来估取的d值相比较,如果两者相等或很接近,即可按标准圆整为邻近的标准弹簧钢丝直径d,并按D2=Cd 以求出;如果两者相差较大,则应参考计算结果重估d值,再查其而计算[τ],代入上式进行试算,直至满意后才能计算D2.计算出的D2,值也要按表<普通圆柱螺旋弹簧尺寸系列>进行圆整。
5) 根据变形条件求出弹簧工作圈数:对于有预应力的拉伸弹簧对于压缩弹簧或无预应力的拉伸弹簧6) 求出弹簧的尺寸D、D1、H0,并检查其是否符合安装要求等。
如不符合,则应改选有关参数(例如C值)重新设计。
7) 验算稳定性。
对于压缩弹簧,如其长度较大时,则受力后容易失去稳定性(如下图a),这在工作中是不允许的。
为了便于制造及避免失稳现象,建议一般压缩弹簧的长细比b=H0/D2按下列情况选取:当两端固定时,取b<5.3;当一端固定,另一端自由转动时,取b<3.7;当两端自由转动时,取b<2.6。
压缩弹簧失稳及对策当b大于上述数值时,要进行稳定性验算,并应满足Fc=CukpH0>Fmax式中:Fc——稳定时的临界载荷;Cu——不稳定系数,从下图<不稳定系数线图>中查得;Fmax——弹簧的最大工作载荷。
如 Fmax>Fc时,要重新选取参数,改变b值,提高Fc值,使其大于Fmax值,以保证弹簧的稳定性。
如条件受到限制而不能改变参数时,则应加装导杆(如上图b)或导套(如上图c)。
导杆(导套)与弹簧间的间隙c值(直径差)按下表(导杆(导套)与弹簧间的间隙表)的规定选取。
不稳定系数线图导杆(导套)与弹簧间的间隙8) 进行弹簧的结构设计。
如对拉伸弹簧确定其钩环类型等,并按表<普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式>计算出全部有关尺寸。
9) 绘制弹簧工作图。
例题设计一普通圆柱螺旋拉伸弹簧。
已知该弹簧在-定载荷条件下工作,并要求中径D2≈18mm,外径D≤22mm。
当弹簧拉伸变形量λ1=7.5mm时,拉力P1=180N,拉伸变形量λ2=17mm时,拉力P2=340N。
[解]1.根据工作条件选择材料并确定其许用应力因弹簧在一般载荷条件下工作,可以按第Ⅲ类弹簧考虑。
现选用Ⅲ组碳素弹簧钢丝。
并根据D-D2≤22-18 mm=4 mm,估取弹簧钢丝直径为3.0mm。
由表<弹簧钢丝的拉伸强度极限>暂选σB=1275MPa,则根据表16-2可知[τ]=0.5σB=0.5×1275 MPa=637.5 MPa。
2.根据强度条件计算弹簧钢丝直径现选取旋绕比C=6,则得于是有改取d=3.2mm。
查得σB=1177MPa,[τ]=0.5σB=588.5MPa,取D2=18,C=18/3.2=5.625,计算得 K=1.253,于是上值与原估取值相近,取弹簧钢丝标准直径d=3.2mm(与计算值3.22mm仅差0.6%,可用)。
此时D2=18mm,为标准值,则D=D2+d=18+3.2 mm =21.2 mm<22 mm所得尺寸与题中的限制条件相符,合适。
3.根据刚度条件,计算弹簧圈数n.弹簧刚度为由表<弹簧常用材料及其许用应力>取G=79000MPa,弹簧圈数n为取n=11圈;此时弹簧刚度为kp=10.56×16.8/11 N/mm =16.12 N/mm4.验算1)弹簧初拉力P0=P1-kPλ1=180-16.12×7.5 N=59.1 N初应力τ0',得当C=5.62时,可查得初应力τ0'的推茬值为65~150MPa,故此初应力值合适。
2)极限工作应力τlim取τlim=1.12[τ],则τlim=1.12×588.5 MPa=659.1 MPa3)极限工作载荷5.进行结构设计选定两端钩环,并计算出全部尺寸(从略)。
6.绘制工作图(从略)。
(五) 承受变载荷的圆柱螺旋压缩(拉伸)弹簧的设计对于承受变载荷的弹簧,除应按最大载荷及变形仿前进行设计外,还应视具体情况进行如下的强度验算及振动验算:1.强度验算承受变载荷的弹簧一般应进行疲劳强度的验算,但如果变载荷的作用次数N≤,或载荷变化的幅度不大时,通常只进行静强度验算。