仿生纺织品的设计与应用

合集下载

仿生技术在纺织品中的应用

仿生技术在纺织品中的应用

t h e b i o n i c t e c h n o l o g y a t h o me a n d a b r o a d i s v e r y f a s t .T h e r e a r e q u i t e a wi d e a p p l i c a t i o n i n mi l i t a r y , me d i c a l , c o n s t r u c t i o n ,i n f o r ma t i o n ,t e x t i l e i n d u s t r y a n d o t h e r f i e l d s .B i o n i c t e c h n o l o g y h a s b e c o me a h o t t o p i c b y s c h o l a r s . T h e c o n c e p t , c l a s s i f i c a t i o n , ma i n r e s e a r c h o f b i o n i c t e c h n o l o g y a n d i t s a p p l i c a t i o n i n t e x t i l e s a r e i n t r o d u c e d .B i o n i c t e c h n o l o g y p r o v i d e s n e w i d e a s f o r t h e d e v e l o p me n t o f t e x t i l e i n d u s t r y .
信 息产业 以及 纺织 业等领域都有 相当广泛的应用 ,仿 生技术 已成为 国内外学者研究 的热 门课 题。介 绍 了仿生技 术 的概念 、分类 、研究 的主要 内容 和仿生技术在纺织 品中的应用 。仿生 学的发展及在纺织业 中的应 用为纺织业

仿生学的例子大全及原理

仿生学的例子大全及原理

仿生学的例子大全及原理仿生学是一门将自然界中的生物系统和生物机制应用到工程和技术领域的学科。

它的研究对象涵盖了动物、植物和微生物等各种形态和生理功能的生物。

在不同的领域中,仿生学都有着自己特定的应用和原理。

下面将介绍一些典型的仿生学例子及其原理。

1. 鸟类飞行的仿生学原理鸟类的翅膀结构和飞行方式一直是人类所向往和模仿的对象。

仿生学在航空领域中,通过研究鸟类的翅膀结构和飞行姿态,设计出了更加轻盈和高效的飞行器。

蝴蝶机器人采用了仿生设计的翅膀,可以实现类似于蝴蝶飞行的机动性。

2. 蜘蛛丝的仿生学原理蜘蛛丝是一种坚韧而轻巧的材料,在工程领域中,蜘蛛丝的仿生设计被应用于建筑和纺织等领域。

研究人员通过分析蜘蛛丝的分子结构和纤维排列方式,设计出了更加轻盈和强韧的纺织材料,使得建筑结构更加稳定,纺织品更加耐久。

3. 蝌蚪的游泳动作的仿生学原理蝌蚪在水中游泳时的动作非常灵活和高效。

仿生学在水下机器人设计中借鉴了蝌蚪的游泳原理,设计出了更加灵活和高速的水下机器人。

通过模仿蝌蚪的身体形态和尾巴运动方式,实现了机器人在水中的高效移动。

4. 蓮花叶面的仿生学原理蓮花叶能够抵御水滴的粘附,这是因为其表面上具有微小的凹凸结构。

仿生学在涂层和表面处理领域中,借鉴了蓮花叶的原理,设计出了具有抗粘附性和自清洁性的材料。

这些材料可以应用于防污染、防结冰等领域。

5. 蚁群行为的仿生学原理蚂蚁在寻找食物和组织行动时,能够通过简单的局部交流实现整体的复杂行为。

仿生学在人工智能领域中,借鉴了蚂蚁的群体行为原理,设计出了分布式智能系统。

这些系统能够通过分布式节点之间的局部交流和协作,实现复杂的任务分配和决策。

以上只是仿生学在不同领域中的一些应用例子和原理,并不是详尽无遗。

随着科学技术的进步,仿生学在多个领域中的应用将会更加广泛。

通过借鉴自然界中的智慧和生物机制,可以帮助我们解决很多实际问题,并推动科技的发展。

仿生材料在工程设计中的应用与改进

仿生材料在工程设计中的应用与改进

仿生材料在工程设计中的应用与改进引言:随着科学技术的不断进步,仿生学作为一门跨学科的研究领域,引起了越来越多的关注。

仿生学旨在通过模仿自然的结构、功能和过程,将其运用于工程设计中,以提高人类生活质量并解决各种现实问题。

在众多仿生研究领域中,仿生材料的应用与改进是引人注目的领域之一。

本文将探讨仿生材料在工程设计中的应用及其在应用过程中进行的改进。

一、仿生材料在土木工程中的应用1.1 蜘蛛丝的仿生应用蜘蛛丝是一种非常坚韧的材料,具有很高的拉伸强度和韧性。

在土木工程中,仿生学家们研究了蜘蛛丝的结构和力学特性,并将其应用在了材料设计中。

例如,蜘蛛丝的拉伸强度可以用于设计高强度的建筑材料,而其韧性可以用于设计抗震材料,提高建筑物的抗震能力。

同时,仿生蜘蛛丝还可以应用于桥梁、航空器和汽车等领域,为工程项目提供更优质、更耐久的材料。

1.2 莲叶表面的仿生适应莲叶表面的仿生适应是另一个在土木工程中广泛应用的例子。

莲叶表面具有自洁能力,因为其表面上覆盖着微小的凹凸结构,可以防止污垢附着。

工程师们模仿这种结构设计出了自洁功能的建筑材料,例如自洁玻璃、自洁沥青等。

这些材料不仅可以减少维护成本,还可以改善城市环境卫生状况。

二、仿生材料在机械工程中的应用2.1 鸟类翅膀的仿生设计鸟类翅膀的结构对于飞行器设计具有重要参考价值。

通过仿生学研究,工程师们发现鸟类翅膀的独特结构可以提供良好的升力和减阻效果。

在机械工程中,仿生材料的应用包括将鸟类翅膀的结构用于设计高效的飞行器翼型,提高飞行器的飞行效率,减少能源消耗。

这种仿生设计的结果在航空航天、航海、风力发电等领域得到了广泛应用。

2.2 海绵骨骼的仿生研究海绵骨骼是一种材料结构,在机械工程中也有广泛的应用。

海绵骨骼的特点是轻巧、强度高且能够吸收冲击能量。

仿生学家们通过研究海绵骨骼的结构,设计出了同样具备这些特点的材料,并应用于汽车、航空器和运动设备等领域。

这些仿生材料的应用改善了产品的安全性和使用寿命,推动了机械工程的发展。

[探析意象仿生设计在现代家纺中的运

[探析意象仿生设计在现代家纺中的运

意象仿生设计在现代家纺中的功能表现1、满足人基本的物质需求人的基本物质需求即人的实用需求。

和所有家纺设计的最基础功能作用一样,意象仿生设计首先满足人的基本生活条件设施,满足人最基本的身体享受即生理需求。

在图案、色彩、面料肌理和产品形态上都以一种自然的合适的形式带给人日常生活中最基本的便利。

再例如仿生物曲面形态的家纺设计产品,过度匀称的生物形体从视觉上平稳动感,在触觉上给人柔软舒适的享受。

意象仿生设计汲取了自然界能给人在生活中便利与享受的优点,通过设计创造凸显自然生物的优点以为人们生活所用。

2、满足人情感上的需求增进产品的情趣意象仿生设计可以传达天马行空的想象、梦幻、趣味的生活。

例如家具的趣味化设计,它不仅仅是家具造型的幽默、结构的新奇,也是指家具本身所蕴含的文化内涵。

因此产品设计应是极为理性和含蓄的,追求家具产品的趣味性和工业产品的人性化,满足深层次的精神文化需求,也是体现一种情感需求。

满足人类回归自然的需求以人为出发点,在我们的居住空间中创造出适于人们生活的第二自然。

例如,在墙纸设计中的运用灵感树叶的意象图案、在抱枕的设计上模仿树根的形态特征、在地毯的设计上采用绿色草皮的色调等,这些灵感大自然的意象仿生设计,不仅为我们的居室增添了趣味感而且向人们传递了大自然的清新感觉,可以弥补人们忙于工作无法郊外踏青的生理和心理需求。

消除高科技产品中的冷漠和生疏现代设计是科学和艺术、技术与人性的结合,科学技术给设计以坚实的结构和良好的功能,而艺术和人性使设计富于美感,充满情趣和活力,成为人与设计和谐亲近的纽带。

意象仿生设计可以有益于人们消除高科技产品中的冷漠和生疏。

如图7-8海洋浴室,提取海洋中的植物融入室内装饰中,具有强烈的视觉冲击力。

整个设计灵感大海印象,组建成具有流线型的意象仿生的室内布局,使人们仿佛置身于蓝色的海洋中,倍感亲切。

意象仿生设计中,可以通过色彩、图案、面料肌理、形态的意象仿生,让人们在视觉上和触觉上都以一种亲切和谐的方式与家用纺织品相融合。

仿生设计在智能纺织品中的应用与研究进展

仿生设计在智能纺织品中的应用与研究进展

第31卷㊀第6期2023年11月现代纺织技术AdvancedTextileTechnologyVol.31ꎬNo.6Nov.2023DOI:10.19398∕j.att.202302032仿生设计在智能纺织品中的应用与研究进展张㊀蕊1ꎬ郑莹莹1ꎬ董正梅1ꎬ张㊀婷2ꎬ沈利铭2ꎬ王㊀建1ꎬ3ꎬ邹专勇1(1.绍兴文理学院ꎬa.纺织服装学院ꎻb.浙江省清洁染整技术研究重点实验室ꎬ浙江绍兴㊀312000ꎻ2.浙江喜临门软体家具有限公司ꎬ浙江绍兴㊀312000ꎻ3.江南大学纺织科学与工程学院ꎬ江苏无锡㊀214122)㊀㊀摘㊀要:为进一步推动仿生技术在纺织领域的应用ꎬ并拓宽仿生智能织品的应用领域ꎬ对近几年国内外仿生设计纺织品的研究和发展现状及应用进行综述ꎮ首先介绍了基于仿生设计的隔热纺织品ꎬ归纳了仿动物毛发中空结构㊁羽绒分支结构以及其他生物结构的隔热纺织品ꎻ简要概述了仿生蝴蝶翅膀和仿其他生物结构的结构生色纺织品ꎻ然后分析了基于仿生设计的超疏水纺织品ꎬ总结了仿荷叶㊁水黾腿以及其他生物结构的超疏水纺织品ꎻ阐述了受人体皮肤结构启发的智能纤维以及受自然界中不同动植物结构启发的仿生智能传感纺织品ꎻ最后总结了仿生智能纺织品在多个领域的潜在应用ꎬ并展望其未来发展方向ꎬ以期为仿生设计智能纺织品的广泛应用提供理论和技术参考ꎮ关键词:仿生设计ꎻ智能纺织品ꎻ隔热纺织材料ꎻ超疏水纺织品ꎻ结构生色纺织品ꎻ智能纤维中图分类号:TS106㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄265X(2023)06 ̄0226 ̄15收稿日期:20230223㊀网络出版日期:20230607基金项目:绍兴文理学院研究生校级科研项目(Y20220706)作者简介:张蕊(2000 )ꎬ女ꎬ山东菏泽人ꎬ硕士研究生ꎬ主要从事纤维基传感器件方面的研究ꎮ通信作者:王建ꎬE ̄mail:jwang@usx.edu.cn㊀㊀自古以来ꎬ自然界就是人类各种技术灵感和重大发明的源泉ꎮ种类繁多的生物界经过亿万年的进化过程ꎬ使生物体具有优异的结构功能来适应环境的变化ꎬ从而得到生存和发展ꎮ人类长时间的生产实践促进了思维的发展ꎬ人类的智慧不仅仅停留在生存以及认识生物类群上ꎬ而且还运用人类所特有的思维向自然学习ꎬ并设计模仿生物结构或形态ꎬ通过创造性的劳动提高自身的能力[1 ̄2]ꎮ人类从生物体优异的结构功能中获得启发ꎬ通过模仿生物体的结构㊁形态㊁功能和行为来解决当今所面临的技术问题[3 ̄4]ꎬ是人类又一伟大的进步ꎮ对于纺织行业而言ꎬ通过对纤维材料进行仿生设计是获得性能优异纺织品的一个重要方法[5 ̄6]ꎮ智能仿生纺织品主要是受自然界生物体结构和性能的启发来设计的能对外部环境刺激做出反应的纺织品ꎬ使所制备的智能纺织品获得由这些特殊结构带来的优异功能[7 ̄8]ꎮ随着智能技术和生物科学的不断进步ꎬ仿生技术已经有了很大的发展ꎬ仿生技术在纺织业中的应用也日渐广泛[9 ̄10]ꎮ本文对近年来国内外基于仿生设计原理的智能纺织品进行综合分析ꎬ介绍基于仿生设计的隔热纺织品ꎬ归纳仿动物毛发中空结构㊁羽绒分支结构以及其他生物结构的隔热纺织品ꎻ简要概述仿生蝴蝶翅膀和仿其他生物结构的结构生色纺织品ꎻ然后分析基于仿生设计的超疏水纺织品ꎬ总结仿荷叶㊁水黾腿以及其他生物结构的超疏水纺织品ꎻ阐述受人体皮肤结构启发的智能纤维以及受自然界中不同动植物结构启发的仿生智能传感纺织品ꎻ最后总结仿生智能纺织品在多个领域的潜在应用ꎬ并展望其未来发展方向ꎬ以期为仿生设计智能纺织品的广泛应用提供理论和技术参考ꎮ1㊀基于仿生设计的隔热纺织品随着科技的进步ꎬ人们发现许多动物皮毛拥有特殊的内部结构ꎬ以具备优异的隔热保温性能ꎮ通过仿生技术ꎬ研制出可比拟动物毛发特殊结构的隔热保暖纤维ꎬ对开发高性能的隔热保温纺织品具有重要的借鉴意义ꎮ1.1㊀仿生动物毛发中空结构的隔热纺织品北极熊靠着厚厚的毛皮和脂肪层来抵御寒冷ꎬ它们的毛皮看似白色ꎬ皮却是半透明的ꎬ厚厚的毛皮也不止保温[11]ꎬ更是能够将阳光的热量传至皮肤ꎮ其毛发结构中空多孔ꎬ且壳层质密ꎬ如图1(a)所示ꎬ可以有效锁住空气ꎬ避免产生热对流ꎬ减少热量的流失ꎬ从而实现保温的功能[12]ꎮ因此ꎬ北极熊的毛发结构及其性能具有重要的参考价值ꎮ许多科研人员仿北极熊毛发的微观结构制备出了人造中空纤维ꎮ如Wang等[13]采用冷冻纺丝技术制备了一种聚酰亚胺气凝胶纤维ꎮ通过冷冻纺丝技术获得具有对齐孔的聚(酰胺酸(PAA))纤维ꎬ通过冷冻干燥工艺之后ꎬPAA纤维保留了其多孔结构ꎬ通过程序化热酰亚胺化工艺后ꎬ最后将PAA纤维转化为聚酰亚胺纤维ꎬ采用这种纤维编织的纺织品具有优异的隔热性能ꎮ类似地ꎬZhan等[14]通过溶液水热方法制备出具有超弹性和隔热性能的宏观尺度碳管气凝胶(CTA)ꎬ如图1(b)所示ꎮ其中使用碲纳米线(TeNWs)作为牺牲模板ꎬ所制备的CTA具有优异的抗疲劳机械性能和极低热导率的超绝热性能ꎬ在节能建筑㊁能量储存和航空航天等应用领域中有较大的发展前景[15]ꎮ除此之外ꎬ湿法纺丝工艺也是制备中空纤维较为常见的方法ꎮZhao等[16]采用湿法纺丝工艺制备了聚氨酯∕聚偏氟乙烯仿生多孔纤维ꎮ该纤维包括定向亚纤维㊁纳米多孔皮层和管状孔ꎬ具有交叉尺度多孔网络的层状纤维结构ꎮ由仿生纤维编织的纺织品与皮革的孔径分布相似ꎬ因此具有优良的热绝缘性能ꎮWang等[17]采用湿法纺丝和聚合物溶液发泡相结合的方法制备了聚氨酯∕聚丙烯腈中空泡沫纤维ꎮ制备的多孔热塑性聚氨酯∕聚丙烯腈复合纤维具有优异的延展性ꎬ即使在压缩或拉伸变形下ꎬ相应的机织物仍表现出优良的热绝缘性能ꎬ为研制新型结构功能集成纤维隔热纺织材料铺平了道路ꎮ图1㊀北极熊毛发结构和受北极熊毛发启发的制备工艺Fig.1㊀Diagramofpolarbearhairstructureandpreparationprocessinspiredbypolarbearhair㊀㊀同北极熊毛发相似ꎬ企鹅羽毛也是多孔结构ꎬ但企鹅羽毛的主轴内部为 泡沫状 的多孔结构[18]ꎬ如图2所示ꎬ其外部表面的孔径很小ꎬ这种多孔结构提高了其保温隔热的性能[19]ꎮ孙正等[20]以碳纤维为基底制备了一种基于仿生企鹅羽毛排布的防热复合材料ꎬ具有较好的隔热效果ꎬ能够承受高温㊁维持722 第6期张㊀蕊等:仿生设计在智能纺织品中的应用与研究进展恒温㊁质量轻㊁强度高等优点ꎮYe等[21]受企鹅羽毛的启发ꎬ采用静电纺丝方法制备了聚丙烯腈∕钛酸钡纳米颗粒冷却材料和聚丙烯腈∕炭黑纳米颗粒加热材料的仿生双功能复合材料ꎬ如图3所示ꎬ实现了基于可穿戴织物的个人热管理和自驱动人机交互功能ꎬ对人机界面系统㊁可穿戴电子设备㊁生物医学㊁柔性机器人等领域产生了重大而深远的影响ꎮ图2㊀仿企鹅羽毛和北极熊毛发的高绝缘性能的纤维结构的示意Fig.2㊀Schematicdiagramofafiberstructurewithhighinsulatingpropertiesthatmimicspenguinfeathersandpolarbearhair1.2㊀仿生羽绒分支结构的隔热纺织品为了使织物具有良好的隔热效果ꎬ一种方法是通过中空结构的纤维捕获大量的空气以增加热阻ꎬ另一种方法是模仿羽绒的自然特性ꎬ开发具有特殊横截面形状的异性纤维织物[19]ꎮ其中鹅绒和鸭绒因其特殊的分叉结构和优越的保暖性能被广泛研究和应用于保暖隔热纺织品ꎮ鹅绒结构由一根粗主干纤维和大量细分支纤维组成[22]ꎬ如图4(a)所示ꎮ主干纤维提供机械支撑以确保鹅绒的结构稳定性ꎬ而分支纤维则能够固着更多的静态空气ꎬ起到保暖效果ꎮ尽管羽绒具有优异的性能ꎬ但有关人造羽毛类纤维制备的报道不多ꎬ现有的人造纤维均是在纤维上骨架上生长刚性无机或超分子分支来实现的ꎮ由于使用的材料刚性较高ꎬ纤维分支的长度有了很大的限制ꎮ为此ꎬXu等[23]采用一种可规模化生产方法制备了鹅绒状对位芳纶纤维及其非织造材料ꎮ通过弱碱溶液(低浓度的氢氧化钠水溶液)处理商用对位芳纶微米纤维ꎬ在化学水解和物理剪切力的共同作用下ꎬ对位芳纶纤维表面剥离生成了大量的纳米纤维分支ꎬ如图4(b)所示ꎮ鹅绒状纤维构成的非织造布具有典型的多尺度纤维形态㊁更大的比表面积和更小的孔径ꎬ也因此具有高隔热性能(导热系数为26.1mW∕(m K))ꎮ杜邦公司采用以丙二醇为原料的聚合物和独特的生产工艺开发出一种新型保暖纤维[24]ꎬ该纤维材料的蓬松性㊁手感和保暖性接近天然羽绒纤维ꎬ且可以水洗㊁不钻绒ꎬ是天然羽绒理想的替代品ꎮ除了鹅绒之外ꎬ鸭绒同样表现出高度有序和分层的分支结构ꎬ隔热性能主要归功于其纳米尺度和分支结构中的捕获空气ꎮ图3㊀受企鹅毛发启发的双重温度调节材料Fig.3㊀Dualtemperatureregulationmaterialinspiredbypenguinhair822 现代纺织技术第31卷图4㊀鹅绒结构和仿鹅绒的制备工艺示意Fig.4㊀Structureofgoosedownandthepreparationprocessofimitationgoosedown1.3㊀仿生其他生物结构的隔热纺织品除了上述受北极熊和企鹅毛发㊁鹅绒鸭绒启发的隔热纺织材料外ꎬ还有其他的生物结构也可以作为制备仿生隔热材料的参考ꎮWang等[25]受沙漠中撒哈拉银蚁在极热条件下顽强的生存能力的启发ꎬ通过模仿其微米晶体棒形状的毛发合成了独特的六方氧化锌微棒ꎬ并用聚二甲基硅氧烷(PDMS)进一步涂覆在聚酯织物上ꎬ可以作为坚固的太阳能屏蔽材料ꎬ具有潜在的广泛应用ꎮ除此之外ꎬ被誉为沙漠之舟的骆驼ꎬ可以适应恶劣的沙漠高温环境ꎬ主要是由于驼峰的特殊结构所致ꎬ其结构由外表皮肤㊁脂肪层和汗腺组成[26]ꎬ如图5(a)所示ꎮ当骆驼缺水时ꎬ身体会分解驼峰中的脂肪ꎬ使其转化为水分和能量ꎻ汗腺具有收缩和开放调节机制ꎬ在白天的高温环境下ꎬ最大限度减少水分通过汗腺进行蒸发ꎬ而到了夜晚气温下降时ꎬ则通过热交换的方式进行散热ꎮ图5㊀仿驼峰结构的层级织物设计示意图和工作机制Fig.5㊀Schematicdiagramandworkingmechanismofhierarchicalfabricdesignimitatinghumpstructure922 第6期张㊀蕊等:仿生设计在智能纺织品中的应用与研究进展武汉纺织大学徐卫林院士团队[26]据此仿生设计了多层次结构的热防护与热管理纺织品ꎬ如图5(b)所示ꎬ在两层织物之间嵌入有序的热绝缘单元ꎬ可以有效地阻挡人体皮肤的热量散失ꎮ仿驼峰结构的层级织物具有更强的隔热能力ꎬ并能让液体通过分布式排汗通道持续单向流动ꎮ该织物同时显示出低热导率(0.0192W∕(m K))㊁高透气性和透湿性ꎮ同时在极端条件下(约80ħ)ꎬ模拟皮肤覆盖的相对湿度和温度比传统的消防员制服低约20.6ħ和约13.6%ꎮ2㊀基于仿生设计的结构生色纺织品色彩被运用于纺织品的各个方面ꎮ长期以来ꎬ通过对纺织品添加天然或化学染料而实现着色的方法是最普遍的彩色纺织品制备技术ꎮ然而ꎬ天然和化学染料着色却存在水资源消耗量大㊁对环境存在污染㊁颜色经长时间氧化后易褪色等问题ꎮ随着我国对绿色纺织品和生态纺织品发展的需求越来越迫切ꎬ由此产生了新型环保的结构生色技术ꎬ纺织品结构生色技术受到了纺织行业界研究者的密切关注[27 ̄29]ꎮ2.1㊀仿生Morphotex蝴蝶翅膀的结构生色纺织品㊀㊀纺织品结构生色技术是一种无须用化学染料着色就能产生的颜色ꎬ其主要是由于物体本身结构的存在对光产生了反射㊁衍射㊁干涉等物理作用产生的颜色[30 ̄31]ꎮ日本帝人公司利用生活在亚马逊河流域的闪蝴蝶翅膀产生结构色的多层薄膜干涉原理ꎬ研发了光干涉显色纤维MorphotexꎮLiu等[32]制备了仿生的类似黑色素的聚多巴胺(PDA)纳米膜涂层ꎬ为了提高色牢度和避免开裂ꎬ采用含反应性环氧基团的聚(甲基丙烯酸缩水甘油酯 ̄甲基丙烯酸聚乙二醇单甲醚酯)(P(GMA ̄co ̄PEGMA))共聚物合成黏合剂来提高PDA结构彩色薄膜和丝绸织物之间的界面结合强度ꎬ促进了纺织品着色的发展ꎮYang等[33]通过改变不同的聚合反应时间在白色棉织物上制备聚多巴胺(PDA)膜ꎬ获得结构彩色棉织物ꎮ通过将含聚乙烯吡咯烷酮的内酰胺基团添加到具有邻苯二酚基团的PDA膜中以形成强氢键ꎬ提高了PDA装饰的结构彩色膜在棉织物上的色牢度ꎬ促进了结构着色在纺织品中的实际应用ꎮ除了通过化合物的聚合使织物生色外ꎬ热辅助自组装和重力沉降法也可以很好地使织物生色ꎬ如Lai等[34]采用热辅助自组装和重力沉降法制备了一种含氧化铜纳米颗粒和银纳米颗粒的聚苯乙烯胶体光子晶体彩色薄膜ꎬ由于铜和银材料比聚苯乙烯致密ꎬ因此金属纳米颗粒在基板底部的沉积物可以吸收散射光ꎬ从而产生生动的结构颜色ꎬ为纺织织物和仿生学的未来应用提供了可调的结构颜色ꎮ除了上述两类生色的制备工艺之外ꎬ有一种生成结构颜色的激光写入方法ꎬ无需精确复制生物结构ꎮZyla等[35]提出了一种基于3D直接激光写入技术成功制造模仿Morphotex蝶形的层状纳米结构的方法ꎬ使用双光子聚合在单个光敏材料中创建变形圣诞树结构的自适应横截面几何形状ꎬ不需要精确复制其表面结构ꎬ仅仅是模仿蝴蝶生物的空气和表皮尺寸的层状纳米结构ꎬ如图6所示ꎬ就可以生成结构颜色ꎮ结构生色纤维和纺织品的最大优点在于它不会像普通印染纤维和纺织品一样出现褪色的现象ꎬ而且3D直接激光写入技术可以产生多种不同的颜色ꎬ该技术为结构生色纺织品提供了新的思路ꎮ图6㊀Morpho蝶的结构色和翅膀组成㊁仿Morpho蝶的微结构Fig.6㊀StructuralcolorationandwingcompositionofMorphobutterfliesꎬmicrostructureofMorphomimic2.2㊀仿生其他生物结构的结构生色纺织品孔雀羽毛和宝石甲虫翅膀呈现出各种各样的颜032 现代纺织技术第31卷色ꎬ给人一种天然的美感ꎬ其内部结构也有其特殊性ꎮ据研究人员发现ꎬ它们内部黑色素颗粒的周期性排列导致光的干涉ꎬ黑色颗粒能够吸收散射光ꎬ从而产生明亮的结构色[36]ꎮ如图7(a)所示ꎬ在孔雀羽毛内部ꎬ棒状黑色素颗粒形成周期性的微观结构ꎬ吸收散射光并产生明亮的结构色[37 ̄39]ꎮ此外ꎬ宝石甲虫翅膀的闪亮绿色是来自多层干涉的典型结构色ꎬ如图7(b)所示ꎬ大约有20层黑色素和角质层交替堆叠ꎬ结构色清晰可见ꎬ其中微结构中的黑色素层适当吸收散射光[40 ̄41]ꎮ因此ꎬ聚多巴胺(PDA)作为一种黑色素模拟材料引起了人们的关注ꎮFang等[42]提出了一种基于高色牢度PDA结构色纳米膜的环保型纺织品染色新方法ꎬ通过多巴胺的聚合反应在棉织物上成功制备了PDA纳米膜结构色ꎮ该研究促进了纺织工业领域的清洁染色ꎮZhu等[43]采用硫酸铜(CuSO4)∕过氧化氢(H2O2)诱导法在真丝织物表面构建均匀的PDA ̄黑色素膜ꎬ通过控制不同上层膜的厚度ꎬ制备了黄㊁红㊁蓝㊁绿色四种不同结构的彩色薄膜ꎮ其中由于PDA ̄黑色素聚集体纳米颗粒的独特排列和强烈的光吸收特性ꎬ所获得具有结构色的织物不依赖于角度ꎬ具有优异的颜色可见性ꎮ该方法制备不需要任何染料ꎬ颜色均匀ꎬ为织物结构色的功能性整理提供了新的思路和理论依据ꎮ图7㊀孔雀羽毛和宝石甲虫示意Fig.7㊀Diagramofpeacockfeatherandjewelbeetle3㊀基于仿生设计的超疏水纺织品超疏水纺织品因其表面防水㊁防污㊁自清洁等特性ꎬ在日常生活㊁医药卫生㊁工农业生产㊁能量转换和环境保护等各个领域有广泛具有的应用ꎮ研究发现自然界中的荷叶表面㊁蝴蝶翅膀及水鸟羽毛等因具备优异的超疏水性能ꎬ可以达到自清洁功能ꎬ其核心是具有特殊 微纳 的粗糙结构ꎬ而有效利用仿生技术设计并构建出耐久的 微纳 的结构是超疏水纺织品改性的关键ꎮ3.1㊀仿生荷叶结构的超疏水纺织品早期的疏水性材料主要用于人们生活防护上ꎬ如雨鞋㊁雨衣㊁雨伞等ꎮ随着功能性纺织品的不断发展ꎬ疏水性材料在织物上的应用也越来越广ꎮ最典型的疏水表面是以荷叶为代表的自清洁功能的植物ꎬ通过对荷叶微观结构的分析[44]ꎬ研究者发现荷叶的自清洁功能不仅源于粗糙表面上微米级的乳突结构及表面蜡晶ꎬ还因为荷叶表面微米结构乳突上存在着纳米结构ꎬ这种微米结构和纳米结构相结合的多级结构是荷叶表面具有自清洁功能的根本原因[45 ̄46]ꎮ正是这种具有自清洁功能的纳米结构ꎬ成为科学界热门的研究对象ꎮ抗机械能力弱是织物超疏水性能的痛点ꎬ研究人员纷纷尝试不同的材料及方法来制备机械耐久性超疏水织物ꎬ如Wang等[47]利用烟道气废弃物 ̄粉煤灰制备了多功能超疏水织物ꎬ该织物具有优异的超疏水性㊁自清洁性㊁抗机械能力㊁光催化性以及自熄阻燃性能ꎬ在许多领域中有较广阔的发展前景ꎮFoorginezhad等[48]采用喷雾法制备了稳定的无氟超疏水棉ꎬ将制备的乙烯基改性的二氧化钛水溶胶喷涂在平纹棉织物上ꎬ然后将PDMS溶液喷涂在经改性的二氧化钛涂布的织物上ꎬ从而制备了超疏水性海绵ꎮ该织物具有优异的自清洁性㊁化学稳定132 第6期张㊀蕊等:仿生设计在智能纺织品中的应用与研究进展性以及耐久性ꎬ在日常生活中可以用作防水和自清洁服装ꎮZhang等[49]采用一锅浸渍法ꎬ将棉织物浸入多巴胺㊁硝酸银㊁十六烷基三甲氧基硅烷的乙醇溶液中制备了超疏水棉织物ꎬ其接触角可达163.5ʎʃ1.5ʎꎬ油水分离效率高达97%ꎬ因此该织物具有良好的机械性能㊁化学性能和稳定性ꎬ可以重复用于油水分离ꎮ实现织物的超疏水性能还可以对织物表面进行改性以形成微纳米多级结构ꎬ以此来提高疏水性能[50]ꎮCheng等[51]采用环境友好的酶蚀刻法对织物表面进行微纳结构粗糙化ꎬ然后通过热化学气相沉积工艺用甲基三氯硅烷对其进行改性ꎬ构造了复合超疏水真丝织物ꎬ如图8所示ꎮ该织物具有良好的自清洁性能和机械耐久性ꎬ且对织物的光泽㊁色泽㊁柔软性等性能影响较小ꎮHe等[52]提出了一种通过原位氟化诱导的径向聚合在商业聚酯织物上的新型表面设计策略ꎮ通过与甲基丙烯酸三氟乙酯和二乙烯基苯的径向引发接枝共聚ꎬ将具有双键的超支化纳米二氧化硅共价接枝到表面ꎬ所获得的超疏水织物显示出优异的耐久性和憎水性ꎮ此外ꎬ聚倍半硅氧烷超疏水整理也是一种微结构疏水方案ꎬPOSS是一种新型的有机和无机结合的杂化材料ꎬ是具有三维结构的有机硅烷化合物ꎬ它特殊的纳米结构㊁纳米尺寸效应㊁交联效应及对聚合物的有效改性ꎬ吸引着人们极大关注ꎮ因此Hou等[53]采用光诱导巯基 ̄烯点击化学方法ꎬ利用巯基硅烷对纤维进行表面改性ꎬ再与甲基丙烯酰 ̄七异丁基半硅氧烷(MAPOSS)进行点击偶联ꎬ增加了织物的表面粗糙度ꎬ降低了织物的表面能ꎬ成功制备了基于多面体低聚倍半硅氧烷(POSS)的超疏水织物ꎬ如图9所示ꎮ该织物具有优异的耐腐蚀性㊁耐紫外线㊁耐高温㊁耐超声波洗涤以及耐机械磨损性能ꎮ图8㊀采用酶蚀刻法制备超疏水织物示意图及其超疏水织物的SEM结构Fig.8㊀SchematicdiagramofsuperhydrophobicfabricpreparedbyenzymeetchingandSEMimageofsuperhydrophobicfabric图9㊀通过光诱导硫醇 ̄烯点击化学制备超疏水织物的过程示意Fig.9㊀Schematicdiagramofsuperhydrophobicfabricpreparedbyphoto ̄inducedthiol ̄eneclickchemistry232 现代纺织技术第31卷3.2㊀仿生水黾腿结构的超疏水纺织品在自然界中ꎬ除了众所周知的仿荷叶结构所制备的超疏水纺织品外ꎬ还一些具有层次结构和粗糙度的动物表面可以产生显著的超疏水性ꎮ如水黾具有在水面上站立行走而不被浸湿的能力ꎮGao等[54]表明ꎬ水黾腿部由大量细微纳米凹槽的定向微小毛发覆盖ꎬ并覆盖有角质层蜡ꎬ如图10所示ꎬ使腿部表面防水ꎬ并使它们能够在水面上快速站立和行走ꎮ因此ꎬ启发于水黾腿纤维结构ꎬ在织物表面上形成纳米分层结构也可以提供超疏水能力ꎬ如Gao等[55]提出了微米和纳米级分层二氧化硅颗粒涂覆在织物上以实现超疏水仿生表面结构ꎮ采用溶胶 ̄凝胶法获得各种尺寸的溶胶颗粒ꎬ通过低温两步涂布工艺对织物进行涂布ꎬ由于考虑到含氟化合物基团对环境和健康存在潜在危害ꎬ选择长链烷基硅烷作为低表面能剂ꎬ对粗糙处理后的织物表面进行改性ꎬ所得的织物具有优异的疏水性ꎮ图10㊀水黾腿纤维结构示意Fig.10㊀Schematicdiagramoffiberstructureofwaterstriderleg3.3㊀仿生其他生物结构的超疏水纺织品科学家通过研究壁虎脚㊁蚊子腿以及蛾翅膀等其他生物的内部结构ꎬ指出其表面结构是由微米∕纳米级双重结构组成ꎬ这种微米∕纳米级双重结构正是其超疏水性的原因ꎮ因此ꎬ研究人员们通过采用各种方法在织物表面形成微米∕纳米级双重结构从而使其具有超疏水性能ꎮ如Pan等[56]采用原位生长和浸涂法ꎬ在棉织物上制备了一种耐久㊁稳定的聚二甲基硅氧烷(PDMS) ̄硬脂酸铜(CuSA2)超疏水涂层ꎬ从而制备了耐久性超疏水织物ꎮ制备过程无复杂工序ꎬ所用原料较为廉价ꎮ该织物显示出良好的超疏水性能ꎬ其接触角为158ʎꎬ同时具有良好的机械耐久性ꎮ此外ꎬYan等[57]受黑色素和海洋贻贝的启发ꎬ通过快速氧化聚合将多巴胺在短时间内涂覆在真丝织物上ꎬ并通过聚多巴胺二级反应平台将Fe2+接枝到织物表面ꎬ制备了具有超疏水性ꎬ阻燃性和抗紫外性的真丝织物ꎮ4㊀基于仿生设计的智能传感纺织品随着仿生设计和智能传感纺织材料的结合ꎬ智能纺织传感器在防护㊁体育㊁医疗㊁军事等领域有着巨大的发展潜力[58]ꎬ为此成为研究者关注的焦点ꎮZhu等[59]制备了一种多孔结构的碳纳米管∕炭黑 ̄聚氨酯涂层的织物和导电尼龙纤维叉指电极图案化的织物组装而成的压力传感器ꎬ该传感器具有高灵敏度㊁短响应时间和宽感测范围ꎬ可以与人体表面稳定贴合ꎬ以实现生理信号监测ꎮ4.1㊀受人体皮肤结构启发的智能纤维皮肤是人体最大的器官ꎬ它可以通过不同的皮下组织ꎬ根据外界产生的信息直接与外界相互作用ꎬ从而通过神经中枢完成对不同信息的感觉过程ꎮ受此启发ꎬZhang等[60]利用天然纤维素的自组装方法形成多孔超分子纤维网络ꎬ设计了一种新型的具有皮肤特性的纤维素仿生水凝胶(CBH)ꎬ该水凝胶显示出优良的特性ꎬ如高拉伸性和强度㊁低模量㊁优异的弹性以及良好的生物相容性ꎬ可作为灵敏可靠的应变传感器用于人体运动监测ꎮ此外ꎬ在水性环境中实现了稳定的信号输出ꎮWang等[61]报道了一种基于自组装策略的新型离子诱导技术ꎬ通过湿法纺丝法在凝固浴中形成具有仿生绒毛状表面的纤维ꎬ然后加入羟基脲进行特殊的银镜反应ꎬ得到Ag∕AgCl∕PEDOT:PSS复合纤维具有稳定的三层核壳结构ꎬ如图11所示ꎮ仿生Ag∕AgCl∕PEDOT:PSS复合纤维具有双向响应性和增强的灵敏度ꎬ并对反复的外部应力表现出优异的稳定性ꎬ利用其组装的压力传感器ꎬ可以用于小应力的监测㊁柔性机器人㊁医学假肢等方面ꎮGhosh等[62]使用大面积且结构稳定的鱼胶332 第6期张㊀蕊等:仿生设计在智能纺织品中的应用与研究进展。

基于仿生原理的纺织品研究新进展

基于仿生原理的纺织品研究新进展

基 于 仿 生 原 理 的 纺 织 品 研 究 新 进 展
李 娜 ,李辉 芹 , 继 贤 , 巩 李秋 瑾 ,张健 飞
( 津 工 业 大 学 纺 织 学 院 ,天津 天 308 ) 0 3 7

要 主 要 从 仿 生 纤 维 、 生 织 物 与 服装 、 声 材 料 3个 方 面 介 绍 仿 生 学 近 年 来 在 纺 织 品 应 用 方 面 取 得 的 成 果 。 仿 仿
系 统 地 介 绍 各 类 仿 生 纺 织 品 的 外 形 、 构 和 功 能 , 述 仿 生 纺 织 品 的最 新 研 究 进 展 , 对 其 应 用 前 景 进 行 展 望 。可 结 论 并 以 看 出 : 生 纺 织 品发 展 很 快 , 米 仿 生 材 料 、 生智 能 化 纺 织 品 的 开 发 成 为 近 几 年 研 究 的 热 点 ; 生 医 用 生 物 材 仿 纳 仿 仿 料 未 来 有 很 大 的 发 展 空 间 ; 生 纺 织 品 正 向 复 合 化 、 能 化 、 源 化 、 境 化 等 方 向 进 一 步 发 展 , 研 究 成 果 将 对 社 仿 智 能 环 其 会 生 产 发 挥 更 加 重 要 的作 用 。 关键词 仿 生 学 ;仿 生 纺 织 品 ; 构 ; 能 结 功
a p c s b o i ei fb r , b o i ei fbrc a d p a e s a d i mi t m ae i l , s se ial s e t : im m tc i e s im m tc a i s n a p r l , n b o mei c t ra s y tm c l y dic s e he s a e ,sr cur sa u ci n falki so o i ei e t e n h e e r h p o r s s u s st h p s tu t e nd f n to so l nd fbim m tc tx i sa d t e r s a c r g e s l o im i t e tl s a d m a s a p o p c ft e rf t r p ia in . I a e s e h tb o me i fb o mei tx i , n ke r s e to h i u u e a plc to s tc n b e n t a i mi tc c e t xie r e eo i g r p d y, a d t e d v l p e to a o b o me i tra sa d i t l g n e tls e tl sa e d v l p n a i l n h e eo m n fn n i mi tc ma ei l n n el e tt xie i h sb c me a h ta e n r c n e r , wh l im i t i ma ei l o e i a e lo p se s v s a e o o r a i e e ty a s ie b o mei b o tra s fr m d c lus as o s s a t c p t n ili he f t r . No ,t im i tc tx i s a e d v l png twa d o p u i g, it lie c oe ta n t u u e w he b o mei e t e r e eo i o r s c m o nd n l n e lg n e,

现代仿生技术在纺织服装领域的应用

现代仿生技术在纺织服装领域的应用

现代仿生技术在纺织服装领域的应用摘要:纺织服装的发展与自然息息相关,无论中西,都出现了服装的仿生设计现象,如Dior的郁金香廓形,中国古代服饰的马蹄袖、鱼鳞百褶裙等。

随着科技的进步,服装更加多样化,应用于纺织服装行业的仿生设计也逐渐地从“模仿”变成了“创造”,现代仿生技术的诞生推动着纺织服装领域的技术进步。

关键词:现代仿生技术;纺织服装;应用1仿生纤维1.1视觉表现———以外观效果为主由于微生物表面的非特异性小结构,它严重影响了光的折射规律,使得最终看到的光显示出独特的性质。

双层扁平纤维的设计灵感来自一种生活在热带雨林中的“蓝色闪光蝴蝶”。

它之所以得名,是因为它的翅膀散发出明亮的深蓝色光泽。

蓝闪蝶的翅膀从未有过深蓝色的黑色素,这不是黑色素着色,而是结构着色。

羽毛鳞片之间的间隙结构使光源能够在彼此之间连续地进行反射、映射、干涉和累积,从而增强高清晰度蓝光幅度,并显示出明亮的蓝色金属纹理。

根据这一特点,可以混合两种具有不同热收缩率的聚酯切片进行熔融纺丝。

通过整个热处理过程,纤维束将具有类似的间隙结构,从而达到仿生技术的实际效果。

一些研究人员使用变色龙的褪色原理作为原型来制造褪色纤维。

根据光敏褪色化学物质的添加,他们将其与聚丙烯切割成薄片,充分混合,然后熔化并旋转以产生纤维,以实现视觉冲击变化。

通常,这种视觉仿生技术纤维用于具有特殊颜色设计方案的服装,如高端时装、军事服装等。

1.2功能表现———以实际作用效果为主中空纤维应基于小动物血管膜的管状形状。

研究表明,这种结构可以储存空气和动能,合理减少热量损失。

在这一阶段,生产方法主要是通过化学方法或物理模塑方法生产孔眼结构。

它生产的纤维触感蓬松,具有很好的透气性,因此通常用于床上用品和衣物填充。

北极熊的毛发具有很好的透气性和疏水性。

科学研究数据显示,小北极熊的每一根毛发都有一个内腔结构,气体被密封在内腔中,减少了热量损失。

它的毛发由许多毛发和绒毛组成,浓密的毛发具有疏水性。

纺织工程中的创新设计方法研究与应用

纺织工程中的创新设计方法研究与应用

纺织工程中的创新设计方法研究与应用纺织工程作为一门涉及纤维、纱线、织物以及纺织制品设计与生产的综合性学科,其发展与创新对于满足人们日益多样化的需求、提升产业竞争力以及推动可持续发展具有重要意义。

在当今竞争激烈的市场环境下,创新设计方法的研究与应用成为了纺织工程领域的关键课题。

一、纺织工程创新设计的重要性随着消费者对纺织品品质、功能和时尚性的要求不断提高,传统的纺织设计方法已经难以满足市场需求。

创新设计能够为纺织产品带来独特的性能、新颖的外观和更高的附加值。

例如,具有防水、透气、抗菌等功能的新型面料,不仅提升了纺织品的使用体验,还拓展了其应用领域。

此外,创新设计还有助于提高纺织企业的生产效率、降低成本,增强企业在市场中的竞争力。

二、创新设计方法的分类1、材料创新材料是纺织工程的基础,新型纤维材料的研发和应用为创新设计提供了广阔的空间。

例如,纳米纤维具有极小的直径和巨大的比表面积,可用于制造高性能的过滤材料和防护服;智能纤维能够根据环境变化自动调节性能,如温度自适应的调温纤维。

2、结构创新通过改变织物的组织结构,可以赋予纺织品不同的性能和外观。

例如,多层织物结构可以增加保暖性和防护性;立体织物结构能够提供更好的弹性和支撑性。

3、工艺创新先进的纺织工艺技术能够实现复杂的设计要求。

数码印花技术可以实现高精度、个性化的图案印刷;无缝编织技术减少了拼接处的瑕疵,提高了织物的整体性和舒适性。

4、设计理念创新将跨学科的设计理念引入纺织工程,如仿生学设计、绿色设计等。

仿生学设计模仿自然界生物的结构和功能,开发出具有优异性能的纺织材料和产品;绿色设计则注重减少资源消耗和环境污染,推动纺织产业的可持续发展。

三、创新设计方法的研究1、市场需求调研深入了解消费者的需求和趋势是创新设计的前提。

通过市场调研、消费者反馈和数据分析,挖掘潜在的市场需求,为创新设计提供方向。

2、技术研发加大对纺织材料、工艺和设备的研发投入,与科研机构和高校合作,开展前沿技术研究,为创新设计提供技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目 面密度/(g/m2) 撕破强力/kg 拒水性
指标 135 2.5 L0=100 L20=90
备注 JISL 1096 JISL 1096(摆锤法) JISL 喷淋法
拒水性(滚动角)/° 耐水压/mm 透气性/[cm3/(cm2· s)] 透湿性/[g/(m2· 24h)]
L0=7 L20=9 600-700 0.5 ≥8000
NanospereTM 织物的拒水防污功能
仿生纺织品的发展前景
• 仿生学作为生物学和技术学相结合的学 科,旨在技术方面模仿自然界生物体的 功能,在生物学和技术之间架起一座桥 梁,通过生物学原理的再现,寻找解决 技术问题的方案。随着仿生技术、纳米 技术等高新技术和纺织技术的融合,为 仿生纺织品的开发提供了全新的途径, 有极为广阔的发展前景。
• 仿鲨鱼皮织物
鲨鱼皮肤表面denticles鳞片结构 Fastskin™游泳服所用织物
Fastskin™织物工作原理示意图
• 仿蜘蛛丝的研究
六喷丝孔
四喷丝孔
喷丝套管
蜘蛛丝的性能:
(1) 丝细强度高、柔韧性弹性好、耐冲击力强。 Nephila Clavipes 热带蜘蛛丝 直径:0.74~1.16dtex;强度(6.4~8.2)N/dtex (2) 耐低温:-40 ℃仍有弹性。 (3) 生物可降解。
蜘蛛丝蛋白的合成
蜘蛛蛋白丝产生的三种途径: (1) 利用动物(奶牛或奶羊)来生产蜘蛛蛋白; (2) 利用微生物来生产蜘蛛蛋白; (3) 利用植物来生产蜘蛛蛋白。
仿生纺织品的设计思路
• 仿生智能纺织品
• 纳米技术的应用
• 仿生智能纺织品 利用人工材料模仿自然界生物体的结 构和性能来设计纺织品,使纺织品获得 由这些结构带来的“功能”,即为仿生 智能纺织品。
蛾眼睛角膜表面防反射层结构
可见光与纤维的作用方式
超微坑纤维的表面微细凹凸结构
• 模仿荷叶表面凹凸粗糙结构开发的超拒 水织物 • 荷叶效应
荷叶表面的微观结构
水滴在荷叶表面形成滚动的小球
荷叶表面尘土随水滴一起滚落去除
水溶性胶水也能从荷叶表面滚落
荷叶表面上的油性污垢也能被水滴洗除
疏水粗糙表面和光滑表面除尘方式比较示意图
帝人法 JISL 1079(低水压法) JISL 1079 JISL (杯子法)
• 模仿蝴蝶翅膀的结构开发的光显色纤维 (结构生色纤维) 闪蛱蝶
Morpho didius闪蛱蝶
Morpho didius翅瓣结构电镜照片
入射光 干射
0.54μm
0.16μm
薄片
翼鳞粉
1.8μm 1.7μm
0.08μm 0.14μm
• 主要集中在棉毛丝的外观和功能的模仿 (宏观形态、结构)但对微观结构、基 本结构单元难以完全实现。棉纤维最难 模仿。
分类
• 1、纤维仿真:开发新型的化学纤维,结 构和性能接近或优于传统的天然纤维。 • 化纤仿真丝,仿毛,仿麻,仿棉
• 2、纺织品仿真:利用仿真纤维,组织结 构设计、织造技术、后整理
仿生纺织品的研究开发
• 基于仿生的思路,模仿生物体的结构和 特性,对纺织品进行仿生设计,制备具 有生物体特殊功能(智能)的纺织品, 称为“仿生纺织品”。
仿生纺织品研究开发举例
• 模仿蛾的角膜结构开发的超微坑纤维 • 模仿荷叶表面凹凸粗糙结构开发的超拒水织物 • 模仿蝴蝶翅膀的结构开发的光显色纤维(结构 生色纤维) • 模仿植物叶子呼吸原理开发的有呼吸功能的纺 织品 • 仿鲨鱼皮织物 • 仿蜘蛛丝的研究 • 化纤仿真丝(毛、麻)等
科普讲座 纺织品——从仿真(生)到超真
主讲人:周彬
2014.09.22
仿真纺织品的含义
• 模仿天然纤维及天然纤维的纺织品。 • 仿真纺织品的发展源于对天然纤维的模仿 (纤维之王,纤维皇后,羊毛) • 1743 法国化学家柳缪尔 桑蚕吐丝 • 19世纪80年代 法国科学家硝酸纤维素制取 人造丝。 • 有机合成、高分子合成 煤石油天然气—— 加大了可能性。
• 超拒水织物Microft-Lotus
Microft®<Rectas>®结构
100
Microft.<Rectas>
拒水性 喷淋法
80 60 40 20 0 0 5 10 15 洗涤次数 20 25 30
高密度棉织物
普通高密度透湿 拒水织物 耐纶塔夫绸
MicroftR <Rectas>拒水性的耐洗性
聚酯仿真丝
• 聚酯纤维仿真丝技术 进展
化纤仿毛
化纤仿麻
化纤仿麻
• 1、外观仿制——粗犷 • 2、手感仿制——刚度大,表面滑爽“挺 、滑、爽” • 3、性能仿制 ——吸湿、透湿爽身宜人 、抗菌
什么是仿生学
• 从生物体优异的功能中得到启迪,通过 模仿生物体的结构、形态、功能和行为 或从中得到启示来设计和制备智能材料 以解决所面临的技术问题的认知方法, 即为“仿生”。 • 仿生学是“模仿生物的科学”。
仿松果的智能纺织品
• 纳米技术的应用 拒水、防污自洁织物NanosphereTM
无Nanosphere结构的织物表面
Nanosphere结构的织物表面
NanospereTM 织物表面结构
Nanosphere 结构织物表 面滴 水 尘土
Nanosphere 结构织物表面 ,尘 土粘附于水滴上
水滴滚落时,尘土也随之冲去
0.70μm
横肋 支撑细条
0.12μm
翅瓣截面结构图
• 显色纤维Morphotex
层压结构纱 示意图
PET与Ny层压结构纱纺丝示意图
光显色纤维截面电镜照片
• 模仿植物叶子呼吸原理开发的有呼吸功 能的纺织品
保护细胞

气孔
植物叶子气孔结构
弹性气室
Hale Waihona Puke 泵吸作用微 气 候 皮 肤
Stomatex作用示意图
相关文档
最新文档