linux下socket编程常用头文件

合集下载

linux串口编程参数配置详解

linux串口编程参数配置详解

linux串口编程参数配置详解1.linux串口编程需要的头文件#include <stdio.h> //标准输入输出定义#include <stdlib.h> //标准函数库定义#include <unistd.h> //Unix标准函数定义#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> //文件控制定义#include <termios.h> //POSIX中断控制定义#include <errno.h> //错误号定义2.打开串口串口位于/dev中,可作为标准文件的形式打开,其中:串口1 /dev/ttyS0串口2 /dev/ttyS1代码如下:int fd;fd = open(“/dev/ttyS0”, O_RDWR);if(fd == -1){Perror(“串口1打开失败!”);}//else//fcntl(fd, F_SETFL, FNDELAY);除了使用O_RDWR标志之外,通常还会使用O_NOCTTY和O_NDELAY这两个标志。

O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这个标志的话,任何输入都会影响你的程序。

O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。

3.设置波特率最基本的串口设置包括波特率、校验位和停止位设置,且串口设置主要使用termios.h头文件中定义的termios结构,如下:struct termios{tcflag_t c_iflag; //输入模式标志tcflag_t c_oflag; //输出模式标志tcflag_t c_cflag; //控制模式标志tcflag_t c_lflag; //本地模式标志cc_t c_line; //line disciplinecc_t c_cc[NCC]; //control characters}代码如下:int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B384 00, B19200, B9600, B4800, B2400, B1200, B300, };int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9 600, 4800, 2400, 1200, 300, };void SetSpeed(int fd, int speed){int i;struct termios Opt; //定义termios结构if(tcgetattr(fd, &Opt) != 0){perror(“tcgetattr fd”);return;}for(i = 0; i < sizeof(speed_arr) / sizeof(int); i++){if(speed == name_arr[i]){tcflush(fd, TCIOFLUSH);cfsetispeed(&Opt, speed_arr[i]);cfsetospeed(&Opt, speed_arr[i]);if(tcsetattr(fd, TCSANOW, &Opt) != 0){perror(“tcsetattr fd”);return;}tcflush(fd, TCIOFLUSH);}}}注意tcsetattr函数中使用的标志:TCSANOW:立即执行而不等待数据发送或者接受完成。

Linux的SOCKET编程详解

Linux的SOCKET编程详解

Linux的SOCKET编程详解1. 网络中进程之间如何通信进程通信的概念最初来源于单机系统。

由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进程之间既互不干扰又协调一致工作,操作系统为进程通信提供了相应设施,如UNIX BSD有:管道(pipe)、命名管道(named pipe)软中断信号(signal)UNIX system V有:消息(message)、共享存储区(shared memory)和信号量(semaphore)等.他们都仅限于用在本机进程之间通信。

网间进程通信要解决的是不同主机进程间的相互通信问题(可把同机进程通信看作是其中的特例)。

为此,首先要解决的是网间进程标识问题。

同一主机上,不同进程可用进程号(process ID)唯一标识。

但在网络环境下,各主机独立分配的进程号不能唯一标识该进程。

例如,主机A赋于某进程号5,在B机中也可以存在5号进程,因此,“5号进程”这句话就没有意义了。

其次,操作系统支持的网络协议众多,不同协议的工作方式不同,地址格式也不同。

因此,网间进程通信还要解决多重协议的识别问题。

其实TCP/IP协议族已经帮我们解决了这个问题,网络层的―ip地址‖可以唯一标识网络中的主机,而传输层的―协议+端口‖可以唯一标识主机中的应用程序(进程)。

这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。

使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。

就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说―一切皆s ocket‖。

TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,是一个工业标准的协议集,它是为广域网(WANs)设计的。

Linux下的CSocket编程--server端的简单示例

Linux下的CSocket编程--server端的简单示例

Linux下的CSocket编程--server端的简单⽰例Linux下的C Socket编程(三)server端的简单⽰例经过前⾯的client端的学习,我们已经知道了如何创建socket,所以接下来就是去绑定他到具体的⼀个端⼝上⾯去。

绑定socket到⼀个端⼝上bind()函数可以将socket绑定到⼀个端⼝上,client可以通过向这个端⼝发起请求,端⼝对应的socket便会与client端的socket连接。

#include<stdio.h>#include<stdlib.h>#include<sys/types.h>#include<sys/socket.h>#include<arpa/inet.h>int main() {int socket_desc;struct sockaddr_in server;socket_desc = socket(AF_INET, SOCK_STREAM, 0);if (-1 == socket_desc) {perror("cannot create socket");exit(1);}// 监听服务器⾃⾝server.sin_addr.s_addr = INADDR_ANY;server.sin_family = AF_INET;server.sin_port = htons(8888);// 绑定到端⼝if (bind(socket_desc, (struct sockaddr *)&server, sizeof(server)) < 0) {perror("cannot bind error");exit(1);}printf("bind success");close(socket_desc);return 0;}对于server.sin_addr.s_addr的更多信息可以参考通过将socket绑定到⼀个确定的端⼝上,我们接下来要做的便是接收这个端⼝下的所有数据。

linux、glibc中socket系统调用实现

linux、glibc中socket系统调用实现

/* %eax is < 0 if there was an error. */ cmpl $-125, %eax jae SYSCALL_ERROR_LABEL
/* Successful; return the syscall's value. */ L(pseudo_end):
ret ……
代码# define __socket socket 将__socket 定义为 socket,因此 ENTRY (__socket)即为 ENTRY (socket) 在这段汇编代码中,我们在 eax 保存当前系统调用号(这里是 socketcall),查看 SYS_ify 的定义,在 glibc/sysdeps/unix/sysv/linux/i386/sysdep.h 中:
#ifndef _SYS_SOCKETCALL_H #define _SYS_SOCKETCALL_H 1
/* Define unique numbers for the operations permitted on socket. Linux uses a single system call for all these functions. The relevant code file is /usr/include/linux/net.h. We cannot use a enum here because the values are used in assembler code. */
movl $SYS_ify(socketcall), %eax /* System call number in %eax. */
/* Use ## so `socket' is a separate token that might be #define'd. */

Linux下C语言的socket函数解析

Linux下C语言的socket函数解析

Linux下C语言的socket函数解析socketsocket()我们使用系统调用socket()来获得文件描述符:#include#includeint socket(int domain,int type,int protocol);第一个参数domain设置为“AF_INET”。

第二个参数是套接口的类型:SOCK_STREAM或SOCK_DGRAM。

第三个参数设置为0。

系统调用socket()只返回一个套接口描述符,如果出错,则返回-1。

bind()一旦你有了一个套接口以后,下一步就是把套接口绑定到本地计算机的某一个端口上。

但如果你只想使用connect()则无此必要。

下面是系统调用bind()的使用方法:#include#includeintbind(int sockfd,struct sockaddr*my_addr,int addrlen);第一个参数sockfd是由socket()调用返回的套接口文件描述符。

第二个参数my_addr是指向数据结构sockaddr的指针。

数据结构sockaddr中包括了关于你的地址、端口和IP地址的信息。

第三个参数addrlen可以设置成sizeof(structsockaddr)。

下面是一个例子:#include#include#include#define MYPORT 3490main(){int sockfd;struct sockaddr_inmy_addr;sockfd=socket(AF_INET,SOCK_STREAM,0);/*do someerror checking!*/my_addr.sin_family=AF_INET;/*hostbyteorder*/my_addr.sin_port=htons(MYPORT);/*short,network byte order*/my_addr.sin_addr.s_addr=inet_addr("132.241.5.10");bzero(&(my_addr.sin_zero),8);/*zero the rest of the struct*//*don't forget your error checking for bind():*/bind(sockfd,(struct sockaddr*)&my_addr,sizeof(struct sockaddr));...如果出错,bind()也返回-1。

linux socket 内核原理

linux socket 内核原理

Linux中的Socket是一种用于网络通信的编程接口,它允许进程通过网络进行数据传输。

Socket在Linux内核中的实现涉及到多个组件和原理。

1. 网络协议栈:Linux内核中的网络协议栈负责处理网络通信的各个层次,包括物理层、数据链路层、网络层和传输层。

Socket通过网络协议栈与网络进行交互。

2. 套接字数据结构:在Linux内核中,套接字(Socket)被实现为一种数据结构,用于表示网络连接。

套接字数据结构包含了连接的相关信息,如IP地址、端口号等。

3. 文件描述符:在Linux中,套接字被视为一种文件,因此每个套接字都有一个对应的文件描述符。

通过文件描述符,进程可以对套接字进行读写操作。

4. 网络设备驱动程序:Linux内核中的网络设备驱动程序负责处理网络设备的底层操作,如发送和接收数据包。

套接字通过网络设备驱动程序与网络设备进行通信。

5. 网络协议处理:当进程通过套接字发送或接收数据时,Linux内核会根据套接字的协议类型(如TCP或UDP)进行相应的协议处理。

这包括建立连接、数据分片、错误检测等操作。

6. 系统调用:在用户空间中,进程通过系统调用(如socket、bind、connect等)来创建和操作套接字。

系统调用会触发内核中相应的函数,完成套接字的创建和操作。

总的来说,Linux内核中的Socket实现涉及到网络协议栈、套接字数据结构、文件描述符、网络设备驱动程序、网络协议处理和系统调用等多个组件和原理。

这些组件和原理共同工作,使得进程能够通过套接字进行网络通信。

{"code":0,"msg":"请求出现异常","data":{}}。

基于Linux的Socket网络编程及性能优化

基于Linux的Socket网络编程及性能优化

福建电脑2012年第12期基于Linux的Socket网络编程及性能优化马丽洁(内蒙古电子信息职业技术学院内蒙古呼和浩特010070)【摘要】:本文主要从Socket的建立、配置、连接、数据传输和结束通信五个方面阐述了基于Linux的Socket网络编程的方法和步骤,最后又从最小化报文传输延迟、最小化系统调用负载、为Bandwidth Delay Product调节tcp窗口、动态优化GNU/linux TCP/IP协议栈四个方面进行性能优化,以使应用程序高效、稳定。

【关键词】:Linux,Socket,网络编程,性能优化Socket的英文原义是“孔”或“插座”,通常也称作"套接字",用于描述IP地址和端口,是一个通信链的句柄。

在Internet上的主机一般运行了多个服务软件,同时提供几种服务。

每种服务都打开一个Socket,并绑定到一个端口上,不同的端口对应于不同的服务。

Socket正如其英文原意那样,象一个多孔插座。

一台主机犹如布满各种插座的房间,每个插座有一个编号,有的插座提供220伏交流电,有的提供110伏交流电,有的则提供有线电视节目。

客户软件将插头插到不同编号的插座,就可以得到不同的服务。

socket也是一种文件描述符。

1.Socket编程1.1Socket的建立为了建立Socket,程式能够调用Socket函数,该函数返回一个类似于文档描述符的句柄。

Socket描述符是个指向内部数据结构的指针,他指向描述符表入口。

调用Socket函数时,socket执行体将建立一个Socket,实际上"建立一个Socket"意味着为一个Socket数据结构分配存储空间。

Socket执行体为您管理描述符表。

两个网络程式之间的一个网络连接包括五种信息:通信协议、本地协议地址、本地主机端口、远端主机地址和远端协议端口。

Socket数据结构中包含这五种信息。

1.2Socket的配置通过socket调用返回一个socket描述符后,在使用socket进行网络传输以前,必须配置该socket。

LinuxCSocket编程发送结构体、文件详解及实例

LinuxCSocket编程发送结构体、文件详解及实例

LinuxCSocket编程发送结构体、⽂件详解及实例利⽤Socket发送⽂件、结构体、数字等,是在Socket编程中经常需要⽤到的。

由于Socket只能发送字符串,所以可以使⽤发送字符串的⽅式发送⽂件、结构体、数字等等。

本⽂:1.memcpy Copy block of memory。

内存块拷贝函数,该函数是标准库函数,可以进⾏⼆进制拷贝数据。

函数原型: void * memcpy ( void * destination, const void * source, size_t num ); 函数说明:从source指向的地址开始拷贝num个字节到以destination开始的地址。

其中destination与source指向的数据类型⽆关。

2.Socket传输 使⽤memcpy将⽂件、结构体、数字等,可以转换为char数组,之后进⾏传输,接收⽅在使⽤memcpy将char数组转换为相应的数据。

下⾯的程序使⽤Socket传输结构体数据,由客户端传输给服务器端。

传输的结构体为:typedef struct{int ab;int num[1000000];}Node;服务器代码:1 #include<netinet/in.h>2 #include<sys/types.h>3 #include<sys/socket.h>4 #include<stdio.h>5 #include<stdlib.h>6 #include<string.h>78#define HELLO_WORLD_SERVER_PORT 66669#define LENGTH_OF_LISTEN_QUEUE 2010#define BUFFER_SIZE 10241112 typedef struct13 {14int ab;15int num[1000000];16 }Node;1718int main(int argc, char **argv)19 {20// set socket's address information21struct sockaddr_in server_addr;22 bzero(&server_addr, sizeof(server_addr));23 server_addr.sin_family = AF_INET;24 server_addr.sin_addr.s_addr = htons(INADDR_ANY);25 server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT);2627// create a stream socket28int server_socket = socket(PF_INET, SOCK_STREAM, 0);29if (server_socket < 0)30 {31 printf("Create Socket Failed!\n");32 exit(1);33 }3435//bind36if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)))37 {38 printf("Server Bind Port: %d Failed!\n", HELLO_WORLD_SERVER_PORT);39 exit(1);40 }4142// listen43if (listen(server_socket, LENGTH_OF_LISTEN_QUEUE))45 printf("Server Listen Failed!\n");46 exit(1);47 }4849while(1)50 {51struct sockaddr_in client_addr;52 socklen_t length = sizeof(client_addr);5354int new_server_socket = accept(server_socket, (struct sockaddr*)&client_addr, &length);55if (new_server_socket < 0)56 {57 printf("Server Accept Failed!\n");58break;59 }6061 Node *myNode=(Node*)malloc(sizeof(Node));6263int needRecv=sizeof(Node);64char *buffer=(char*)malloc(needRecv);65int pos=0;66int len;67while(pos < needRecv)68 {69 len = recv(new_server_socket, buffer+pos, BUFFER_SIZE, 0);70if (len < 0)71 {72 printf("Server Recieve Data Failed!\n");73break;74 }75 pos+=len;7677 }78 close(new_server_socket);79 memcpy(myNode,buffer,needRecv);80 printf("recv over ab=%d num[0]=%d num[999999]=%d\n",myNode->ab,myNode->num[0],myNode->num[999999]);81 free(buffer);82 free(myNode);83 }84 close(server_socket);8586return0;87 }View Code客户端代码:1 #include <sys/types.h>2 #include <sys/socket.h> // 包含套接字函数库3 #include <stdio.h>4 #include <netinet/in.h> // 包含AF_INET相关结构5 #include <arpa/inet.h> // 包含AF_INET相关操作的函数6 #include <unistd.h>7 #include <string.h>8 #include <stdlib.h>9 #include <fcntl.h>10 #include <sys/shm.h>11 #include <pthread.h>1213#define MYPORT 666614#define BUFFER_SIZE 10241516 typedef struct17 {18int ab;19int num[1000000];20 }Node;2122int main()23 {24///sockfd25int sock_cli = socket(AF_INET,SOCK_STREAM, 0);2627struct sockaddr_in servaddr;28 memset(&servaddr, 0, sizeof(servaddr));29 servaddr.sin_family = AF_INET;30 servaddr.sin_port = htons(MYPORT);31 servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");3233if (connect(sock_cli, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)35 perror("connect");36 exit(1);37 }3839 Node *myNode=(Node*)malloc(sizeof(Node));40 myNode->ab=123;41 myNode->num[0]=110;42 myNode->num[999999]=99;4344int needSend=sizeof(Node);45char *buffer=(char*)malloc(needSend);46 memcpy(buffer,myNode,needSend);4748int pos=0;49int len=0;50while(pos < needSend)51 {52 len=send(sock_cli, buffer+pos, BUFFER_SIZE,0); 53if(len <= 0)54 {55 perror("ERRPR");56break;57 }58 pos+=len;59 }60 free(buffer);61 free(myNode);62 close(sock_cli);63 printf("Send over!!!\n");64return0;65 }View Code服务器端执⾏输出:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

linux下socket编程常用头文件
sys/types.h:数据类型定义
sys/socket.h:提供socket函数及数据结构
netinet/in.h:定义数据结构sockaddr_in
arpa/inet.h:提供IP地址转换函数
netdb.h:提供设置及获取域名的函数
sys/ioctl.h:提供对I/O控制的函数
sys/poll.h:提供socket等待测试机制的函数
其他在网络程序中常见的头文件
unistd.h:提供通用的文件、目录、程序及进程操作的函数
errno.h:提供错误号errno的定义,用于错误处理
fcntl.h:提供对文件控制的函数 time.h:提供有关时间的函数
crypt.h:提供使用DES加密算法的加密函数
pwd.h:提供对/etc/passwd文件访问的函数
shadow.h:提供对/etc/shadow文件访问的函数
pthread.h:提供多线程操作的函数
signal.h:提供对信号操作的函数
sys/wait.h、sys/ipc.h、sys/shm.h:提供进程等待、进程间通讯(IPC)及共享内存的函数
建议:在编写网络程序时,可以直接使用下面这段头文件代码
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <malloc.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <stdarg.h>
#include <fcntl.h>
#include <fcntl.h>
涉及到用户权限及密码验证问题时加入如下语句:
#include <shadow.h>
#include <crypt.h>
#include <pwd.h>
需要注意的是,应该在编译时链接加密算法库,即增加编译选项: -lcrypt
涉及到文件及时间操作加入如下语句:
#include <sys/time.h>
#include <utime.h>
#include <time.h>
#include <sys/stat.h>
#include <sys/file.h>
涉及到多进程操作时加入如下语句:
#include <sys/wait.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <signal.h>
涉及到多线程操作时加入如下语句:
#include <pthread.h>
#include <sys/poll.h>
需要注意的是,应该在编译时链接线程库,即增加编译选项:-lthread。

相关文档
最新文档