2018届三角函数及解三角形二轮复习讲义

合集下载

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。

高中三角函数及解三角形知识点总结(高考复习)

高中三角函数及解三角形知识点总结(高考复习)
3、三角形面积公式:
= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2

苏教版高考总复习数学精品课件 主题二 函数 第五章 三角函数、解三角形 第三节 两角和与差的三角函数

苏教版高考总复习数学精品课件 主题二 函数 第五章 三角函数、解三角形 第三节 两角和与差的三角函数
A.
B
2− 6
2− 6
2+ 6
2+ 6
B.
C.
D.
2
4
2
4


[解析] = +


×


=

.故选B.






= − ⋅ =


×



(2)已知sin + 2sin −
1
3
A.3B. C.−3D.−


=











=








= − .
(2)已知sin + sin +
1
2
3
3
2
3
A. B. C. D.


得 +
= 1,则cos
π

3
=() B
2
2
[解析]由 + +
3
4

π,
2
,sin =
3
− ,则tan
5
+
π
4
=() D
1
7
A.1B. C. D.7


[解析]因为 ∈ ,
则 = −
可得 =


, = − ,




=

=


金版教程高考数学文二轮复习讲义:第二编专题整合突破专题三三角函数与解三角形第一讲三角函数的图象与性质

金版教程高考数学文二轮复习讲义:第二编专题整合突破专题三三角函数与解三角形第一讲三角函数的图象与性质

专题三三角函数与解三角形第一讲三角函数的图象与性质必记公式]1.三角函数的图象与性质重要结论]1.三角函数的奇偶性(1)函数y =A sin(ωx +φ)是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );(3)函数y =A tan(ωx +φ)是奇函数⇔φ=k π(k ∈Z ). 2.三角函数的对称性(1)函数y =A sin(ωx +φ)的图象的对称轴由ωx +φ=k π+π2(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π(k ∈Z )解得;(2)函数y =A cos(ωx +φ)的图象的对称轴由ωx +φ=k π(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π+π2(k ∈Z )解得;(3)函数y =A tan(ωx +φ)的图象的对称中心由ωx +φ=k π2(k ∈Z )解得.失分警示]1.忽视定义域求解三角函数的单调区间、最值(值域)以及作图象等问题时,要注意函数的定义域.2.重要图象变换顺序在图象变换过程中,注意分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.3.忽视A ,ω的符号在求y =A sin(ωx +φ)的单调区间时,要特别注意A 和ω的符号,若ω<0,需先通过诱导公式将x 的系数化为正的.4.易忽略对隐含条件的挖掘,扩大角的范围导致错误.考点三角函数的定义域、值域(最值)典例示法典例1 (1)2016·合肥一模]函数y =lg (2sin x -1)+1-2cos x 的定义域是________.解析] 由题意,得⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎪⎨⎪⎧sin x >12,cos x ≤12,首先作出sin x =12与cos x =12表示的角的终边(如图所示).由图可知劣弧和优弧的公共部分对应角的范围是⎣⎢⎡2k π+π3,2k π+⎭⎪⎫5π6(k ∈Z ). 所以函数的定义域为⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6(k ∈Z ).答案] ⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6(k ∈Z ) (2)已知函数f (x )=-2sin ⎝⎛⎭⎪⎫2x +π4+6sin x cos x -2cos 2x +1,x ∈R .①求f (x )的最小正周期;②求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. 解] ①f (x )=-sin2x -cos2x +3sin2x -cos2x =2sin2x -2cos2x =22sin ⎝ ⎛⎭⎪⎫2x -π4.所以f (x )的最小正周期T =2π2=π. ②由①知f (x )=22sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2, 所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,则sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1.所以f (x )在⎣⎢⎡⎦⎥⎤0,π2上最大值为22,最小值为-2.1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.三角函数值域(最值)的三种求法 (1)直接法:利用sin x ,cos x 的值域.(2)化一法:化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(最值).(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题.针对训练2015·天津高考]已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.解 (1)由已知,有f (x )=1-cos2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos2x +32sin2x -12cos2x=34sin2x -14cos2x =12sin ⎝ ⎛⎭⎪⎫2x -π6.所以,f (x )的最小正周期T =2π2=π.(2)解法一:因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34.所以,f (x )在区间-π3,π4]上的最大值为34,最小值为-12.解法二:由x ∈⎣⎢⎡⎦⎥⎤-π3,π4得2x -π6∈⎣⎢⎡⎦⎥⎤-5π6,π3,故当2x -π6=-π2,x =-π6时,f (x )取得最小值为-12,当2x -π6=π3,x =π4时,f (x )取最大值为34.考点三角函数的性质典例示法典例2 2015·山东枣庄质检]已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6+sin ⎝⎛⎭⎪⎫ωx -π6-2cos 2ωx2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数f (x )的单调递增区间.解] (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1)=2⎝ ⎛⎭⎪⎫32sin ωx -12cos ωx -1 =2sin ⎝ ⎛⎭⎪⎫ωx -π6-1 由-1≤sin ⎝ ⎛⎭⎪⎫ωx -π6≤1,得-3≤2sin ⎝ ⎛⎭⎪⎫ωx -π6-1≤1, 所以函数f (x )的值域为-3,1].(2)由题设条件及三角函数的图象和性质可知, f (x )的周期为π,所以2πω=π,即ω=2. 所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π6-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ), 解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3 (k ∈Z ).1.求解函数y =A sin(ωx +φ)的性质问题的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式.(2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.①令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程. ②令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标.③将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号.(3)讨论意识:当A 为参数时,求最值应分情况讨论A >0,A <0. 2.求解三角函数的性质的三种方法 (1)求单调区间的两种方法①代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.②图象法:画出三角函数的图象,结合图象求其单调区间. (2)判断对称中心与对称轴:利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.(3)三角函数周期的求法 ①利用周期定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象. 针对训练1.2015·湖南高考]已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.答案 π2解析 由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎪⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝ ⎛⎭⎪⎫2π2ω2+(22)2,ω=π2. 2.2014·北京高考]设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________.答案 π解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12(π2+23π)=712π.记f (x )的最小正周期为T ,则12T ≥π2-π6,即T ≥23π.故712π-π3=π4=T4,解得T =π.考点三角函数的图象及应用典例示法题型1 利用图象求y =A sin(ωx +φ)的解析式典例3 函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3 B .2,-π6 C .4,-π6D .4,π3解析] 从图中读出此函数的周期情况为34T =34·2πω=5π12-⎝ ⎛⎭⎪⎫-π3=3π4,所以ω=2.又读出图中最高点坐标为⎝ ⎛⎭⎪⎫5π12,2,代入解析式f (x )=2sin(2x +φ),得到2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ,所以2×5π12+φ=2k π+π2(k ∈Z ),则φ=2k π-π3.因为-π2<φ<π2,所以令k =0,得到φ=-π3,故选A. 答案] A题型2 函数y =A sin(ωx +φ)的图象变换典例4 2015·山东高考]要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x 的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位解析] 因为y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12,所以只需将y =sin4x的图象向右平移π12个单位,即可得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,故选B.答案] B题型3 函数y =A sin(ωx +φ)的图象和性质的综合应用 典例5 2016·太原一模]已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将其图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称D .关于点⎝ ⎛⎭⎪⎫5π12,0对称解析] ∵f (x )的最小正周期为π,∴2πω=π,ω=2,∴f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=sin ⎝ ⎛⎭⎪⎫2x -2π3+φ的图象,又g (x )的图象关于原点对称,∴-2π3+φ=k π,k ∈Z ,φ=2π3+k π,k ∈Z ,又|φ|<π2,∴⎪⎪⎪⎪⎪⎪2π3+k π<π2,∴k =-1,φ=-π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3,当x =π12时,2x -π3=-π6,∴A ,C 错误,当x =5π12时,2x -π3=π2,∴B 正确,D 错误.答案] B本例中条件不变,若平移后得到的图象关于y 轴对称,则f (x )的图象又关于谁对称?( )答案 D解析 g (x )的图象关于y 轴对称,则-2π3+φ=π2+k π,k ∈Z ,可求φ=π6,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,2x +π6=k π,可得x =k π2-π12,令k =1,则x =5π12,故选D.1.函数表达式y =A sin(ωx +φ)+B 的确定方法2.三角函数图象平移问题处理策略(1)看平移要求:首先要看题目要求由哪个函数平移得到哪个函数,这是判断移动方向的关键点.(2)看移动方向:移动的方向一般记为“正向左,负向右”,看y =A sin(ωx +φ)中φ的正负和它的平移要求.(3)看移动单位:在函数y =A sin(ωx +φ)中,周期变换和相位变换都是沿x 轴方向的,所以ω和φ之间有一定的关系,φ是初相,再经过ω的压缩,最后移动的单位是⎪⎪⎪⎪⎪⎪φω.3.研究三角函数图象与性质的常用方法(1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)的形式,然后再求解.(2)对于形如y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)⎝⎛cos φ=a a 2+b 2,⎭⎪⎫sin φ=b a 2+b 2的形式来求.全国卷高考真题调研]1.2016·全国卷Ⅱ]若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z )答案 B解析 函数y =2sin2x 的图象向左平移π12个单位长度,得到的图象对应的函数表达式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π12,令2⎝⎛⎭⎪⎫x +π12=k π+π2(k ∈Z ),解得x =k π2+π6(k ∈Z ),所以所求对称轴的方程为x =k π2+π6(k ∈Z ),故选B.2.2015·全国卷Ⅰ]函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z答案 D解析 由图象可知ω4+φ=π2+2m π,5ω4+φ=3π2+2m π,m ∈Z ,所以ω=π,φ=π4+2m π,m ∈Z ,所以函数f (x )=cos ⎝⎛⎭⎪⎫πx +π4+2m π=cos ⎝ ⎛⎭⎪⎫πx +π4的单调递减区间为2k π<πx +π4<2k π+π,k ∈Z ,即2k -14<x <2k +34,k ∈Z ,故选D.其它省市高考题借鉴]3.2016·北京高考]将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin2x 的图象上,则( )A .t =12,s 的最小值为π6 B .t =32,s 的最小值为π6 C .t =12,s 的最小值为π3 D .t =32,s 的最小值为π3 答案 A解析 因为点P ⎝ ⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.又P ′⎝ ⎛⎭⎪⎫π4-s ,12在函数y =sin2x 的图象上,所以12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-s ,则2⎝ ⎛⎭⎪⎫π4-s =2k π+π6或2⎝ ⎛⎭⎪⎫π4-s =2k π+5π6,k ∈Z ,得s =-k π+π6或s =-k π-π6,k ∈Z .又s >0,故s 的最小值为π6.故选A.4.2015·陕西高考]如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题图可知-3+k =2,k =5,y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+5,∴y max=3+5=8.5.2015·湖南高考]将函数f (x )=sin2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6答案 D解析 由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,又0<φ<π2,故φ=π6,选D.6.2015·湖北高考]某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表: 且函数表达式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,得g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6.因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.一、选择题1.2016·贵阳监测]下列函数中,以π2为最小正周期的奇函数是( )A .y =sin2x +cos2xB .y =sin ⎝ ⎛⎭⎪⎫4x +π2C .y =sin2x cos2xD .y =sin 22x -cos 22x答案 C解析 A 中,y =sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,为非奇非偶函数,故A 错;B 中,y =sin ⎝⎛⎭⎪⎫4x +π2=cos4x ,为偶函数,故B 错;C 中,y=sin2x cos2x =12sin4x ,最小正周期为π2且为奇函数,故C 正确;D 中,y =sin 22x -cos 22x =-cos4x ,为偶函数,故D 错,选C.2.2016·唐山统考]将函数y =3cos2x -sin2x 的图象向右平移π3个单位长度,所得图象对应的函数为g (x ),则g (x )=( )A .2sin2xB .-2sin2xC .2cos ⎝ ⎛⎭⎪⎫2x -π6D .2sin ⎝ ⎛⎭⎪⎫2x -π6答案 A解析 因为y =3cos2x -sin2x =2sin ⎝⎛⎭⎪⎫π3-2x =-2sin ( 2x -π3 ),将其图象向右平移π3个单位长度得到g (x )=-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3-π3=-2sin(2x -π)=2sin2x 的图象,所以选A.3.2016·武昌调研]已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6-1(ω>0)的图象向右平移2π3个单位后与原图象重合,则ω的最小值是( )A .3 B.32 C.43 D.23答案 A解析 将f (x )的图象向右平移2π3个单位后得到图象的函数解析式为2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -2π3+π6-1=2sin ⎝ ⎛⎭⎪⎫ωx -2ωπ3+π6-1,所以2ωπ3=2k π,k∈Z ,所以ω=3k ,k ∈Z ,因为ω>0,k ∈Z ,所以ω的最小值为3,故选A.4.2016·沈阳质检]某函数部分图象如图所示,它的函数解析式可能是( )A .y =sin ⎝ ⎛⎭⎪⎫-56x +3π5B .y =sin ⎝ ⎛⎭⎪⎫65x -2π5C .y =sin ⎝⎛⎭⎪⎫65x +3π5D .y =-cos ⎝⎛⎭⎪⎫56x +3π5答案 C解析 不妨令该函数解析式为y =A sin(ωx +φ)(ω>0),由图知A =1,T 4=3π4-π3=5π12,于是2πω=5π3,即ω=65,π3是函数的图象递减时经过的零点,于是65×π3+φ=2k π+π,k ∈Z ,所以φ可以是3π5,选C.5.2016·广州模拟]已知sin φ=35,且φ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )=sin(ωx +φ)(ω>0)的图象的相邻两条对称轴之间的距离等于π2,则f ⎝ ⎛⎭⎪⎫π4的值为( )A .-35 B .-45 C.35 D.45答案 B解析 由函数f (x )=sin(ωx +φ)的图象的相邻两条对称轴之间的距离等于π2,得到其最小正周期为π,所以ω=2,f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫2×π4+φ=cos φ=-1-sin 2φ=-45.6.2016·重庆测试]设x 0为函数f (x )=sinπx 的零点,且满足|x 0|+f ⎝⎛⎭⎪⎫x 0+12<33,则这样的零点有( )A .61个B .63个C .65个D .67个答案 C解析 依题意,由f (x 0)=sinπx 0=0得,πx 0=k π,k ∈Z ,x 0=k ,k ∈Z .当k 是奇数时,f ⎝ ⎛⎭⎪⎫x 0+12=sin ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫k +12=sin ⎝ ⎛⎭⎪⎫k π+π2=-1,|x 0|+f ⎝ ⎛⎭⎪⎫x 0+12=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f ⎝⎛⎭⎪⎫x 0+12=sin ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎪⎫k +12=sin ⎝⎛⎭⎪⎫k π+π2=1,|x 0|+f ⎝⎛⎭⎪⎫x 0+12=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65个,选C.二、填空题7.函数f (x )=sin(ωx +φ)(x ∈R )⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,如果x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=________.答案 32解析 由题图可知,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,ω=2,又∵-π6+π32=π12,∴f (x )的图象过点⎝ ⎛⎭⎪⎫π12,1,即sin ⎝ ⎛⎭⎪⎫2×π12+φ=1,得φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 而x 1+x 2=-π6+π3=π6,∴f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫2×π6+π3=sin 2π3=32.8.2016·贵阳监测]为得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,可将函数y=sin x 的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则|m -n |的最小值是________.答案 2π3解析 由题意可知,m =π3+2k 1π,k 1为非负整数,n =-π3+2k 2π,k 2为正整数,∴|m -n |=⎪⎪⎪⎪⎪⎪2π3+2(k 1-k 2)π,∴当k 1=k 2时,|m -n |min =2π3.9.2016·湖南岳阳质检]已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4的图象向左平移π6个单位后与函数g (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则正数ω的最小值为________.答案 232解析 将f (x )=sin ⎝⎛⎭⎪⎫ωx +π4的图象向左平移π6个单位后,得到函数f 1(x )=sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π6+π4的图象.又f 1(x )=sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π6+π4的图象与g (x )=sin ( ωx +π6 )的图象重合,故ωx +π6ω+π4=2k π+ωx +π6,k ∈Z .所以ω=12k -12(k ∈Z ).又ω>0,故当k =1时,ω取得最小值,为12-12=232.三、解答题10.2014·山东高考]已知向量a =(m ,cos2x ),b =(sin2x ,n ),函数f (x )=a ·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解 (1)由题意知f (x )=a ·b =m sin2x +n cos2x .因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2, 所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎪⎨⎪⎧m =3,n =1.(2)由(1)知f (x )=3sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2), 由题意知x 20+1=1,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1, 因为0<φ<π,所以φ=π6, 因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z , 所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z. 11.2016·天津五区县调考]已知函数f (x )=3sin x cos x -cos 2x +12(x∈R ).(1)求函数f (x )的单调递增区间;(2)函数f (x )的图象上所有点的横坐标扩大到原来的2倍,再向右平移π6个单位长度,得到g (x )的图象,求函数y =g (x )在x ∈0,π]上的最大值及最小值.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin2x -12cos2x =sin ⎝⎛⎭⎪⎫2x -π6由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ), 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)函数f (x )的图象上所有点的横坐标扩大到原来的2倍,再向右平移π6个单位,得g (x )=sin ⎝ ⎛⎭⎪⎫x -π3, 因为x ∈0,π]得:x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x -π3∈⎣⎢⎡⎦⎥⎤-32,1所以当x =0时,g (x )=sin ⎝ ⎛⎭⎪⎫x -π3有最小值-32, 当x =5π6时,g (x )=sin ⎝⎛⎭⎪⎫x -π3有最大值1.12.2016·福建质检]已知函数f (x )=sin x cos x +12cos2x . (1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解 (1)因为tan θ=2,所以f (θ)=sin θcos θ+12cos2θ=sin θcos θ+12(2cos 2θ-1)=sin θcos θ+cos 2θ-12=sin θcos θ+cos 2θsin 2θ+cos 2θ-12=tan θ+1tan 2θ+1-12=110.(2)由已知得f (x )=12sin2x +12cos2x =22sin ⎝ ⎛⎭⎪⎫2x +π4.依题意,得g (x )=22sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π4,即g (x )=22sin ⎝⎛⎭⎪⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎪⎫-π4,2m -π4.又因为g (x )在区间(0,m )内是单调函数,所以2m -π4≤π2,即m ≤3π8,故实数m 的最大值为3π8.。

高中数学二轮复习关于三角函数解题中常用数学模型构造

高中数学二轮复习关于三角函数解题中常用数学模型构造

二轮复习关于三角函数解题中常用数学模型构造构造数学模型是一种比较重要、灵活的思维方式,它没有固定的模式。

在解题中要想用好它,需要有敏锐的观察、丰富的联想、灵活的构思、创造性的思维等能力。

应用好构造思想解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是弄清条件的本质特点和背景,以便重新进行逻辑组合。

常用的有构造命题、构造表达式、构造几何体等,本文拟就通过介绍几种解三角函数的具体问题,对构造的各种思维方式作一些探讨。

1 构造直角三角形例1 设x ∈[4π,2π],求证:cscx -ctgx ≥2-1 思路分析:由2、1联想等腰直角三角形,不仿构造一个等腰直角三角形来研究。

作Rt ⊿ABC ,令∠C=900,AC=1,在AC上取一点D ,记∠CDB=x ,则BD=cscx ,CD=ctgx ,AD=1-ctgx ,利用AD+DB≥AB=2,可得cscx -ctgx ≥2-1,等号仅在x =4π时成立。

2 构造单位圆例 2若0<β<α<2π,求证:α-β<tg α-tg β 思路分析:构造单位圆,借助三角函数线与三角函数式的关系,把数的比较转化为几何图形面积的比较。

作单位圆O ,AP 1=β,AP 2=α,∴ P 1P 2=α-β,AT 1=tg β,AT 2=tg α,S ⊿AT O =21tg α,S ⊿AP O =21tg β,由于S 扇形OAP=21α,S 扇形OAP =21β。

∴S 扇形OP P =21(α-β),S ⊿OT T=21tg α-21tg β。

则S ⊿OT T>S 扇形OP P即 21(α-β)<21(tg α-tg β) 所以 α-β<tg α-tg β3 构造函数表达式例3已知x 、y ∈[-4π,4π],a ∈R ,且⎩⎨⎧=++=-+0cos sin 402sin 33a y y y a x x ,求cos (x+2y )思路分析:由x 3+sinx 与2(4y 3+sinycosy ),这两部分形式完全类似,由此可构造函数形式。

高考数学二轮复习考点知识讲解与练习29---三角函数与解三角形热点问题

高考数学二轮复习考点知识讲解与练习29---三角函数与解三角形热点问题

高考数学二轮复习考点知识讲解与练习第29讲三角函数与解三角形热点问题核心热点真题印证核心素养三角函数的图象与性质2022·全国Ⅰ,7;2022·全国Ⅲ,16;2022·天津,8;2019·全国Ⅰ,11;2019·北京,9;2019·全国Ⅲ,12;2019·天津,7;2018·全国Ⅱ,10;2018·全国Ⅰ,16;2018·全国Ⅲ,15直观想象、逻辑推理三角恒等变换2022·全国Ⅰ,9;2022·全国Ⅱ,2;2022·全国Ⅲ,9;2019·全国Ⅱ,10;2019·浙江,18;2018·浙江,18;2018·江苏,16;2018·全国Ⅱ,15;2018·全国Ⅲ,4逻辑推理、数学运算解三角形2022·全国Ⅰ,16;2022·全国Ⅲ,7;2022·北京,17;2022·天津,16;2022·新高考山东,17;2022·浙江,18;2019·全国Ⅰ,17;2019·全国Ⅲ,18;2019·北逻辑推理、数学运算京,15;2019·江苏,15;2018·全国Ⅰ,17三角函数的图象与性质(必修4P147复习参考题A 组第9题、第10题)题目9 已知函数y =(sin x +cos x )2+2cos 2x . (1)求它的递减区间; (2)求它的最大值和最小值.题目10 已知函数f (x )=cos 4x -2sin x cos x -sin 4x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最小值及取得最小值时x 的集合.[试题评析]两个题目主要涉及三角恒等变换和三角函数的性质,题目求解的关键在于运用二倍角公式及两角和公式化为y =A sin(ωx +φ)+k 的形式,然后利用三角函数的性质求解. 【教材拓展】 已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z}, f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z),得-π12+k π≤x ≤5π12+k π(k ∈Z).设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.探究提高 1.将f (x )变形为f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3是求解的关键,(1)利用商数关系统一函数名称;(2)活用和、差、倍角公式化成一复角的三角函数.2.把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【链接高考】(2019·浙江卷)设函数f (x )=sin x ,x ∈R. (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.解 (1)因为f (x +θ)=sin(x +θ)是偶函数, 所以,对任意实数x 都有sin(x +θ)=sin(-x +θ), 即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又θ∈[0,2π),因此θ=π2或3π2. (2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝⎛⎭⎪⎫x +π4=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π6+12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π2=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝⎛⎭⎪⎫2x +π3.由于x ∈R ,知cos ⎝ ⎛⎭⎪⎫2x +π3∈[-1,1],因此,所求函数的值域为⎣⎢⎡⎦⎥⎤1-32,1+32.三角函数与平面向量【例题】(2021·湘赣十四校联考)已知向量m =(sin x ,-1),n =(3,cos x ),且函数f (x )=m ·n .(1)若x ∈⎝⎛⎭⎪⎫0,π2,且f (x )=23,求sin x 的值;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =7,△ABC 的面积为332,且f ⎝⎛⎭⎪⎫A +π6=73b sin C ,求△ABC 的周长.[自主解答]解 (1)f (x )=m ·n =(sin x ,-1)·(3,cos x ) =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.∵f (x )=23,∴sin ⎝⎛⎭⎪⎫x -π6=13.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π6∈⎝ ⎛⎭⎪⎫-π6,π3,∴cos ⎝⎛⎭⎪⎫x -π6=223.∴sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π6=13×32+223×12=3+226. (2)∵f ⎝⎛⎭⎪⎫A +π6=73b sin C , ∴2sin A =73b sin C ,即6sin A =7b sin C . 由正弦定理可知6a =7bc . 又∵a =7,∴bc =6.由已知△ABC 的面积等于12bc sin A =332,∴sin A =32. 又∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.由余弦定理,得b 2+c 2-2bc cos A =a 2=7,故b 2+c 2=13, ∴(b +c )2=25,∴b +c =5, ∴△ABC 的周长为a +b +c =5+7.探究提高 1.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先利用三角公式对三角函数式进行“化简”;然后把以向量共线、向量垂直、向量的数量积运算等形式出现的条件转化为三角函数式;再活用正、余弦定理对边、角进行互化. 2.这种问题求解的难点一般不是向量的运算,而是三角函数性质、恒等变换及正、余弦定理的应用,只不过它们披了向量的“外衣”.【尝试训练】(2021·沧州质检)已知a =(53cos x ,cos x ),b =(sin x,2cos x ),函数f (x )=a ·b +|b |2.(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调减区间;(3)当π6≤x ≤π2时,求函数f (x )的值域.解 f (x )=a ·b +|b |2=53cos x sin x +2cos 2x +sin 2x +4cos 2x =53sin x cos x +sin 2x +6cos 2x =532sin 2x +1-cos 2x 2+3(1+cos 2x ) =532sin 2x +52cos 2x +72=5sin ⎝⎛⎭⎪⎫2x +π6+72.(1)f (x )的最小正周期T =2π2=π. (2)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z).∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z).(3)∵π6≤x ≤π2,∴π2≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, ∴1≤5sin ⎝⎛⎭⎪⎫2x +π6+72≤172. ∴当π6≤x ≤π2时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,172.解三角形【例题】(12分)(2022·全国Ⅱ卷)△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值. [规范解答]解 (1)由正弦定理和已知条件得用正弦定理化角为边BC 2-AC 2-AB 2=AC ·AB .①2′由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .② 由①②得cos A =-12. 用余弦定理化边为角4′因为0<A <π,所以A =2π3.6′ (2)由正弦定理及(1)得AC sin B=AB sin C=BC sin A=23,8′从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B . 故BC +AC +AB =3+3sin B +3cos B=3+23sin ⎝ ⎛⎭⎪⎫B +π3. 两角和正弦公式的逆用10′又0<B <π3,所以当B =π6时,△ABC 周长取得最大值3+2 3. 三角函数性质的应用12′❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点步骤一定要写全,如第(1)问中只要写出0<A <π就有分,没写就扣1分,第(2)问中0<B <π3也是如此.❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时要写清得分关键点,如第(1)问中由正弦定理得BC 2-AC 2-AB 2=AC ·AB ,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos A ,第(2)问中ACsin B=AB sin C=BC sin A=23等.❸保证正确得计算分:解题过程中计算准确,是得满分的根本保证,如第(1)问中,cos A =-12,若计算错误,则第(1)问最多2分;再如第(2)问3+3sin B +3cos B =3+23sin ⎝⎛⎭⎪⎫B +π3化简如果出现错误,则第(2)问最多得2分.……利用正弦、余弦定理,对条件式进行边角互化……由三角函数值及角的范围求角……由正弦、余弦定理及条件式实现三角恒等变换……利用角的范围和三角函数性质求出最值……检验易错易混,规范解题步骤得出结论【规范训练】(2022·浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2b sin A -3a =0. (1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围. 解 (1)由正弦定理,得2sin B sin A =3sin A ,故sin B =32,由题意得B =π3. (2)由A +B +C =π,得C =2π3-A . 由△ABC 是锐角三角形,得A ∈⎝ ⎛⎭⎪⎫π6,π2 .由cos C =cos ⎝⎛⎭⎪⎫2π3-A =-12cos A +32sin A ,得 cos A +cos B +cos C =32sin A +12cos A +12=sin ⎝⎛⎭⎪⎫A +π6+12∈⎝⎛⎦⎥⎤3+12,32. 故cos A +cos B +cos C 的取值范围是⎝ ⎛⎦⎥⎤3+12,32.1.(2019·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a , 3c sin B =4a sin C . (1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B=c sin C,得b sin C =c sin B .又由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a . 因为b +c =2a ,所以b =43a ,c =23a . 由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158, cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6 =-158×32-78×12=-35+716. 2.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z), 解得k π-π6≤x ≤k π+π3(k ∈Z), ∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3. ∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.3.已知函数f (x )=cos x (cos x +3sin x ).(1)求f (x )的最小值;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长.解 (1)f (x )=cos x (cos x +3sin x )=cos 2x +3sin x cos x =1+cos 2x 2+32sin 2x =12+sin ⎝⎛⎭⎪⎫2x +π6. 当sin ⎝⎛⎭⎪⎫2x +π6=-1时,f (x )取得最小值-12. (2)f (C )=12+sin ⎝ ⎛⎭⎪⎫2C +π6=1,∴sin ⎝⎛⎭⎪⎫2C +π6=12, ∵C ∈(0,π),2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2C +π6=5π6,∴C =π3.∵S △ABC =12ab sin C =334,∴ab =3. 又(a +b )2-2ab cos π3=7+2ab , ∴(a +b )2=16,即a +b =4,∴a +b +c =4+7, 故△ABC 的周长为4+7.4.(2021·东北三省三校联考)已知在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若b 2tan A =a 2tan B ,2sin 2A +B 2=1+cos 2C .(1)求角A 的大小; (2)若点D 为AB 上一点,满足∠BCD =45°,且CD =32-6,求△ABC 的面积. 解 (1)由2sin 2A +B2=1+cos 2C 得1-cos(A +B )=2cos 2C ,即2cos 2C -cos C -1=0, 解得cos C =-12(cos C =1舍去),故C =120°. 因为asin A =bsin B ,b 2tan A =a 2tan B ,所以sin 2B sin A cos A =sin 2A sin B cos B, 即sin A ·cos A =sin B cos B ,故sin 2A =sin 2B ,因此A =B 或A +B =90°(舍去),故A =30°.(2)由(1)知△ABC 为等腰三角形,设BC =AC =m ,由S △ABC =S △ACD +S △BCD 得12m 2·sin 120°=12m · CD ·sin 45°+12m ·CD ·sin 75°,整理得32m=CD⎝⎛⎭⎪⎫22+2+64=()32-6×32+64,解得m=23,故S△ABC=12m2·sin 120°=3 3.5.(2021·郑州调研)已知△ABC的内角A,B,C所对的边分别是a,b,c,其面积S=b2+c2-a24.(1)若a=6,b=2,求cos B;(2)求sin(A+B)+sin B cos B+cos(B-A)的最大值.解(1)∵S=b2+c2-a24,∴12bc sin A=b2+c2-a24,即sin A=b2+c2-a22bc=cos A,则tan A=1,又A∈(0,π),∴A=π4.由正弦定理asin A =bsin B,得622=2sin B,∴sin B=66,又a>b,∴cos B=1-16=306.(2)由第(1)问可知,A=π4,sin(A +B )+sin B cos B +cos(B -A )=sin ⎝ ⎛⎭⎪⎫B +π4+sin B cos B +cos ⎝⎛⎭⎪⎫B -π4 =22sin B +22cos B +sin B cos B +22cos B +22sin B =2(sin B +cos B )+sin B cos B ,令t =sin B +cos B ,则t 2=1+2sin B cos B ,sin(A +B )+sin B cos B +cos(B -A )=2t +12(t 2-1), 令y =12t 2+2t -12=12(t +2)2-32,t ∈(0,2], ∴当t =2,即B =π4时, sin(A +B )+sin B cos B +cos(B -A )取得最大值52.。

高考数学 二轮 专题六 三角函数与解三角形 第3讲 解三角形 理

高考数学 二轮 专题六 三角函数与解三角形 第3讲 解三角形 理
栏目 导引
专题六 三角函数与解三角形
3.辨明易错易混点 (1)利用正弦定理解三角形时,注意解的个数讨论,可能有一 解、两解或无解. (2)在判断三角形形状时,等式两边一般不要约去公因式,应 移项提取公因式,以免漏解.
栏目 导引
专题六 三角函数与解三角形
考点一 正、余弦定理的基本应用
(经典考题)已知锐角△ABC的内角A,B,C的对边分
专题六 三角函数与解三角形
栏目 导引
专题六 三角函数与解三角形
(3)由余弦定理得 b2+c2-bc=4,
配方得(b+c)2-3bc=4,③
∵b+c≥2 bc,④
将③代入④得
(b+
c)2≥
( 4×
b+
c)
2-
4,
3
解得 b+c≤4,当且仅当 b=c 时取等号,
又∵b+c>a=2,则 2<b+c≤4,
∴△ABC 的周长的范围为(4,6].
栏目 导引
专题六 三角函数与解三角形
2.在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,已知 a =c.
3cos A sin C (1)求 A 的大小; (2)若 a=6,求 b+c 的取值范围. 解:(1)∵ a = c = a ,
3cos A sin C sin A
A. 3 2
C.1 2
B. 2 2
D.-1 2
解析:由余弦定理得
cos C=a2+b2-c2= c2 2ab 2ab
≥a2+c2 b2=2cc22=12.故选 C.
栏目 导引
专题六 三角函数与解三角形
栏目 导引
专题六 三角函数与解三角形
3.如图,在△ABC 中,D 是边 AC 上的点,且 AB=AD,2AB = 3BD,BC=2BD,则 sin C 的值为( D ) A. 3

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数及解三角形二轮复习讲义分值:15-17分题型:题型不固定,一般2-3个小题或一个小题1个解答题; 难度:低、中、高都有,以中低档为主;第一讲 三角函数的图像与性质、三角恒等变换高考体验1.(2017年全国Ⅰ卷)已知0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,则cos 4πα⎛⎫-= ⎪⎝⎭________.2、(2016年全国卷Ⅱ)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图像的对称轴为( ) A.()26k x k Z ππ=-∈ B. ()26k x k Z ππ=+∈ C. ()212k x k Z ππ=-∈ D. ()212k x k Z ππ=+∈3、(2014年全国Ⅰ)在函数①cos y x =,②cos y x =,③cos(2)6y x π=+,④tan(2)4y x π=-中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③4、(2016年全国卷Ⅱ)函数()cos 26cos()2f x x x π=+-的最大值为( )A.4B.5C.6D.75、(2015年全国Ⅰ卷)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )A.13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈C. 13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈6、(2016年全国Ⅰ卷)已知θ为第四象限角,且3sin()45πθ+=,则tan()4πθ-=7、(2015年四川卷)已知sin 2cos 0αα+=,则22sin cos sin ααα-的值为高考感悟:考查角度:(1)三角函数的定义及应用;(2)三角函数的性质:奇偶性、对称性、周期性、单调性、最值等;(3)三角函数的图像变换(或由图像变换求参数),由图求解析式;(4)三角恒等变换:给值求值或与解三角形相结合。

例题讲解热点一:三角函数的定义、诱导公式及恒等变换例1:(1)已知角θ的定点与原点重合,始边与x 轴正半轴重合,始边在直线2y x =上,则cos2θ等于( ) A.45- B.35- C.35 D.45(2) (2013年广东卷)已知51sin()25πα+=,那么cos α=( ) A.25- B.15- C.15 D.25(3)(2015年广东卷)已知tan 2α= (1)求tan()4πα+的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值(4)(2012年辽宁卷)已知sin cos (0,)αααπ-=∈,则sin α=( )A.1-B.- D.1热点训练(1)(2011年江西卷)已知角θ的顶点为坐标原点,始边为x 轴的非负半轴。

若(4,)P y 是角θ终边上一点,且sin θ=,则y =(2)(2013年全国卷Ⅱ)已知2sin 23α=,则2cos ()4πα+=( )A.16 B.13 C.12 D.23(3)(2016年全国卷Ⅲ)若1tan 3θ=-,则cos2θ=( ) A.45- B.15- C.15 D.45(4)(2015年重庆卷)若11tan ,tan()32ααβ=+=,则tan β=( ) A.17 B.16 C.57D.56热点二:三角函数的性质(定义域、单调性、奇偶性、对称性和周期性)例3:例2:(1)(2016茂名一模)函数lg sin y x =+(2)(2012年山东卷)设命题:p 函数sin 2y x =的最小正周期为2π;命题:q 函数cos y x =的图像关于直线2x π=对称。

则下列判断正确的是( )A.p 为真B.p ⌝为假 C.p q ∧为假 D.p q ∨为真(3)(2016年全国卷Ⅰ)已知函数()sin()(0,)2f x x πωϕωϕ=+>≤,4x π=为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在5(,)1836ππ上单调,则ω的最大值为( )A.11B.9C.7D.5(4)(2013年江西卷)设()3cos3f x x x =+,若对任意实数x 都有()f x a ≤,则实数a 的取值范围是(5)(2014年安徽卷)若将函数()sin 2cos 2f x x x =+的图像向右平移ϕ个单位,所得的图像关于y 轴对称,则ϕ的最小值是( )A.8π B.4πC.38πD.34π(6)(2012年北京卷)已知函数(sin cos )sin 2()sin x x xf x x-=(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递减区间。

热点训练(1)(2014年福建卷)将函数sin y x =的图像向左平移2π个单位,得到函数()y f x =的图像,则下列说法正确的是( )A.()y f x =是奇函数B. ()y f x =的周期为πC. ()y f x =的图像关于直线2x π=对称 D. ()y f x =的图像关于点(,0)2π-对称(2)(2009全国卷Ⅰ)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为( ) A.6π B.4π C.3π D.2π(3)(2015年天津卷)已知函数()sin cos (0)f x x x ωωω=+>。

若函数()f x 在区间(,)ωω-内单调递增,且函数()y f x =的图像关于直线x ω=对称,则ω的值为(2013年湖南卷)已知函数()cos cos()3f x x x π=-(1) 求2()3f π的值; (2) 求使1()4f x <成立的x 的取值集合。

(4)(2015年安徽卷)已知函数2()(sin cos )cos 2f x x x x =++ (1) 求()f x 的最小正周期(2) 求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值热点三:三角函数的图像变换及应用例4:(1)(2016年全国卷Ⅰ)将函数2sin(2)6y x π=+的图像向右平移14个周期后,所得图像对应的函数为( ) A.2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=- D. 2sin(2)3y x π=-(2)(2013年四川卷)函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图像如图所示,则,ωϕ的值分别为( ) A.2,3π- B.2,6π-C.4,6π-D.4,3热点训练(1)(2014年浙江卷)为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos3y x =的图像( )A.向右平移12π个单位B. 向右平移4π个单位 C. 向左平移12π个单位 D. 向左平移4π个单位(2)(2014年辽宁卷)要得到函数sin(2)3y x π=+的图像向右平移2π个单位长度,所得图像对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 B. 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C. 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D. 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 (3)(2014年重庆卷)将函数()sin()(0,)22f x x ππωϕωϕ=+>-≤<图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6π个单位长度得到sin y x =的图像,则()6f π=(4)(2015年湖北卷)某同学用“五点法”画函数()sin()(0,)2f x A x πωϕωϕ=+><在某个周期内的图像时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,并直接写出函数()f x 的解析式; (2) 将()y f x =图像上所有点向左平行移动6π个单位长度,得到()y g x =图像,求()y g x =的图像离原点O 最近的对称中心。

加固训练1、(2015年陕西卷)“sin cos αα=”是“cos20α=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、 (2009年宁夏、海南卷)有四个关于三角函数的命题:2211:,sin cos 222x x p x R ∃∈+=; 2:,,sin()sin sin p x y R x y x y ∃∈-=-[]31cos 2:0,,sin 2x p x x π-∀∈= 4:sin cos 2p x y x y π=⇒+= 其中的假命题是( )A.14,p pB.24,p pC.13,p pD.23,p p 3、(2011年山东卷)若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A.23 B.32C.2D.34、(2014年上海卷)方程sin 3cos 1x x +=在区间[]0,2π上的所有解的和等于5、(2016年全国卷Ⅱ)的部分图像如图所示,则( ) A.2sin(2)6y x π=-B. 2sin(2)3y x π=- C. 2sin(2)6y x π=+ D. 2sin(2)3y x π=+6、(2016年山东卷)设2()23sin()sin (sin cos )f x x x x x π=---(1) 求()f x 的单调递增区间;(2) 把()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移3π个单位,得到函数()y g x =的图像,求()6g π的值7、(2016年山东青岛调考)已知函数()2sin sin()6f x x x π=+(1) 求函数()f x 的最小正周期和单调递增区间;(2) 当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域。

8、(2011年湖南卷)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =。

(1)求角C 的大小;(2)cos()4A B π-+的最大值,并求取得最大值时角,A B 的大小。

第二讲 解三角形高考体验1.(2017年全国Ⅰ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a=2,C=( ) A .π12B .π6C .π4D .π32、(2016年全国卷Ⅲ)在ABC ∆中,角,4B BC π=边上的高等于13BC ,则sin A 等于( )A.3103、(2016年北京卷)在ABC ∆中,2,3A a π∠==,则bc=4、(2016年全国卷Ⅱ)ABC ∆的内角,,A B C 的对边分别为,,a b c ,若45cos ,cos ,1513A C a ===,则b = _________5、(2014年全国卷Ⅰ)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为6、(2015年全国卷Ⅰ)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2sin 2sin sin B A C = (1)若a b =,求cos B(2)设90oB =,且a =ABC ∆的面积。

相关文档
最新文档