初三数学总复习----重点题型训练

合集下载

九年级数学必考题型与技巧题

九年级数学必考题型与技巧题

九年级数学的必考题型与技巧题主要包括以下几类:
1. 代数题:主要考察一元二次方程、不等式、分式方程等知识。

解决这类题目的关键是掌握好代数的基本运算法则,如合并同类项、消元法等。

2. 几何题:主要考察三角形、四边形、圆等几何图形的性质与计算。

解决这类题目的关键是灵活运用几何定理和公式,如勾股定理、面积公式等,并注意图形的变换,如平移、旋转等。

3. 统计与概率题:主要考察数据的处理、分析及概率计算。

解决这类题目的关键是理解统计与概率的基本概念,如平均数、中位数、众数、概率等,并能运用这些知识解决实际问题。

4. 方程与不等式题:主要考察一元一次方程、一元二次方程、分式方程以及不等式的解法。

解决这类题目的关键是掌握各种方程与不等式的解法,如公式法、因式分解法、图像法等。

5. 函数题:主要考察一次函数、二次函数、反比例函数等函数的性质与计算。

解决这类题目的关键是理解函数的概念,掌握各种函数的性质和图像,并能运用这些知识解决实际问题。

在解题过程中,可以运用以下技巧:
1. 理解题意:认真阅读题目,理解题目所考察的知识点,明确解题思路。

2. 善于画图:对于几何题和函数题,画出图形有助于直观地理解问题,找到解题的关键点。

3. 运用公式和定理:熟练掌握数学公式和定理,能快速解题。

4. 分类讨论:对于一些题目,需要进行分类讨论,不遗漏任何一种情况。

5. 整理与检查:解题过程中注意整理步骤,解完后进行检查,确保答案正确。

初三数学常考试题及答案

初三数学常考试题及答案

初三数学常考试题及答案一、选择题1. 已知一个二次函数的图像经过点A(-1,0)和点B(3,0),且函数的开口向上,则该二次函数的对称轴是()。

A. x = 0B. x = 1C. x = 2D. x = -1答案:B解析:二次函数的对称轴是其顶点的x坐标,由于函数图像经过点A(-1,0)和点B(3,0),且开口向上,根据二次函数的性质,对称轴是这两点x坐标的平均值,即x = (-1 + 3) / 2 = 1。

2. 下列哪个选项是不等式2x - 3 > 0的解集?A. x > 3/2B. x < 3/2C. x > 3D. x < 3答案:A解析:将不等式2x - 3 > 0移项得到2x > 3,再除以2得到x > 3/2,因此选项A是正确的。

二、填空题3. 计算绝对值:|-7| = _______。

答案:7解析:绝对值表示一个数距离0的距离,因此|-7|表示-7距离0的距离,即7。

4. 计算平方根:√9 = _______。

答案:±3解析:平方根是一个数的平方等于给定数的那个数,9的平方根是3,因为3的平方是9。

同时,-3的平方也是9,所以9的平方根是±3。

三、解答题5. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

答案:5解析:根据勾股定理,直角三角形的斜边长度等于两直角边长度的平方和的平方根。

即斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5。

6. 某工厂生产一种零件,每件成本为10元,售价为15元,若该工厂希望获得的利润不低于1000元,问至少需要生产多少件零件?答案:100件解析:设需要生产的零件数量为x件,则总利润为(15 - 10)x = 5x元。

根据题意,5x ≥ 1000,解得x ≥ 200。

因此,至少需要生产200件零件。

四、证明题7. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。

中考数学复习考点知识讲解与练习10 一次函数-函数概念

中考数学复习考点知识讲解与练习10 一次函数-函数概念

中考数学复习考点知识讲解与练习专题10 一次函数-函数概念函数的概念;一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

因为函数具有唯一性,函数表达形式;表格法、图象法、公式法(解析法),本中考数学复习考点知识讲解与练习专题的题型:函数概念;函数的三种表达式;函数的值;函数的解析式;及其他典型函数概念题型。

题型一:函数的概念1.(2022·和平县和丰中学初一月考)水温随时间的变化而变化,其中__________是自变量,__________是因变量.2.(2022·四川锦江·初一期末)在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量3.(2022·广西平桂·期中)如图,下列各曲线中能够表示y是x的函数的是().A.B.C.D.4.(2022·山东邹平·初二期末)下列各曲线中,不能表示y是x的函数的是().A.B.C.D.5.(2022·辽宁西丰·初二期末)下列曲线中表示y是x的函数的为()A.B.C.D.6.(2022·广西田东·初二期末)下列各图中,能表示y是x的函数的是()A.B.C.D.7.(2022·江西南昌二中初二期中)下列四个图象中,不是函数图象的是()A .B .C .D .题型二:函数的取值范围8.(2022·四川雁江·初三期末)若y x=有意义,则x 的取值范围是() A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤D .x 0≠9.(2022·察哈尔右翼前旗第三中学初二期末)函数11y x =-中自变量x 的取值范围是() A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠10.(2022·湖北荆州·初二月考)函数y =x 的取值范围是() A .1x >B .1x <C .1x ≤D .1≥x11.(2022·南通市八一中学初二月考)已知函数y =1x -,则自变量x 的取值范围是( ) A .﹣1<x <1B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠112.(2022·山东曲阜·初二期中)式子2x -中x 的取值范围是( ) A .x ≥1且x ≠2B .x >1且x ≠2C .x ≠2D .x >113x 的取值范围为______.14.(2022·湖南渌口·初三期中)在函数y =x 的取值范围是.15.(2022·平江县南江中学初三二模)函数中,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.16.(2022·四川雁江·初三其他)函数y=-x的取值范围是______.17.(2022·四川省成都七中育才学校学道分校中考模拟)函数12x-中自变量x的取值范围是.18.(2022·合肥市第四十六中学南校区初二月考)13yx=-中x的取值范围是__________题型三:函数的三种表达形式(1)列表法19.(2022·全国初一课时练习)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)之间的关系如下表:(1)变量x与y的关系式是__________.(2)卖__________kg苹果,可得14.5元;若卖出苹果10kg,则应得__________元.20.(2022·渝中·重庆巴蜀中学初一期末)弹簧挂上重物后会伸长,测得一弹簧的长度y(cm)于所挂的重物的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg),当所挂的物体质量是8kg时,弹簧的长度是__________cm.21.(2022·山东宁阳·初一期中)下表记录了一次实验中的时间和温度的数据,写出T与t的关系式____.x的取值范围是_____.22.(2017·江苏常熟·中考模拟)函数23.(2022·广东盐田·初一期中)某地的温度T(℃)与海拔高度h(km)之间的关系如下所示:要算出海拔高度为6km时该地的温度,适宜用第________种形式。

初三数学一元二次方程实际问题经典题型汇总3

初三数学一元二次方程实际问题经典题型汇总3
5.B
【解析】
【分析】
由在绿地中开辟两条道路后剩余绿地面积为4704 m²,即可得出关于x的一元二次方程.
【详解】
设路宽为m,根据题意得:
50×100-50x-100x+x2=4704.
整理得:5000-150x+x2=4704.
故答案为:B.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程,解体的关键是找到等量关系,正确列出一元二次方程.
18.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:
(1)每轮传染中平均每个人传染了几个人?
(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?
(x-40)[400-10(x-50)]=6000
-130x+4200=0
解得: = 60, = 70
根据题意,进货量要少,所以 = 60不合题意,舍去.
答:售价应定为70元.
【点睛】
本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.
8.(1)月的平均增长率为 ;(2) 月份销售自行车为 辆.
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
17.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.
(1)求BE的长;
(2)当t为多少秒时,△BPE是直角三角形?

九年级中考数学复习三角形综合压轴题专题练习

九年级中考数学复习三角形综合压轴题专题练习

九年级中考数学复习三角形综合压轴题专题练习1、如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sin B的值;(2)如果CD=5,求BE的值.2、如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.3、如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.=;(1)求证:BD CE∆(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC 的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.△中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ 4、在Rt ABC⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;△中,两条直角边BC、AC满足关系式BC=λAC,是否存在(3)在Rt ABC一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.5、已知锐角△ABC中,边BC长为12,高AD长为8(1) 如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC 边上,EF交AD于点KEF的值①求AK②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值(2) 若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长6、【问题背景】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点.(1)【观察猜想】观察图1,猜想线段AP与BE的数量关系是,位置关系是.(2)【拓展探究】把△ADE绕点A逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明:否则写出新的结论并说明理由.(3)【问题解决】把△ADE绕点A在平面内自由旋转,若DE=4,BC=8,请直接写出线段AP长的取值范围.7、感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a的代数式表示)8、如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3(1) 求证:EF+PQ=BC(2) 若S1+S3=S2,求AEPE的值(3) 若S3-S1=S2,直接写出AEPE的值9、在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为E,DE与AB相交于点F.⑴当AB=AC时,(如图1),①∠EBF=_______°;②探究线段BE与FD的数量关系,并加以证明;⑵当AB=kAC时(如图2),求BEFD的值(用含k的式子表示).10、提出问题⑴如图1,在等边△ABC中,点M是BC上任意一点(不含端点B、C),连接AM,以AM为边作等边△AMN,连接CN,求证:∠ABC=∠CAN;类比探究⑵如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,⑴中的结论∠ABC=∠CAN还成立吗?请说明理由.拓展延伸⑶如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C)连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC,连接CN,试探究∠ABC与∠CAN的数量关系,并说明理由.11、如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围.12、已知四边形ABCD的一组对边AD、BC的延长线交于点E(1) 如图1,若∠ABC=∠ADC=90°,求证:ED·EA=EC·EB3,CD=5,AB=12,△CDE的面积(2) 如图2,若∠ABC=120°,cos∠ADC=5为6,求四边形AB CD的面积(3) 如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC3,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)=513、如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s 的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF和点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH= cm,DG = cm;(2)t为多少秒时△PDE为等腰三角形?请说明理由;(3)t为多少秒时点P与点G重合?写出计算过程;(4)求tan∠PBF的值(可用含t的代数式表示).14、在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1;(3)①设BC 的中点为M ,则线段PM 的长为 ;②点P 到AB 所在直线的距离的最大值为 .(直接填写结果)15、我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC=6,BC=3,∠ACB=30°,试判断△ABC 是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是”等底”,作△ABC 关于BC 所在直线的对称图形得到△A'BC ,连结AA′交直线BC 于点D .若点B 是△AA′C 的重心,求的值.(3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直E 1B C E (D 1)A PE 1BCED D 1A线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.16、【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).17、如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于__________________时,线段AC的长取得最大值,且最大值为_____________.(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2 , 0),点B的坐标为(5 , 0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.18、已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°。

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)专题一:解一元二次方程1、直接开方解法1)$x-6+\sqrt{3}=2\sqrt{2}$解:移项得$x=6-2\sqrt{2}-\sqrt{3}$2)$(x-3)^2=2$解:两边开方得$x-3=\pm\sqrt{2}$,即$x=3\pm\sqrt{2}$ 2、用配方法解方程1)$x+2x-1=0$解:合并同类项得$3x-1=0$,移项得$x=\frac{1}{3}$2)$x-4x+3=0$解:合并同类项得$-3x+3=0$,移项得$x=1$3、用公式法解方程1)$2x^2-7x+3=0$解:根据一元二次方程的求根公式,$x=\frac{7\pm\sqrt{7^2-4\times2\times3}}{4}$,即$x=\frac{1}{2}$或$x=3$2)$x^2-x-1=0$解:同样根据求根公式,$x=\frac{1\pm\sqrt{5}}{2}$,即$x=\frac{1+\sqrt{5}}{2}$或$x=\frac{1-\sqrt{5}}{2}$4、用因式分解法解方程1)$3x(x-2)=2x-4$解:移项得$3x^2-6x-2x+4=0$,合并同类项得$3x^2-8x+4=0$,将其因式分解为$3(x-2)(x-\frac{2}{3})=0$,即$x=2$或$x=\frac{2}{3}$2)$2x-4=x+5$解:移项得$x=3$5、用十字相乘法解方程1)$x^2-x-90=0$解:将其因式分解为$(x-10)(x+9)=0$,即$x=10$或$x=-9$ 2)$2x^2+x-10=0$解:将其因式分解为$(2x-5)(x+2)=0$,即$x=\frac{5}{2}$或$x=-2$专题二:化简求值1、$\frac{x^2+y^2-2xy}{x-y}$,其中$x=2+1$,$y=2-1$解:将$x$和$y$的值代入得$\frac{(2+1)^2+(2-1)^2-2(2+1)(2-1)}{2+1-(2-1)}=\frac{3}{2}$2、$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}$,任选一个数$x$代入求值解:将$x$代入得$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}=\frac{4x^2-14x+12}{(x-1)^2}$专题三:根与系数的关系1、已知关于$x$的一元二次方程$x-4x-2k+8=0$有两个实数根$x_1$,$x_2$。

初三数学上册重点题型

初三数学上册重点题型

初三数学上册重点题型一、引言初三数学上册是初中数学的重要阶段,涵盖了许多重要的知识点和题型。

为了帮助学生更好地掌握这些知识点和题型,本文将列举初三数学上册的一些重点题型,并给出相应的解题方法和思路。

二、重点题型及解题方法1. 代数方程代数方程是初三数学上册的重要题型之一,主要考察学生的代数运算能力和方程求解能力。

常见的代数方程包括一元一次方程、一元二次方程等。

解题方法:(1) 观察方程形式,确定方程类型;(2) 对方程进行化简,消去未知数;(3) 对方程进行求解,得出未知数的值。

2. 几何图形几何图形是初三数学上册的重要知识点之一,主要考察学生的空间想象能力和几何图形的性质。

常见的几何图形包括三角形、四边形、圆等。

解题方法:(1) 观察图形特点,确定图形的类型;(2) 根据图形的性质,进行相关的计算或证明;(3) 结合题目要求,得出结论或答案。

3. 函数图像函数图像是初三数学上册的重要知识点之一,主要考察学生对函数图像的认知和函数的性质。

常见的函数图像包括一次函数、二次函数等。

解题方法:(1) 观察函数图像,确定函数的类型;(2) 根据函数的性质,进行相关的计算或证明;(3) 结合题目要求,得出结论或答案。

4. 应用题应用题是初三数学上册的重要题型之一,主要考察学生将数学知识应用于实际问题的能力。

常见的应用题包括路程问题、时间问题、利润问题等。

解题方法:(1) 仔细阅读题目,理解题意;(2) 找出题目中的已知量和未知量;(3) 根据数学知识,建立数学模型;(4) 对数学模型进行求解,得出答案。

三、解题思路总结1. 仔细阅读题目,理解题意;2. 找出题目中的已知量和未知量;3. 根据数学知识,建立数学模型;4. 对数学模型进行求解,得出答案。

期中重难点真题特训之压轴满分题型2025学年九年级数学上册重难点专题提升精讲精练 (原卷版)

期中重难点真题特训之压轴满分题型2025学年九年级数学上册重难点专题提升精讲精练  (原卷版)
压轴满分题九、概率的进一步认识
1.(24-25九年级上·辽宁沈阳·期中)在如图所示的电路中,随机闭合开关 、 、 中的任意两个,能使灯泡发光的概率是()
A. B. C. D.
2.(24-25九年级上·浙江杭州·期中)如图,A,B是两个可以自由转动的转盘,A转盘白色扇形和黑色扇形的圆心角分别为 和 ,B转盘被分成面积相等的两个黑白扇形,转动A,B转盘各一次,两次指针都落在黑色区域的概率为.
(2)已知m,n是关于x的一元二次方程 的两实数根,则 的最小值是.
3.(24-25九年级上·河南开封·期中)(1)对于一元二次方程 ,当 时,它的求根公式为,求根公式不仅可以由方程的系数求出方程的根,而且反映了根与系数之间的关系.若方程的两个根为 ,则满足:① ;② .(这也称作韦达定理,是由16世纪法国数学家韦达发现的).请利用一元二次方程的求根公式证明韦达定理;
(1)若点P的坐标为 ,点Q的坐标为 ,则点P,Q的“子矩形”的周长为;
(2)已知点 ,点B在x轴上,若点A,B的“子矩形”面积为32,求 所在直线的函数解析式;
(3)在(2)中的线段 上任取两点P,Q,并作P,Q的“子矩形”,若P,Q两点纵坐标之差为2,①求对角线 的长度;②已知动点M在P,Q的“子矩形”边上运动,请直接写出线段 长度的取值范围.
压轴满分题十、成比例线段
1.(24-25九年级上·广东深圳·期中)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )
3.(24-25九年级上·河南开封·期中)学校拟举办庆祝“建国75周年”文艺汇演,每班选派一名志愿者,九年级一班的小明和小红都想参加,于是两人决定一起做“摸牌”游戏,获胜者参加.规则如下:将牌面数字分别为1,2,3的三张纸牌(除牌面数字外,其余都相同)背面朝上,洗匀后放在桌面上,小明先从中随机摸出一张,记下数字后放回并洗匀,小红再从中随机摸出一张.若两次摸到的数字之和大于4,则小明胜;若和小于4,则小红胜;若和等于4,则重复上述过程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学总复习----重点题型训练(3分)(2012•铁岭)如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8D.6(2012•朝阳)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A 的坐标为(﹣2,﹣3),则k的值为()A .1 B.﹣5 C.4D.1或﹣55.已知一元二次方程0158x-x2=+的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A 、13B 、11或13C 、11D 、126、有三张正面分别标有数字 2-,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )A 、94B 、121 C 、31 D 、617、如图 在直角△ABC 中,∠BAC=90°边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACEA 、16B 、15C 、14D 、138、随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A 、x 5.2815x 8=+ B 、155.28x 8+=xC 、x 5.2841x 8=+D 、415.28x 8+=x 9、在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5,AC=6,过点D作AC 的平行线交BC 的延长线于点E )A、22B、24C、48D、4410、如图,已知点A在反比例函数y=x4的图象上,点B在反比例函数y=xk(k≠0)的图象上,AB∥x 轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC=31OD,则k的值为()A、10B、12C、14D、16(3分)(2012•营口)如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP的面积为y (B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为()A .B.C.D.(3分)(2012•铁岭)如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n 的面积为_________.(3分)(2012•营口)如图,直线y=﹣x+b 与双曲线(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,连接OA 、OB ,若S △AOB =S △OBF +S △OAE ,则b= _________ .15、在一个不透明的袋中,装有6中放入5个白球(袋中所有球除颜色外完全相同)摇匀后摸出一球,摸到红球的概率恰好为52,那么此袋中原有绿球__________个。

16、如图,在□ABCD 中,∠ABC 的平分线BE 交AD 边于点E ,交对角线AC 于点F ,若53BC AB =,则=AC AF _______。

17、如图,矩形ABCD 中,点P 、Q 分别是边AD 和BC 的中点,沿过C 点的直线折叠矩形ABCD 使点B 落在线段PQ 上的点 F 处,折痕交AB 边于点E ,交线段PQ 于点G ,若BC 长为3, 则线段FG 的长为__________。

18、如图,下图是一组由菱形和矩形组成的有规律的图案,第1个图中菱形的面积为S(S为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推……,则第n个图中阴影部分的面积可以用含n的代数式表示为__________。

(n≥2,且n是正整数)22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局.(1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C,,分别表示小刚的象、虎、鼠三张牌,用1A,1B,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率小刚小明是多少?用列表法或画树状图(树形图)法加以说明.A B CA1 B1 C1第22题图24.一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油多少升?(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D处加油过程中的时间和路程忽略不计)25.(14分)(2012•营口)如图,在矩形ABCD中,AD=4,M是AD 的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB=,过点M作MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点.(1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180o ,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.CEN DA BM图①C AE M BDN图② 第25题图23将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB =∠DEB=90º,∠A=∠D=30º,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0º<α<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60º<β<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE 之间的关系,并说明理由.ACB图①图②22、某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍。

现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆。

(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?25、已知,在△ABC中,AB=AC。

过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角 ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N 的上方),且BM=BN,连接CN。

(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为_______;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC 之间的数量关系,不必证明。

25.(12分)(2012•朝阳)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示…70 75 80 85 90 …销售单价x(元/kg)…100 90 80 70 60 …销售量w(kg)设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x 的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?25.(12分)(2012•铁岭)已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?_________(填“是”或“否”),∠BOE=_________度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE 的度数,直接写出结果,不必说明理由.。

相关文档
最新文档