空间几何中的向量方法
空间向量的基本运算

空间向量的基本运算在空间解析几何中,向量是表示有大小和方向的物理量。
空间向量具有三个分量,通常表示为A = (x, y, z),其中x、y、z分别代表向量在x轴、y轴、z轴上的分量。
空间向量的基本运算包括向量的加法、减法、数量乘法、点乘和叉乘。
一、向量的加法向量的加法是指将两个向量相加得到一个新向量的运算。
设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的和向量C = A + B = (x1 + x2, y1 + y2, z1 + z2)。
二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新向量的运算。
设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的差向量C = A -B = (x1 - x2, y1 - y2, z1 - z2)。
三、数量乘法数量乘法是指将向量的每个分量都乘以一个实数得到一个新的向量。
设有向量A = (x, y, z)和实数k,它们的数量乘积为kA = (kx, ky, kz)。
四、点乘点乘又称为数量积或内积,是指将两个向量相乘再相加得到一个实数的运算。
设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的点乘结果为AB = x1 * x2 + y1 * y2 + z1 * z2。
五、叉乘叉乘又称为向量积或外积,是指将两个向量相乘得到一个新向量的运算。
设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的叉乘结果为C = A × B = (y1 * z2 - z1 * y2, z1 * x2 - x1 * z2, x1 * y2 - y1 * x2)。
以上是空间向量的基本运算,它们在解决空间中的几何问题和物理问题中起着重要的作用。
通过这些基本运算,我们可以进行向量的相加减、放缩,计算向量之间的夹角,求解平面和直线的方程等。
空间向量及其运算

(3|a|+2|c|)(|a|-|c|)=0,∴|a|-|c|=0,即|a|=|c|.
即当==1时,A1C⊥平面C1BD.
【分析点评】
向量是解决立体几何问题的重要工具,利用向量可解决线面平行、线面垂 直、三点共线、四点共面,以及距离和成角等问题,而利用向量解决立体 几何问题关键在于适当选取基底,将几何问题转化为向量问题. 本题第二问用向量法解决是非常好的选择,大大简化了推理和运算过程. 这样就很好地解决:“会做的题目花费时间过多”这一矛盾,考试过程中 方法的选择就显的尤为重要.
解法二:(1)证明:取
由已知|a|=|b|,且〈a,b〉=〈b,c〉=〈c,a〉=60°,
BD=CD-CB=a-b,C1C·B=c·(a-b)=c·a-c·b
=|c||a|-|c||b|=0,
,∴C1C⊥BD.
(2)若A1C⊥平面C1BD,则A1C⊥C1D,CA1=a+b+c,C1D=a-c.
∴CA1·C1D=0,即(a+b+c)·(a-c)=0.整理得:3a2-|a||c|-2c2=0,
点击此处进入 作业手册
(3)空间的两个向量可用 同一平面内 的两条有向线段来表示.
2.空间向量的运算
定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如
下:
=a+b;
.
3.运算律:(1)加法交换律:a+)数乘分配律:λ(a+b)= λa+λb .
4.共线向量定理:空间任意两个向量a、 b(b≠0), a∥b的充要条件是存在实 数λ,使 a =λb .
5.共面向量定理:如果两个向量a,b不共线,p与向量a,b共面的充要条件 是存在实数x,y使 p=xa+yb .
6.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量
空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释

空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释1.引言1.1 概述空间立体几何是数学中的一个重要分支,它研究三维空间中的几何结构和性质。
在空间立体几何中,线和面是两个基本的几何元素,线面交点坐标的求解是一个常见且重要的问题。
本文主要介绍了两种方法来求解线面交点的坐标:坐标法和向量法。
通过这两种方法,可以方便地求解线面交点的坐标,进而解决一些实际问题。
通过本文的学习,读者将能够掌握空间立体几何中线面交点坐标的求解方法,为进一步深入学习和应用空间几何提供了基础。
同时,本文还将探讨线面交点坐标的应用和展望,展示其在现实生活中的重要性和价值。
1.2 文章结构:本文主要分为引言、正文和结论三部分。
引言部分将从概述、文章结构和目的三个方面介绍本文的主要内容和研究背景。
正文部分将分为三个小节,首先是关于空间立体几何概念的介绍,接着是详细讨论如何利用坐标法求解线面交点坐标的方法,最后则是向量法求解线面交点坐标的具体过程。
结论部分将总结本文的主要观点和研究成果,探讨该方法的应用前景,并进行最终的结语。
1.3 目的:本文旨在介绍如何利用空间立体几何中的坐标法和向量法来求解线面交点坐标的方法。
通过深入讨论这两种方法的原理和步骤,我们希望读者能够更加深入地理解空间几何中的相关概念,并能够灵活运用这些方法解决实际问题。
通过掌握线面交点坐标求解的技巧,读者能够提升空间几何解题的效率和准确性,同时也能够为进一步学习和研究提供一定的参考和指导。
希望本文能够为读者提供一定的启发和帮助,让大家在空间几何学习中取得更好的成绩和收获。
2.正文2.1 空间立体几何概念空间立体几何是几何学中研究三维空间中图形与几何体的一门学科,是平面几何的延伸和拓展。
在空间立体几何中,我们不再局限于研究平面上的图形,而是考虑到三维空间中的物体和结构。
在空间立体几何中,我们研究的主要对象包括点、线、面和体。
点是空间中的一个位置,用于确定空间中的一个具体位置;线是由无数个点按照一定规律连成的直线段;面是由无数个点和线按照一定规律组成的平面图形;而体则是由无数个面组成的一个三维实体。
教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
向量的坐标表示

向量的坐标表示在数学中,向量是一个具有大小和方向的量。
为了方便计算和分析,我们常常使用向量的坐标表示方法。
向量的坐标表示可以帮助我们更直观地理解和操作向量。
一、二维对于二维空间中的向量,我们可以使用横纵坐标来表示。
假设有一个向量v,它在二维平面上的起点为原点(0,0),终点为点P(x,y),那么向量v的坐标表示就是(x,y)。
例如,有一个向量v,它在二维平面上的起点为原点,终点为点P(3,4)。
那么向量v的坐标表示为(3,4)。
二、三维对于三维空间中的向量,我们可以使用三个坐标轴来表示。
假设有一个向量u,它在三维空间中的起点为原点(0,0,0),终点为点Q(x,y,z),那么向量u的坐标表示就是(x,y,z)。
例如,有一个向量u,它在三维空间中的起点为原点,终点为点Q(1,2,3)。
那么向量u的坐标表示为(1,2,3)。
三、向量表示方法的应用向量的坐标表示方法在各个领域都有广泛应用。
以下是一些常见应用:1. 几何学:在几何学中,向量的坐标表示方法被用于描述线段、向量的长度和方向等概念。
通过向量的坐标表示,我们可以更方便地计算几何图形的属性。
2. 物理学:在物理学中,向量的坐标表示方法被用于描述物体的位移、速度、加速度等物理量。
通过向量的坐标表示,我们可以更精确地描述物体在空间中的运动状态。
3. 计算机图形学:在计算机图形学中,向量的坐标表示方法被广泛用于表示图像的位置、方向、形状等信息。
通过向量的坐标表示,我们可以实现计算机生成的三维图形和特效效果。
4. 统计学:在统计学中,向量的坐标表示方法被用于表示多维数据和样本。
通过向量的坐标表示,我们可以进行数据分析、模式识别等统计学方法。
总结:通过向量的坐标表示方法,我们可以更直观地理解和操作向量。
无论是二维向量还是三维向量,坐标表示都为我们提供了便利的计算和分析工具。
向量的坐标表示方法在几何学、物理学、计算机图形学和统计学等领域都有重要的应用。
掌握向量的坐标表示方法对于理解和应用相关概念都非常重要。
立体几何之空间向量法

立体几何之空间向量法【知识要点】1. 利用空间向量证明平行问题的方法(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两条相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两个平面的法向量平行即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线平行:l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(2)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0.(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.2. 利用空间向量证明垂直问题的方法(1)线线垂直:直线与直线的垂直,只要证明两条直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两个平面的法向量垂直即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线垂直:l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3.(3)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.3. (1)夹角计算公式①两条异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|. (2)距离公式①点点距离:点与点的距离,是以这两点为起点和终点的向量的模;②点线距离:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M到直线a 的距离d =|MN |sin 〈MN ,a 〉; ③线线距离:两条平行线间的距离,转化为点线距离;两条异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距离:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN ||cos 〈MN ,n 〉|=||||MN n n ; ⑤线面距离:直线和与它平行的平面间的距离,转化为点面距离;⑥面面距离:两平行平面间的距离,转化为点面距离.4. (1)用空间向量解决立体几何问题的步骤及注意事项①建立空间直角坐标系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量或直线的方向向量;④根据向量运算法则,求出问题的结果.(2)利用空间向量巧解探索性问题空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.一、真题试做1.如图,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A .55B .53C .255D .352.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A-B1E-A1的大小为30°,求AB的长.5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.二、热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.变式训练1如图,已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC ,D,E,F分别为B1A,C1C,BC的中点.求证:=90°,且AB=AA(1)DE∥平面ABC;(2)B1F⊥平面AEF.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.变式训练2如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若P A=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求P A的长.热点三利用空间向量求角和距离【例3】如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.B1所成角的余弦值;(1)求异面直线AC与A(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.变式训练3 已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的 高.热点四 用向量法解决探索性问题【例4】如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.变式训练4 如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值; (3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45若存在,求出CQ 的值;若不存在,请说明理由.三、思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.【典型例题】如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1 图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.四、练习巩固 1.已知AB =(1,5,-2),BC =(3,1,z ),若,AB BC BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A .337,-157,4B .407,-157,4C .4072,4D .4,407,-15 2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A .26B .36C .13D .664.在四面体PABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.7.在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.。
高中数学理科基础知识讲解《87空间几何中的向量方法》教学课件

×
√
√
×
×
×
--
考点自诊
2.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN= ,则MN与平面BB1C1C的位置关系是( )A.斜交 B.平行C.垂直 D.MN在平面BB1C1C内
B
--
考点自诊
3.在正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成角的正弦值为( )
[0,π]
--
知识梳理
4.利用空间向量求距离(1)点到平面的距离 如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为(2)线面距、面面距均可转化为点面距进行求解.
--
知识梳理
--
知识梳理
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)直线的方向向量是唯一确定的. ( )(2)平面的单位法向量是唯一确定的. ( )(3)若两条直线的方向向量不平行,则这两条直线不平行. ( )(4)若空间向量a垂直于平面α,则a所在直线与平面α垂直. ( )(5)两条直线的方向向量的夹角就是这两条直线所成的角. ( )(6)已知向量m,n分别是直线l的方向向量和平面α的法向量,若cos <m,n>= ,则直线l与平面α所成的角为120°. ( )(7)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为45°. ( )
|cos φ|
|cos φ|
--
知识梳理
(3)二面角①范围:二面角的取值范围是 . ②向量求法:若AB,CD分别是二面角α-l-β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量 的夹角(如图①).设n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则图②中向量n1与n2的夹角的补角的大小就是二面角的平面角的大小;而图③中向量n1与n2的夹角的大小就是二面角的平面角的大小.
空间向量几何知识点总结

空间向量几何知识点总结1. 空间向量的定义与表示空间向量是指具有大小和方向的量,通常用有向线段来表示。
在三维空间中,一个向量可以表示为\[ \mathbf{a} = (x, y, z) \],其中(x, y, z)称为向量的坐标,表示向量的末端在三维坐标系中的位置。
向量的表示还可以用分量表示法和向量的坐标表示法。
在分量表示法下,一个向量可以表示为\[ \mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \],其中\( \mathbf{i},\mathbf{j}, \mathbf{k} \)分别是三维空间中的单位向量。
这样,一般来说,一个向量的分量有蓝量、红量、绿量等三个分量构成。
2. 空间向量的运算空间向量有加法、数量乘法和数量除法的运算。
加法:设有两个向量\[ \mathbf{a} = (x_1, y_1, z_1) \],\[ \mathbf{b} = (x_2, y_2, z_2) \],则这两个向量的和为\[ \mathbf{a} + \mathbf{b} = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \]。
数量乘法:设有一个向量\[ \mathbf{a} = (x, y, z) \]和一个实数\( k \),则数量乘积为\[ k\mathbf{a} = (kx, ky, kz) \]。
数量除法:设有一个向量\[ \mathbf{a} = (x, y, z) \]和一个实数\( k \),\( k \ne 0 \),则数量除积为\[ \frac{1}{k}\mathbf{a} = \left( \frac{x}{k}, \frac{y}{k}, \frac{z}{k} \right) \]。
3. 空间向量的性质空间向量有以下几个重要的性质:(1) 零向量:零向量的坐标为(0, 0, 0),它是唯一的。
对任意一个向量\( \mathbf{a} = (x, y, z) \)有\[ \mathbf{a} + \mathbf{0} = \mathbf{a} \]。