必修5第二章《数列》全章教案
人教版高中必修5第二章数列教学设计

人教版高中必修5第二章数列教学设计教学目标1.理解数列的概念及基本特征,能够正确地用公式计算数列项;2.掌握等差数列和等比数列的求和公式,并能够运用于实际问题的解决;3.培养学生对数学的兴趣和思维能力,提高其数学应用能力和解决问题的能力。
教学重难点1.理解数列的概念及基本特征,掌握常见数列的性质,展现数列的美妙之处;2.掌握等差数列和等比数列的求和公式,能够将问题转化成数列的求和问题。
教学内容及教学步骤导入环节引导学生通过问题引入数列的概念。
示范问题:如果按照1,3,5,7,…的规律一直往下走,你能得出第n 项是什么吗?通过这个问题,让学生明白数列的概念,探究数列的基本性质,引导学生去思考和猜测数列的特征。
讲解环节通过数列的定义和相关例题,让学生掌握数列的概念及基本特征。
数列的定义数列是按照一定规律排列的一列数,数列中每一个数称为该数列的项。
数列的分类常规数列:$a_1, a_2, a_3, …, a_n $特殊数列:•等差数列:a1,a2,a3,...,a n,满足a n+1=a n+d;•等比数列:a1,a2,a3,...,a n,满足a n+1=a n q。
常见数列的性质•等差数列的前n项和:$S_n = \\frac{n}{2}(a_1 + a_n)$;•等比数列的前n项和:$S_n = \\frac{a_1(1-q^n)}{1-q}$。
实践环节练习1观察以下数列,判断其为等差数列还是等比数列并求出公差或公比:1.1,2,4,8,16,32,64,1282.-1,3,7,11,15,19,233.2,-4,8,-16,……答案:1.等比数列,公比为 2;2.等差数列,公差为 4;3.等比数列,公比为 -2。
练习2计算下列数列的前n项和:1.1,2,3,4, (99)2.-1,2,-3,4,-5 (201)3.1,-2,3,-4,…,-99。
答案:1.$S_n = \\frac{n(n+1)}{2}$;2.$S_n =\\frac{n}{2}(-1+(-1)^n(2n+1))$;3.$S_n = (-1)^{n+1}\\frac{n}{2}$。
人教版高中必修5第二章数列课程设计 (2)

人教版高中必修5第二章数列课程设计一、课程背景本课程是人教版高中数学必修5第二章数列课程设计,适用于高一学生。
数列是高中数学的重要内容,通过本章的学习,能够加深学生对数列的认识和理解,掌握数列的概念、性质和应用。
同时,数列也是高考数学的热门考点之一,学好数列对于高考取得好成绩非常重要。
二、教学目标1.掌握数列的概念及其分类;2.掌握数列的通项公式、通项公式的和式及其应用;3.理解等差数列和等比数列的性质及其应用;4.培养学生解决实际问题的数学思维能力。
三、教学内容及进度安排第一课时:数列的概念•数列的定义;•数列的分类;•数列的通项公式。
第二课时:数列的通项公式•等差数列的通项公式;•常数项等差数列的通项公式;•等比数列的通项公式。
第三课时:数列的和式•等差数列的和式;•常数项等差数列的和式;•等比数列的和式。
第四课时:等差数列•等差数列的性质;•等差数列的应用。
第五课时:等比数列•等比数列的性质;•等比数列的应用。
第六至七课时:热身练习与综合应用•课堂练习;•综合应用。
四、教学方法本课程采用“让学生自己去发现、自己去试错”的教学方法,在教师的引导下,让学生通过自己的思考和探究,体会数学的美妙和思维的乐趣。
在课程设计中,注重培养学生的解决实际问题的能力,提高学生的实际运用能力。
同时,体现数学思维的性质和思想方法,培养学生的创造性思维和批判性思维。
五、教学评价通过对学生的课堂发言、课堂作业和课后作业的评价,反映学生在数列概念、性质和应用方面的掌握情况和思维能力的提高情况。
同时,通过对学生在实际问题中的解决能力、创造能力、批判能力和实际运用能力的评价,反映学生在数学思维方面的提高情况。
六、教学资源本课程主要使用以下教学资源:1.人教版高中数学必修5教材;2.PPT资源;3.电子版教学资料。
七、课程总结本课程通过对数列概念、性质和应用方面的教学,旨在帮助学生掌握数列的相关知识,提高实际问题的解决能力和数学思维能力,为高考数学的顺利通过打下基础。
高二数学人教版必修5第二章数列教案

第二章数列2.1数列的概念与简单表示法教学目标及核心素养:1.理解数列及其有关概念,了解数列与函数间关系;2.了解数列通项公式,并会用通项公式写出数列的任意一项;3.对比简单的数列,会根据其前几项写出它的通项公式.重点:数列的概念,通项公式及应用.难点:根据一些数列的前几项抽象归纳数列的通项公式.教学过程:一.新课导入得数为:18446744073709551615二.新课讲授传说古希腊毕达哥拉斯学派数学家研究的问题:三角形中的小正方形1 3正方形中的小正方形......1 4 9 16提问:这些小正方形有什么规律吗? 数列的基本概念:数列:按一定顺序排列着的一列数; 数列的项:数列中每一个数; 首项:排在第一位的数; 第2项:排在第2位的数; 第n 项:排在第n 位的数. 问题探究一 数列的概念数列的一般形式可以写为{}n n a a a a a 简记为,...,,...,,321(右下标n 表示项的位置序号)。
数列的分类: 1.按项的个数分:项数有限的数列叫做有穷数列; 项数无限的数列叫做无穷数列.2. 按数列的“项间的大小比较”(随序号变化的情况)来分: (1)递增数列从第2项起,每一项都大于它的前一项 (2)递减数列从第2项起,每一项都小于它的前一项 (3)常数列 各项都相等 (4)摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项 你能按照上面的标准对下列数列进行分类吗? ⑴全体自然数构成数列⇒无穷数列,递增数列 (2)1996~2002年某市普通高中生人数(单位:万人) 82,93,105,119,129,130,132⇒有穷数列,递增数列 ⑶无穷多个3构成数列3,3,3,3,...⇒无穷数列,常数列⑷目前通用的人民币面额从大到小的顺序构成数列(单位:元)100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01⇒有穷数列,递减数列(5)...(-1),(-1),(-1),(-1)4321构成的数列⇒无穷数列,常数列 问题探究二 数列的图像数列2,5,8,11,14与数列2,5,8,11,14...有何不同?数列2,5,8,11,14与数列2,5,8,11,14...中序号n 与n a 之间有怎样的对应关系呢? 作图可知数列表示在坐标轴中是一些孤立的点 问题探究三:数列的通项公式如果数列{an}的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.我们可以根据数列的通项公式写出数列.思考:通项公式可以看成数列的函数解析式.利用一个数列的通项公式,你能确定这个数列哪些方面的性质?三. 例题讲解例1 写出下面数列的一个通项公式,使它的前4项分别是下列各数:2,0,2,0;(2);41,-31,211,- (1) 解:(1)这个数列的前4项的绝对值都是序号的倒数,并且奇数项为正,偶数项为负,所以,它的一个通项公式为:na n n 1)1(+-=.(2) 这个数列的前4项构成一个摆动数列,奇数项是2,偶数项是0,所以它的一个通项公式为:1)1(1+-=+n n a .问题:根据数列的前若干项写出来的通项公式是唯一的吗?请举例说明.如(1)可以写成,...)3,2,1,12(1,...)3,2,1,2(1=-====-=m m n n a m m n n a n n 或与函数一样,数列也可以用图象、列表等方法来表示. 数列的图象是一系列孤立的点.例如,全体正偶数按从小到大的顺序构成数列...2...6,2,4,2n ,这个数列还可以表示在下表和下图中例2 下图中的三角形称为希尔宾斯基(Sierpinski )三角形.在下图4个三角形中,着色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图象.如图,这4个三角形中着色三角形的个数依次为1,3,9,27 .则所求数列的前4项都是3的指数幂,指数为序号减1 .所以,这个数列的一个通项公式是:13-=n n a数列例3:一个数列{n a }中,n n n a a a a a -=+==+1212,6,3,那么这个数列的第5项为( )A .6B .-3C .-12D .-6解:由递推关系式可求得a 3=a 2-a 1=6-3=3,a 4=a 3-a 2=3-6=-3,∴a 5=a 4-a 3=-3-3=-6. 答案:D 四.课堂练习1数列的前5项分别是以下各数,写出各数列的一个通项公式:)(121a :;91,71,51,311, (1)n +∈-=Z n n 解)(2)1(:;521,-421,321,-221,121-n nn Z n n a ∈-=⨯⨯⨯⨯⨯解)(21:;41,42,21,22(3)1,21+-∈=Z n a n n 解2已知数列{a n },a 1=1,以后各项由a n =a n -1+1nn -1(n ≥2)给出:(1)写出数列{a n }的前5项; (2)求数列{a n }的通项公式. 解:(1)a 1=1;a 2=a 1+12×1=32;a 3=a 2+13×2=53;a 4=a 3+14×3=74;a 5=a 4+15×4=95. (2)由a n =a n -1+1nn -1得a n -a n -1=1nn -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1 =1121231...)2)(1(1)1(1+⨯+⨯+--+-n n n n=(1n -1-1n )+(1n -2-1n -1)+…+(12-13)+(1-12)+1 =-1n +1+1=2-1n =2n -1n(n ∈N *).3已知数列{n a }满足1)(,1211-==-n n a a a (n >1)写出它的前5项. 解:由题意可知.101,1)1(1,101,011,122452234222322121-=-=--=-=-=-==-===a a a a a a a a aP31习题五.回顾总结1、数列的有关概念;2、数列的通项公式;3、数列的实质;4、本节课的能力要求是;(1) 会由通项公式求数列的任一项;(2)会用观察法由数列的前几项求数列的通项公六.作业布置P33 2,3,4七.课堂反思2.2 等差数列教学目标及核心素养:1.通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能解决相应的问题;体会等差数列与一次函数的关系;2.让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单问题,进行等差数列通项公式应用实践操作并在操作过程中,通过类比函数概念,性质,表达式得到对等差数列相应问题的研究;3.培养学生的观察,归纳能力,培养学生应用意识.重点:理解等差数列的概念及性质,探索并掌握等差数列的通项公式;会用公式解决一些简单问题;体会等差数列与一次函数的关系.难点:概括通项公式推导过程中体现出的数学思想方法.教学过程:一. 新课引入观察:这些数列有什么共同特点?(1)第23到第28届奥运会举行的年份依次为1984,1988,1992,1996,2000,2004(2)某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56(3)3,0,-3,-6,-9,-12,……(4)2,4,6,8,10(5)1,1,1,1,1,1……从第二项起,第一项与前一项的差都是同一个常数.二. 新课讲授问题探究一a},从第2项起每一项与它的前一项的差等于同一一般地,如果一个数列{n个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差。
最新人教版高中数学必修5第二章《数列的概念与简单表示法》教案(1)

《数列的概念与简单表示法》教案(1)
教学目标
1.理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.
教学重点难点
1.重点:数列及其有关概念,通项公式及其应用;
2.难点:根据一些数列的前几项抽象、归纳数列的通项公式.
教法与学法
1.教法选择:“设置问题情境,探索辨析,归纳应用,延伸拓展”;
2.学法指导:类比、联想、猜想、求证.
教学过程
一、设置情境,激发学生探索的兴趣
三、思维拓展,课堂交流
四、归纳小结,课堂延展
1.教材地位分析
根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.
作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端.教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).
2.学生现实状况分析
学生目前已经学习了函数的知识,本课时的内容是数列的定义,通项公式及运用;
本课是在学习映射、函数知识基础上研究数列.。
高中数学必修五第二章数列教案

科组长签字:数学必修5知识点第二章 数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列.6、递减数列:从第2项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.13、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-. 14、通项公式的变形: ()n m a a n m d =+-;11n a a d n -=-;n m a a d n m-=-.15、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.16、等差数列的前n 项和的公式:(1)()12n n n a a S +=;(2)()112n n n S na d -=+.17、等差数列{}n a 的前n 项和n S 和n a 的关系:(1)等差数列{}n a 的前n 项和n S 与n a 有如下关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩(2)若已知等差数列{}n a 的前n 项和n S 求通项公式n a ,要分两步进行: ①先求2n ≥时,1n n n a S S -=-;②再令1n =求得1a .若11a S =,则n a 即为所求;若11a S ≠,则11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩,即必须表示为分段函数形式.18、等差数列的前n 项和n S 的性质: (1)项数(下标)的“等和”性质:()11()22n m n m n n a a n a a S -+++==(2)项的个数的“奇偶”性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S a S a +=奇偶.②若项数为()*21n n +∈N ,则()21121n n S n a ++=+,且S偶-S奇1n a +=-,S偶: S奇:1n n =+(3)“片段和”性质:等差数列{}n a 中,公差为d ,前k 项的和为k S ,则k S 、2k k S -、32k k S -,……,(1)m k m k S --,……构成公差为2k d 的等差数列.19、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.20、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.21、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.22、通项公式的变形: n mn m a a q-=;11n n a qa -=;n mn ma qa -=.23、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅. 24、等比数列{}n a 的前n 项和的公式:()()()11111111n n nna q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩.25、等比数列的前n 项和的性质: (1)项的个数的“奇偶”性质: ①若项数为()*2n n ∈N ,则S q S =偶奇②若项数为()*21n n +∈N ,则S奇-S偶1221n a a q++=+(1q ≠±)(2)“片段和”性质:等比数列{}n a 中,公比为q ,前k 项的和为(0)k k S S ≠,则k S 、2k k S -、32k k S -,……,(1)m k m k S --,……构成公比为kq 的等比数列.(3)“相关和”性质:nn m n m S S q S +=+⋅ 26、数列的通项公式的求法(1)观察法(2)代换法(3)迭代法(4)累加法(5)累乘法(6)待定系数法 27、数列的前n 项和的求法(1)公式法(2)倒序相加法(3)裂项相消法(4)错位相减法(5)分段求和法数列单元测试题(满分100分 90分钟)姓名_______________ 一. 选择题:(每题4分,共48分) 1.在数列{}a n 中,311=a,)2(21)1(≥=--n aan nn,则=a 5( )A. 316-B.316 C.38-D.382.在等差数列{}a n中,=++aaa 74139 ,=++a a a 85233 则=++a a a 963( )A. 30B. 27C. 24D. 213.设{}a n 是递增等差数列,前三项的和是12,前三项的积为48,则它的首项是( ) A. 1 B. 2 C. 4 D. 64.在等差数列{}a n 中,若8171593=+++a a a a ,则=a 11( )A.1B.-1C.2D.-25. 等差数列前10项和为100,前100项和为10。
人教版高中必修5第二章数列课程设计

人教版高中必修5第二章数列课程设计一、课程背景高中数学中,数列是一个很重要的内容。
数列的概念和性质是高中数学的基础,并且在初等数学、微积分等更高级的数学学科中也会涉及到数列的内容。
因此,对于高中学生,这是一门十分重要的课程。
二、课程目标本课程设计旨在培养学生对数列的概念和性质的理解,能够运用数列的知识解决实际问题。
具体目标如下:1.理解数列的概念,了解常见数列的类型及性质;2.掌握数列的常用运算方法,并能熟练地运用它们;3.能够解决数列的递推公式和通项公式;4.能够应用数列的知识解决实际问题;5.培养学生的数学思维能力和解决问题的能力。
三、教学内容和方法1. 教学内容本课程的教学内容主要包括以下几个方面:1.数列的概念;2.常见数列的类型和性质;3.数列的通项公式和递推公式;4.数列的应用。
2. 教学方法本课程采用以下教学方法:1.讲授法:讲解数列概念和性质,引导学生掌握数列的基本特征和常用方法;2.练习法:通过练习,巩固数列的基本知识和方法;3.分组讨论:通过分组讨论,培养学生的团队合作能力,提高学生的解决问题的能力;4.展示法:学生上台做数列的应用题展示,培养学生的表达能力和自信心。
四、教学流程第一节:数列的概念1.引入数列的定义;2.讲解数列的概念和性质;3.练习题。
第二节:常见数列的类型和性质1.引入常见数列类型和性质;2.讲解各种数列的定义和特点;3.练习题。
第三节:数列的通项公式和递推公式1.引入数列的通项公式和递推公式;2.讲解通项公式和递推公式的定义和特点;3.练习题。
第四节:数列的应用1.引入数列的应用;2.分组讨论数列的实际应用;3.展示法呈现数列的应用;4.总结讨论。
五、教学评估1.教师根据学生的课堂表现(包括提问回答、练习情况、分组讨论等)进行定量和定性评估;2.学生根据自我感觉完成学习笔记并提交评估表。
六、教学参考人教版高中数学必修5,第二章数列。
高中数学教案:必修5第二章教学设计(新人教A版)

数学5 第二章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。
在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n项和公式,体会等差数列的前n项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n项和公式,体会等比数列的前n项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应的问题。
二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。
编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、教材在内容设计上突出了一些重要的数学思想方法。
如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议本章教学时间约12课时2.1数列的概念与简单表示法约2课时2.2等差数列约2课时2.3等差数列的前n项和约2课时2.4等比数列约2课时2.5等比数列的前n项和约2课时问题与小结约2课时四、评价建议1、重视对学生数学学习过程的评价关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。
高中数学必修五第二章数列教案设计

科组长签字:数学必修5知识点第二章 数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列.6、递减数列:从第2项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.14、通项公式的变形: ()n m a a n m d =+-;11n a a d n -=-;n ma a d n m-=-.15、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.16、等差数列的前n 项和的公式:(1)()12n n n a a S +=;(2)()112n n n S na d -=+. 17、等差数列{}n a 的前n 项和n S 和n a 的关系:(1)等差数列{}n a 的前n 项和n S 与n a 有如下关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩(2)若已知等差数列{}n a 的前n 项和nS求通项公式n a ,要分两步进行:①先求2n ≥时,1n n n a S S -=-;②再令1n =求得1a .若11a S =,则n a 即为所求;若11a S ≠,则11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,即必须表示为分段函数形式.18、等差数列的前n 项和n S 的性质: (1)项数(下标)的“等和”性质:()11()22n m n m n n a a n a a S -+++== (2)项的个数的“奇偶”性质: ①若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶. ②若项数为()*21n n +∈N ,则()21121n n S n a ++=+,且S偶-S 奇1n a +=-,S 偶: S奇:1n n =+(3)“片段和”性质:等差数列{}n a 中,公差为d ,前k 项的和为k S ,则k S 、2k k S -、32k k S -,……,(1)mk m k S --,……构成公差为2k d 的等差数列.19、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.20、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.21、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.22、通项公式的变形: n m n m a a q -=;11n na qa -=;n m n m a q a -=.23、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.24、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.25、等比数列的前n 项和的性质: (1)项的个数的“奇偶”性质: ①若项数为()*2n n ∈N ,则S q S =偶奇②若项数为()*21n n +∈N ,则S 奇-S 偶1221n a a q++=+(1q ≠±)(2)“片段和”性质:等比数列{}n a 中,公比为q ,前k 项的和为(0)k k S S ≠,则k S 、2k k S -、32k k S -,……,(1)mk m k S --,……构成公比为k q 的等比数列.(3)“相关和”性质:nn m n m S S q S +=+⋅ 26、数列的通项公式的求法(1)观察法(2)代换法(3)迭代法(4)累加法(5)累乘法(6)待定系数法 27、数列的前n 项和的求法(1)公式法(2)倒序相加法(3)裂项相消法(4)错位相减法(5)分段求和法数列单元测试题(满分100分 90分钟)姓名_______________ 一. 选择题:(每题4分,共48分) 1.在数列{}a n中,311=a,)2(21)1(≥=--n a a n nn ,则=a 5( )A. 316-B.316C.38-D.382.在等差数列{}a n中,=++aa a 74139 ,=++a a a 85233 则=++a a a 963( )A. 30B. 27C. 24D. 21 3.设{}a n是递增等差数列,前三项的和是12,前三项的积为48,则它的首项是( )A. 1B. 2C. 4D. 6 4.在等差数列{}a n中,若8171593=+++a a a a ,则=a11( )A.1B.-1C.2D.-25. 等差数列前10项和为100,前100项和为10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §2.1数列的概念与简单表示法授课类型:新授课(第1课时)●教学目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
●教学重点数列及其有关概念,通项公式及其应用 ●教学难点根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 151413121↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:na n 1=来表示其对应关系即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos|π+=n a n .⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。
反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4)…,f(n),… 6.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。
是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列 2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。
递减数列:从第2项起,每一项都不大于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列 观察:课本P33的六组数列,哪些是递增数列,递减数列,常数数列,摆动数列? [范例讲解]课本P34-35例1 Ⅲ.课堂练习课本P36[练习]3、4、5[补充练习]:根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,……; (2)32,154,356,638,9910, ……;(3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……; (5) 2, -6, 12, -20, 30, -42,……. 解:(1) n a =2n +1; (2) n a =)12)(12(2+-n n n; (3) n a =2)1(1n-+;(4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……, ∴n a =n +2)1(1n-+;(5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……, ∴ n a =(-1)1+n n(n +1)Ⅳ.课时小结本节课学习了以下内容:数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。
Ⅴ.课后作业课本P38习题2.1A组的第1题●板书设计●授后记课题: §2.1数列的概念与简单表示法授课类型:新授课(第2课时)●教学目标知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n项和与a的关系n过程与方法:经历数列知识的感受及理解运用的过程。
情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
●教学重点根据数列的递推公式写出数列的前几项●教学难点理解递推公式与通项公式的关系●教学过程Ⅰ.课题导入[复习引入]数列及有关定义Ⅱ.讲授新课数列的表示方法1、通项公式法如果数列{}a的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数n列的通项公式。
如数列的通项公式为;的通项公式为;的通项公式为;2、图象法启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势. 3、 递推公式法知识都来源于实践,最后还要应用于生活用其来解决一些实际问题. 观察钢管堆放示意图,寻其规律,建立数学模型. 模型一:自上而下:第1层钢管数为4;即:1↔4=1+3 第2层钢管数为5;即:2↔5=2+3 第3层钢管数为6;即:3↔6=3+3 第4层钢管数为7;即:4↔7=4+3 第5层钢管数为8;即:5↔8=5+3 第6层钢管数为9;即:6↔9=6+3 第7层钢管数为10;即:7↔10=7+3若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7) 运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。
让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。
即41=a ;114512+=+==a a ;115623+=+==a a 依此类推:11+=-n n a a (2≤n ≤7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。
定义:递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 递推公式也是给出数列的一种方法。
如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为:)83(,5,32121≤≤+===--n a a a a a n n n数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用表示第一项,……,用表示第项,依次写出成为4、列表法.简记为.[范例讲解]例3 设数列{}n a 满足11111(1).n n a a n a -=⎧⎪⎨=+>⎪⎩写出这个数列的前五项。
解:分析:题中已给出{}n a 的第1项即11=a ,递推公式:111-+=n n a a解:据题意可知:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a[补充例题]例4已知21=a ,n n a a 21=+ 写出前5项,并猜想n a .法一:21=a 22222=⨯=a 323222=⨯=a ,观察可得 nn a 2= 法二:由n n a a 21=+ ∴12-=n n a a 即21=-n n a a∴112322112------=⨯⨯⨯⨯n n n n n n n a a a a a a a a∴ nn n a a 2211=⋅=-Ⅲ.课堂练习 课本P36练习2 [补充练习]1.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式 (1) 1a =0, 1+n a =n a +(2n -1) (n ∈N); (2) 1a =1, 1+n a =22+n n a a (n ∈N);(3) 1a =3, 1+n a =3n a -2 (n ∈N).解:(1) 1a =0, 2a =1, 3a =4, 4a =9, 5a =16, ∴ n a =(n -1)2; (2) 1a =1,2a =32,3a =4221=, 4a =52, 5a =6231=, ∴ n a =12+n ;(3) 1a =3=1+203⨯, 2a =7=1+213⨯, 3a =19=1+223⨯,4a =55=1+233⨯, 5a =163=1+243⨯, ∴ n a =1+2·31-n ;Ⅳ.课时小结本节课学习了以下内容:1.递推公式及其用法;2.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n 项)之间的关系.Ⅴ.课后作业习题2。
1A 组的第4、6题 ●板书设计 ●授后记课题: §2.2等差数列授课类型:新授课(第1课时)●教学目标知识与技能:了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项过程与方法:经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。