人教版七年级上册单项式与多项式测试卷
人教版七年级数学上册第二单元测试卷(三套)

整式的加减单元测试卷一.选择题(每小题3分,共24分)1. 单项式233xy z π-的系数和次数分别是( )A .-3,5B .-1,6C .-3π,6D .-3,7 2.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A .3个B .4个C .5个D .6个 3.下面计算正确的是( ) A .2233x x -= B .235325a a a += C .33x x += D .10.2504ab ab -+=4.多项式2112x x ---的各项分别是( ) A .21,,12x x - B .21,,12x x --- C .21,,12x x D .21,,12x x --5.下列去括号正确的是( )A .()5252+-=--x xB .()222421+-=+-x x C .()n m n m +=-323231D . x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( )A .4和4xB .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,那么-3()m n -的值是 ( ) A .-53 B .35 C .53 D .1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分) 9.任写两个与b a 221-是同类项的单项式: ; . 10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _. 11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元. 13.已知单项式32b a m与-3214-n b a 的和是单项式,那么m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+- (2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab ba b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.19.(7分)某地区的手机收费有两种方式,用户可任选其一: A .月租费 20元,0.25元/分; B .月租费 25元,0.20元/分.(1)某用户某月打手机x 小时,请你写出两种方式下该用户应交付的费用; (2)若某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算?20.(9分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留 ).人教版七年级上数学第二单元测试题 一 选择题(3×10)1. 下列各组量中,互为相反意义的量是( )A 、收入200元与支出20元B 、上升10米与下降7米C 、超过0.05毫米与不足0.03毫米D 、增大2升与减少2升2.为迎接即将开幕的广州亚运会,亚组委共投入了2198000000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元B 6102198⨯元C 910198.2⨯元D 1010198.2⨯元 3. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分 4.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数 5.若b<0,则a+b,a,a-b 的大小关系为( ) A 、a+b>a>a-bB 、a-b>a>a+bC 、a>a-b>a+bD 、a-b>a+b>a6.如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0B 、1C 、-1D 、1或-17.已知b a m225-和n b a -347是同类项,则2m - n 的值是( ) A 、6 B 、4 C 、3 D 、28.当2=x 时, 整式13++qx px 的值等于2002,那么当2-=x 时,整式13++qx px 的值为( )A 、2001B 、-2001C 、2000D 、-2000 9.已知有理数x 的近似值是5.4,则x 的取值范围是( )A. 5.35<x<5.44B.5.35<x ≤5.44C.5.35≤x<5.45D.5.35≤x ≤5.45 10.x 2 +ax-2y+7- (bx 2 -2x+9y-1)的值与x 的取值无关,则a+b 的值为( )A.-1;B.1;C.-2D.2 二 填空题(4×10)1、-14的倒数是____,-3的相反数是_____,绝对值大于2而小于4的整数有 ,2、某地一周内每天最高与最低气温如下表,则温差最大的一天是星期_______.3、20082008)5.0()2(-⨯-= ,4、已知:++2)2(a │5-b │=0, 则=-b a5、若x P +4x 3-qx 2-2x +5是关于x 的五次四项式,则q -p= 。
七年级数学上册单项式与多项式达标测试题

七年级数学上册单项式与多项式达标测试题(附答案)
1、说出下列单项式的系数和次数
① -5 x3 ② xy3
③ -a ④ - x2
2、指出下列多项式每一项的系数和次数,分别是几次几项式
① 3a-2b+1 ② 2x2-3x+5
③ 2a-ab3 ④ 1-x+ x2
3、已知多项式 - x2y+3x2+2x2y2- ,回答下列问题:
(1) 这个多项式有几项
(2) 这个多项式的最高次项是哪一项写出它的次数和系数;
(3) 这个多项式有常数项吗如果有,是哪一项
数学学科七年级上册第六章第一节单项式与多项式达标测试题B卷
1、下列代数式中,( )是单项式,( )是多项式,( )是整式。
① -x ②③ 2ab ④ 2a+b ⑤⑥ -
2、指出下列多项式每一项的系数和次数
① x5- x2y-2y2 ② 5a2- ab+7b2
③4x2-7x+5 ④、 -2xy2+4x2y+3x2
3、下列多项式分别是几次几项式
①-x2y-2x2y ② x2-xy-2xy2
③ a3-3a2b+ab3 ④ -4m2-3m
数学学科七年级上册第六章第一节单项式与多项式达标测试题C卷1、下列代数式中,哪些是整式
-3x , 5xy + x , x2-7, , x+ .
2、写出下列单项式的系数和次数
① -x2y ② ab
③④ -
3、写出下列多项式是几次几项式
①- ab-5a2-7b2 ② - x2y+3x2+2xy2-
③ 3x2-2xy2+4x2y ④ a3-3a2b+ab3。
人教版数学七年级上册 第2章 2.1---2.2基础测试题含答案

2.1整式一.选择题1.多项式3xy﹣2xy2+1的次数及最高次项的系数分别是()A.2,﹣3B.2,3C.3,2D.3,﹣2 2.单项式﹣4πab2的次数是()A.﹣4B.2C.3D.4 3.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1C.6,2D.﹣6,2 4.下列说法,正确的是()A.23x2是五次单项式B.2πR2的系数是2C.0是单项式D.a3b的系数是05.下列关于多项式x2+3x﹣2的说法,其中错误的是()A.是二次三项式B.最高次项的系数是1C.一次项系数是3D.常数项是26.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个7.下列说法正确的是()A.多项式ab+c是二次三项式B.5不是单项式C.单项式﹣x3y2z的系数是﹣1,次数是6D.多项式2x2+3y的次数是38.在式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式的个数是()A.5个B.4个C.3个D.2个9.下列说法正确的是()A.﹣1不是单项式B.2πr3+的次数是3C.的次数是3D.的系数是10.下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是1,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为二.填空题11.多项式﹣x3y2+xy﹣2的常数项是,它的项数是,它的次数是.12.单项式﹣x2y的系数是;多项式2x2y﹣xy的次数是.13.如果一个单项式的系数和次数分别为m、n,那么2mn=.14.下列代数式:﹣6x2y、、﹣、a、、、﹣x2+2x﹣1中,单项式有个.15.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.三.解答题16.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.17.已知多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:多项式3xy﹣2xy2+1的次数及最高次项的系数分别是:3,﹣2.故选:D.2.【解答】解:单项式﹣4πab2的次数是3.故选:C.3.【解答】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.4.【解答】解:A、23x2是二次单项式,故A选项错误;B、2πR2的系数是2π,故B选项错误;C、0是单项式,故C选项正确;D、a3b的系数是1,故D选项错误.故选:C.5.【解答】解:A、多项式x2+3x﹣2是二次三项式,正确,不合题意;B、多项式x2+3x﹣2的最高次项的系数是1,正确,不合题意;C、多项式x2+3x﹣2的一次项系数是3,正确,不合题意;D、多项式x2+3x﹣2的常数项是﹣2,原式错误,符合题意.故选:D.6.【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.7.【解答】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、单项式﹣x3y2z的系数是﹣1,次数是6,故此选项正确;D、多项式2x2+3y的次数是2,故此选项错误.故选:C.8.【解答】解:式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式有:0,﹣2a,﹣3x2y3,共3个.故选:C.9.【解答】解:A、﹣1是单项式,错误;B、2πr3+的次数是4,错误;C、的次数是3,正确;D、﹣的系数是﹣,错误;故选:C.10.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,故这个选项错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,故这个选项错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,故这个选项错误;D、单项式﹣的次数是2,系数为﹣,符合单项式系数、次数的定义,故这个选项正确;故选:D.二.填空题(共5小题)11.【解答】解:多项式﹣x3y2+xy﹣2的常数项是:﹣2,它的项数是:3,它的次数是:5.故答案为:﹣2,3,5.12.【解答】解:单项式﹣x2y的系数是:﹣;多项式2x2y﹣xy的次数是:3.故答案为:﹣,3.13.【解答】解:单项式的系数是﹣,次数是4,则m=﹣,n=4,所以:2mn=2×(﹣)×4=﹣,故答案为:﹣.14.【解答】解:根据单项式的定义,可以得到:﹣6x2y、、﹣、a是单项式,共4个.故答案为:4.15.【解答】解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.三.解答题(共4小题)16.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)m+m n﹣(cd﹣n)2019=0+9﹣(1﹣2)2019=9﹣(﹣1)=10.17.【解答】解:(1)∵多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴,解得a=﹣7,b=2;(2)b2﹣3b+4b﹣5=,把b=2代入得:==2+2﹣5=﹣1.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列运算正确的是()A.3a2+a3=a5B.3a2b﹣5ab2=﹣2abC.3ab﹣ab=2D.3a+2a=5a2.若﹣4x2y和23x m y n是同类项,则m,n的值分别是()A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=0 3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.15.下列计算中,正确的是()A.a3﹣a2=a B.5a﹣7a=﹣2C.2a3+3a2=5a5D.a2b﹣ba2=﹣a2b6.下列运算正确的是()A.5a2﹣3a2=2B.x2+x2=x4C.3a+2b=5ab D.7ab﹣6ba=ab 7.下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a+(b﹣c﹣d)=a﹣b+c+dC.a﹣(b﹣c﹣d)=a﹣b+c+dD.2a﹣[2a﹣(﹣2a)]=08.若单项式与﹣y2n x3的和仍是单项式,则(mn)2021的值为()A.﹣1B.C.D.19.已知与3xy4+b的和是单项式,那么a、b的值分别是()A.B.C.D.10.已知2x2y3a与﹣4x2a y1+b是同类项,则b a的值为()A.2B.﹣2C.1D.﹣1二.填空题11.若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=.12.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.单项式x﹣|a﹣1|y与是同类项,则b a=.15.某同学在做计算A+B时,误将“A+B”看成了“A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则A+B的正确答案为.三.解答题16.合并同类项:5m+2n﹣m﹣3n.17.化简(1)5xy﹣2y2﹣3xy﹣4y2.(2)2(2a﹣3b)﹣3(2b﹣3a).18.多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项.(1)试确定m和n的值;(2)求3A﹣2B.19.小红做一道题:已知两个多项式A,B,其中A=y2+ay﹣1,计算B﹣2A她误将B﹣2A 写成2B﹣A,结果答案是3y2+5ay﹣4y﹣1.(1)求多项式B;(2)若a为常数,要使得B中不含一次项,则a的值为多少?参考答案与试题解析一.选择题1.【解答】解:3a2与a3、3a2b与5ab2都不是同类项,不能合并,故选项A、B错误;3ab﹣ab=2≠2ab,故选项C错误;3a+2a=5a,合并正确.故选:D.2.【解答】解:∵﹣4x2y和23x m y n是同类项,∴m=2,n=1,故选:A.3.【解答】解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.【解答】解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.5.【解答】解:A、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;B、5a﹣7a=﹣2a,故本选项不合题意;C、2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D、,故本选项符合题意.故选:D.6.【解答】解:A、5a2﹣3a2=2a2,故本选项不合题意;B、x2+x2=2x2,故本选项不合题意;C、3a和2b不是同类项,所以不能合并,故本选项不合题意;D、7ab﹣6ba=ab,故本选项符合题意.故选:D.7.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c;B、a+(b﹣c﹣d)=a+b﹣c﹣d;C、a﹣(b﹣c﹣d)=a﹣b+c+d;D、2a﹣[2a﹣(﹣2a)]=2a﹣(2a+2a)=2a﹣2a﹣2a=﹣2a;故选:C.8.【解答】解:依题意得:,解得:,∴(mn)2021=()2021=﹣1.故选:A.9.【解答】解:∵与3xy4+b的和是单项式,∴与3xy4+b是同类项.∴.∴a=2,b=﹣1.故选:B.10.【解答】解:根据题意可得:,解得:,所以b a的值=21=2,故选:A.二.填空题11.【解答】解:∵代数式﹣a m b4和3ab n相加后仍是单项式,∴﹣a m b4和3ab n是同类项.∴m=1,n=4.∴m+n=5.故答案为:5.12.【解答】解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.13.【解答】解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=11=1,故答案为:1.15.【解答】解:∵A﹣B=9x2﹣2x+7,B=x2+3x+2,∴A=x2+3x+2+9x2﹣2x+7,=10x2+x+9,∴A+B=10x2+x+9+x2+3x+2,=11x2+4x+11.故答案为:11x2+4x+11.三.解答题16.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.17.【解答】解:(1)原式=5xy﹣3xy﹣4y2﹣2y2=2xy﹣6y2.(2)原式=4a﹣6b﹣6b+9a=13a﹣12b.18.【解答】解:(1)(x3+mx2+2x﹣8)(3x﹣n)=3x4+3mx3+6x2﹣24x﹣nx3+mnx2+2nx+8n=3x4+(3m﹣n)x3+(6+mn)x2+(2n﹣24)x+8n,∵多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项,∴3m﹣n=0,2n﹣24=0,解得:n=12,m=4;(2)由(1)得:3A﹣2B=3(x3+mx2+2x﹣8)﹣2(3x﹣n)=3(x3+4x2+2x﹣8)﹣2(3x﹣12)=3x3+12x2+6x﹣24﹣6x+24=3x3+12x2.19.【解答】解:(1)∵2B﹣A=3y2+5ay﹣4y﹣1,A=y2+ay﹣1,∴2B=3y2+5ay﹣4y﹣1+y2+ay﹣1=4y2+6ay﹣4y﹣2,∴B=2y2+3ay﹣2y﹣1。
2.1第3课时多项式---同步训练习题2021-2022学年人教版数学七年级上册

2.1 第3课时 多项式命题点 1 多项式的项及整式的识别1.在abc 22,2x 4-1,17c+1d ,a+b 2,m+n m 中,多项式有 ( )A .2个B .3个C .4个D .5个 2.下列式子:x 2+2,1a +4,3ab 27,ab c ,5x ,0中,整式的个数是 ( )A .3B .4C .5D .63.二次三项式2x 2-3x -1的二次项系数、一次项系数、常数项分别是( ) A .2,-3,-1 B .2,3,1C .2,3,-1D .2,-3,14.若多项式x 2+(k -1)x+3中不含有x 的一次项,则k= .5.在-12,xy 23,a ,a π,n m ,12x+13y ,a 2+ab+1b 2中,哪些是单项式?哪些是多项式?哪些是整式?6.一个关于a ,b 的多项式,除常数项为-1外,其余各项的次数都为3,系数都为-1,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.命题点 2 多项式的项数与次数7.多项式x 2+x+18是 ( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式8.下列关于多项式-3a 2b+ab -2的说法中,正确的是( )A .次数是5B .最高次项是-3a 2bC .是二次三项式D .二次项系数是09.若多项式12x |m|-(m -2)x+7是关于x 的二次三项式,则m 的值为( ) A .2 B .-2 C .±2D .310.将多项式3mn 3-4m 2n 2+2-5m 3n 的各项按照m 的指数从大到小的顺序排列为 .11.若关于x 的多项式(m -2)x 3+3x n+1-5x 的次数是2,则m+n= .12.一个关于x 的二次三项式,二次项的系数是-1,一次项的系数和常数项都是2,则这个多项式是 .13.已知单项式-xy 3,5x 4y ,-4y 5,23x 6y 4,3x 2y 2,请你用这些单项式按下列要求解决问题: (1)写出一个五次三项式;(2)所有这些单项式相加可以组成一个多项式,它是几次几项式?14.已知关于x ,y 的多项式-35x 2y m+1+12x 2y 2-3y 2+8是八次四项式,单项式5x n y 6-m 的次数与该多项式的次数相同,求m ,n 的值.命题点 3 求多项式的值15.若多项式2y 2-3y+1的值是5,则多项式4y 2-6y+1的值是 ( )A .-8B .-9C .8D .916.若当x=2时,x 3+mx 2-n 的值为6,则当x=-2时,x 3+mx 2-n 的值为 ( )A .-10B .-6C .6D .1417.如图是一个运算程序的示意图,若开始输入的x 值为625,则第2021次输出的结果为( )A .1B .5C .25D .62518.有一组规格相同的饭碗,测得一个饭碗的高度为4.5 cm,两个饭碗整齐叠放在桌面上的高度为6.5 cm,三个饭碗整齐叠放在桌面上的高度为8.5 cm .根据以上信息回答下列问题:(1)若饭碗有x 个,用含x 的式子表示x 个饭碗整齐叠放在桌面上的高度;(2)当10个饭碗整齐叠放在桌面上时,求这叠饭碗的高度.19.[2020·北京朝阳区期中]定义:f(a,b)是关于a,b的多项式,如果f(a,b)=f(b,a),那么f(a,b)叫做“对称多项式”.例如,若f(a,b)=a2+a+b+b2,则f(b,a)=b2+b+a+a2,显然f(a,b)=f(b,a),所以f(a,b)是“对称多项式”.(1)f(a,b)=a2-2ab+b2是“对称多项式”吗?请说明理由.(2)请写一个“对称多项式”:f(a,b)=(不多于四项).(3)如果f1(a,b)和f2(a,b)均为“对称多项式”,那么f1(a,b)+f2(a,b)一定是“对称多项式”吗?如果一定是,请说明理由;如果不一定是,请举例说明.典题讲评与答案详析1.A [解析] 多项式有2x 4-1,a+b 2,共2个. 2.B 3.A4.1 [解析] 多项式x 2+(k -1)x+3中不含有x 的一次项,则k -1=0,解得k=1.5.解:-12,xy 23,a ,a π是单项式;12x+13y 是多项式;-12,xy 23,a ,a π,12x+13y 是整式.6.解:这个多项式最多有五项,即-a 3-a 2b -ab 2-b 3-1.7.B 8.B9.B [解析] 由题意,得|m|=2且-(m -2)≠0,所以m=-2.10.-5m 3n -4m 2n 2+3mn 3+211.312.-x 2+2x+213.解:(1)答案不唯一,如:5x 4y -4y 5-xy 3.(2)组成的多项式是-xy 3+5x 4y -4y 5+23x 6y 4+3x 2y 2,它是十次五项式.14.解:因为多项式-35x 2y m+1+12x 2y 2-3y 2+8是八次四项式, 所以2+m+1=8.所以m=5.又因为5x n y 6-m 的次数与该多项式的次数相同,所以n+6-m=8.所以n=7.15.D16.A [解析] 因为当x=2时,x 3+mx 2-n=6,所以8+4m -n=6.所以4m -n=-2.所以当x=-2时,x 3+mx 2-n=-8+4m -n=-8-2=-10.故选A .17.B [解析] 当x=625时,15x=125;当x=125时,15x=25;当x=25时,15x=5;x=1;当x=5时,15当x=1时,x+4=5,x=1;当x=5时,15…可知从第3次输入开始,结果以5,1循环.因为(2021-2)÷2=1009……1,所以第2021次输出的结果是5.故选B.18.解:(1)因为一个饭碗的高度为4.5=(2+2.5)cm,两个饭碗整齐叠放在桌面上的高度为6.5=(2×2+2.5)cm,三个饭碗整齐叠放在桌面上的高度为8.5=(2×3+2.5)cm,所以x个饭碗整齐叠放在桌面上的高度为(2x+2.5)cm.(2)当x=10时,2x+2.5=2×10+2.5=22.5(cm).答:这叠饭碗的高度为22.5 cm.19.解:(1)是.理由:由题意,得f(b,a)=b2-2ba+a2,则f(a,b)=f(b,a),故f(a,b)=a2-2ab+b2是“对称多项式”.(2)答案不唯一,如a+b(3)不一定是.举例:f1(a,b)=a+b,f2(a,b)=-a-b,它们都是对称多项式,而f1(a,b)+f2(a,b)=0,是单项式,不是多项式.。
人教版数学七年级上册第二、第三章测试题附答案(各一套)

人教版数学七年级上册第二章测试题一、选择题(共10小题,每小题3分,满分30分)1.(3分)单项式﹣3πxy2z3的系数是()A.﹣πB.﹣1 C.﹣3πD.﹣32.(3分)下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.(3分)下列运算中,正确的是()A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n4.(3分)下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.5.(3分)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=36.(3分)单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,77.(3分)代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20 B.18 C.16 D.158.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣289.(3分)已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()A.ab B.a+b C.10a+b D.100a+b10.(3分)原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨二、填空题(每小题3分,共18分)11.(3分)单项式的系数是,次数是.12.(3分)多项式2x2y﹣+1的次数是.13.(3分)任写一个与﹣a2b是同类项的单项式.14.(3分)多项式3x+2y与多项式4x﹣2y的差是.15.(3分)李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款元.16.(3分)按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为.三、计算:(每小题20分,共20分)17.(20分)(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)四、先化简下式,再求值.(每小题6分,共12分)18.(6分)化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.19.(6分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.五、解答题:(每小题分,共20分)20.(10分)已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.21.(10分)计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为。
人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)

2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。
七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)课前练习1. 像ab ,a 2,-m ,12x 这些式子都是数或字母的积,这样的式子叫做_______.单独的一个数或一个字母也是__________.单项式中的数字因数叫做这个单项式的________.一个单项式中,所有字母的指数的和叫做这个单项式的_______.2. 1.3x +5y +2z ,212ab r π-,x 2+2x −18都可以看成几个单项式的和,像这样几个单项式的和,叫做________.其中,每个单项式叫做多项式的________,不含字母的项叫做________.多项式里,次数最高项的次数,叫做这个多项式的_______.例如:x 2+2x −18的项分别为________,常数项是_________,最高次项的次数是_______,因此x 2+2x −18是___次___项式.3. 单项式和多项式统称为__________.4. 多项式xy 2-9xy +5x 2y -25的二次项系数是_____________.5. 多项式4x 2y ﹣5x 3y 2+7xy 3﹣ 67 的次数是________,最高次项是________,常数项是________.6. 一个关于字母x 的二次三项式的二次项系数为4,一次项系数为1,常数项为7,则这个二次三项式为___.7. 多项式(x +3)a y b +12ab 2−5是关于a 、b 的四次三项式,且最高次项的系数为-2,则x =______,y = ___.课前练习参考答案1. ①. 单项式 ②. 单项式 ③. 系数 ④. 次数2. ①. 多项式 ②. 项 ③. 常数项 ④. 次数 ⑤. 2x ,2x ,-18, ⑥. -18,2 ⑦. 2x ⑧. 二 ⑨. 三3.整式【解析】根据整式的定义即可解答.【详解】单项式和多项式统称为整式.故答案是:整式.【点睛】本题考查了整式的定义,理解定义是关键.4. -95. ①. 5 ②. ﹣5x 3y 2③. ﹣676. 4x 2+x +77. ①. -5 ②. 3课堂练习1.下列整式中,单项式是________________;多项式是 ________________.a,25x −by 3,−13x 2y,2πr,x 2+xy +y 2,2x −1. 2.在代数式12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,−5y ,x+y+z 3中,有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式的个数相同 3.在整式:3x −2y ,−8b 9,b−3y 36,0.2,5mn −n −7,6+a 2−b 中,有_____个单项式,_____个多项式,多项式分别是_______.4.−2xy 23+3xy −4是_______次_______项式.5.下列说法正确的是( )A .−3xy 5系数是-3B .x 2+x-1的常数项为1C .22ab 3的次数是6次D .2x-5x 2+7是二次三项式 6.多项式3232486xy x y x y y ----是____次_____项式,最高次项是______,常数项是_______.7.把多项式7x -12x 2+9按字母x 做降幂排列为___.8.把多项式442239235x y xy x y -+-按y 的降幂排列:______9.已知多项式x 2−3xy 2−4的次数是a ,二次项系数是b ,那么a +b 的值为( )A .4B .3C .2D .110.若A 是一个五次多项式,B 也是一个五次多项式,则A +B 一定是( )A .五次多项式B .不高于五次的整式C .不高于五次的多项式D .十次多项式11.四次三项式2x +5x 2yz -3y 2中,二次项的系数为______.12.多项式−2x −3x 3+4x 2+1,按x 的升幂排列为__________________.13.指出下列代数式中的单项式、多项式和整式.2πx 2, 1x , ﹣5,a ,π2, 0,n+m 2, 1﹣1a , 3ab ﹣2a ﹣1.课堂练习参考答案1.a,−13x 2y,2πr ; 25x −by 3,x 2+xy +y 2,2x −1【解析】单项式的定义:表示数或字母的积的式子叫做单项式.多项式的定义:若干个单项式的和组成的式子叫做多项式,再结合题目即可得出答案.【详解】根据单项式与多项式的定义可知:单项式有:a,−13x 2y,2πr ,多项式有:25x −by 3,x 2+xy +y 2,2x −1,故填a,−13x 2y,2πr ;25x −by 3,x 2+xy +y 2,2x −1.【点睛】本题考查多项式和单项式的定义,解题的关键是熟悉多项式和单项式的定义.2.D【分析】根据整式、单项式、多项式的概念即可判断.【详解】解:12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,x+y+z 3是整式, 其中式12x ﹣y ,x 2﹣y +23,x+y+z 3是多项式, 5a ,1π,xyz 是单项式,故选:D .【点睛】本题主要考查整式的概念及单项式与多项式,熟练掌握整式及单项式、多项式的概念是解题的关键.3.2 4 3x −2y 、b−3y 36、5mn −n −7、6+a 2−b【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:−8b 9,0.2,,多项式有4个:3x −2y ,b−3y 36,5mn −n −76+a 2−b【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.4.三三【分析】直接利用多项式的次数与项数确定方法分析得出答案.【详解】解:−2xy23+3xy−4是三次三项式,故答案为:三,三.【点睛】此题主要考查了多项式,正确把握多项式的次数与项数确定方法是解题关键.5.D【分析】根据单项式和多项式的相关概念逐一求解即可得到答案.【详解】解:A.−3xy5的系数是−35,故本选项错误;B.x2+x−1的常数项是−1,故本选项错误;C.22ab3的次数是4次,故本选项错误;D.2x−5x2+7的次数是二次三项式,故本选项正确.故选:D【点睛】本题考查了单项式、多项式的相关基本概念等知识点,熟练掌握相关知识是解题的关键.6.五五 -x3y2 -6【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式xy3-8x2y-x3y2-y4-6是五次五项式,最高次项是:-x3y2,常数项是-6.故答案为:五,五,-x3y2,-6.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.7.−12x2+7x+9【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:多项式7x-12x2+9的项为7x,-12 x2,9,按字母x降幂排列为−12x2+7x+9,故答案为:−12x2+7x+9.【点睛】本题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.8.423242539y x y xy x --++【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:9x 4,−2y 4,+3xy 2,−5x 2y 3将各项按y 的指数由大到小排列为−2y 4,−5x 2y 3,+3xy 2,9x 4.【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++. 故答案是423242539y x y xy x --++.【点睛】本题考查了多项式的项的概念和降幂排列的概念.(1)多项式中的每个单项式叫做多项式的项;(2)一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用.9.A【分析】根据多项式的有关定义得到a 、b 的值,然后计算它们的和即可.【详解】解:根据题意得a=3,b=1,所以a+b=3+1=4.故选:A .【点睛】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.10.B【解析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【详解】A 是五次多项式,B 也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B 的次数不高于五次.故选:B .【点睛】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.11.-3【分析】先把多项式按降幂排列,找出二次项,再确定系数即可.【详解】解:四次三项式2x +5x 2yz -3y 2中进行降幂排列5x 2yz -3y 2+2x ,二次项为-3y 2,二次项的系数为-3,故答案为:-3.【点睛】本题考查多项式中二次项系数问题,掌握多项式的定义,项,项数,某项系数,常数项的区别与联系是解题关键.12.2312+43x x x--【分析】按照x的指数从小到大的顺序把各项重新排列即可.【详解】解:多项式−2x−3x3+4x2+1,按x的升幂排列为231243x x x-+-.故答案为:1-2x+4x2-3x3.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.2πx2是单项式,是整式;1x 是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【分析】根据整式,单项式,多项式的概念进行分类即可.单项式是字母和数的乘积,多项式是若干个单项式的和,单项式和多项式统称为整式.【详解】解:2πx2是单项式,是整式;1x是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【点睛】主要考查了整式的概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.课后练习1.在下列说法中,正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.−ab2,−x都是单项式,也都是整式D.−4a2b,3 ab,5是多项式2435a b ab-+-中的项2.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4 B.2和﹣4 C.3和4 D.3和﹣43.已知x m−1+3x−1是关于x的三次三项式,那么m的值为()A.3 B.4 C.5 D.64.将多项式6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是()A.−a3+3b3−2ab2+6a2b B.3b3−2ab2+6a2b−a3C.3b3−a3+6a2b−2ab2D.−a3+6a2b−2ab2+3b35.在式子:2a , a3, 1x+y, −12, 1−x−5xy2,−x,6xy+1,a2−b2中,其中多项式有____个.6.多项式2x3−x2y2−3xy+x−1是______次______项式,常数项是______.7.若多项式25x3m y+1是四次多项式,m=______.8.若已知3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,则(−1)n+1=_______.9.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①22m n+;②-x;③a+b3;④10;⑤6xy+1;⑥1x;⑦17m2n;⑧2x2-x-5;⑨a7;⑩2x+y单项式:____________________________;多项式:________________________;整式:________________________;10.已知多项式3x3−y3−5x2y−x2+1.(1)求次数为3的项的系数和.(2)当x=−1,y=−2时,求该多项式的值.11.已知整式(a−1)x3−2x−(a+3).(1)若它是关于x的一次式,求a的值并写出常数项;(2)若它是关于x的三次二项式,求a的值并写出最高次项.12.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?课后练习参考答案1.C【分析】直接利用单项式的次数与系数以及多项式的定义、次数与系数分别分析得出答案.【详解】解:A、多项式ax2+bx+c,当a≠0时是二次多项式,故此选项不合题意;B、多项式中次数最高项的次数叫多项式的次数,故此选项不合题意;C、数与字母的积叫单项式,单项式和多项式统称整式,−ab2,−x都是单项式,也都是整式,正确,符合题意;D、−4a2b,3ab,5-是多项式2a b ab-+-中的项,故此选项不合题意.435故选C.【点睛】此题主要考查了多项式以及单项式有关定义,正确把握相关定义是解题关键.2.D【分析】根据多项式的次数和项的定义得出选项即可.【详解】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.【点睛】此题主要考查多项式的次数和项的判定,解题的关键是熟知多项式的次数和项的定义.3.B【分析】式子要想是三次三项式,则x m−1的次数必须为3,可得m的值.【详解】∵x m−1+3x−1是关于x的三次三项式∴x m−1的次数为3,即m-1=3解得:m=4故选:B.【点睛】本题考查多项式的概念,注意,多项式的次数指的是组成多项式的所有单项式中次数最高的那个单项式的次数.4.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是3b3−2ab2+6a2b−a3;故选:B.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.5.3【分析】几个单项式的和为多项式,根据这个定义判定.【详解】2a ,1x y,分母有字母,不是单项式,也不是多项式;a 3,−12,−x,是单项式,不是多项式; 1−x−5xy2,6xy+1,a2−b2都是单项式相加得到,是多项式故答案为:3【点睛】本题考查多项式的概念,在判定中需要注意,当分母中包含字母时,这个式子就既不是单项式也不是多项式了.6.四五 -1【分析】根据多项式的次数、项数判断即可.【详解】解:多项式2x3−x2y2−3xy+x−1最高次项是四次,一共有五项,常数项是-1.故答案为:四,五,-1.【点睛】本题考查了多项式的有关概念,解题关键是熟记多项式的相关概念,注意:每一项都包括它的符号.7.1【分析】由多项式25x3m y+1是四次多项式,可得3m+1=4,解方程可得答案.【详解】解:∵多项式25x3m y+1是四次多项式,∴3m+1=4,∴3m=3,∴m=1.故答案为:1.【点睛】本题考查的是多项式的次数,掌握多项式的次数的概念是解题的关键.8.1【分析】先根据多项式与单项式的次数的定义求出n的值,再代入计算有理数的乘方即可得.【详解】单项式−32π2x3y5的次数为3+5=8,∵3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,∴n−1+2=8,解得n=7,则(−1)n+1=(−1)7+1=(−1)8=1,故答案为:1.【点睛】本题考查了多项式与单项式的次数、有理数的乘方运算,熟练掌握多项式与单项式的次数的概念是解题关键.9.②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.【分析】1x ,2x+y的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【详解】解:单项式有:-x,10,17m2n,a7;多项式有:22m n+,a+b3,6xy+1,2x2-x-5;整式有:22m n+,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.【点睛】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.10.(1)3;(2)15【分析】(1)先得到次数为3的项,再得到它们的系数,再相加;(2)将x和y值代入计算即可.【详解】解:(1)多项式3x3−y3−5x2y−x2+1中,次数为3的项是3x3,−y3和−5x2y,系数分别是3,-1,-5,∴和为3-1-5=-3;(2)当x=−1,y=−2时,3x3−y3−5x2y−x2+1=15.【点睛】本题考查了多项式的次数和系数,有理数的加法,代数式求值,重点掌握多项式的相关概念是解题的关键.11.(1)1a=,常数项为-4;(2)a=−3,最高次项为−4x3【分析】(1)已知多项式是一次式,则x的最高次数是1,由此可得a-1=0,据此可得a的值,求出常数项−(a+3)的值即可;(2)根据多项式是三次二项式,结合多项式的概念可得到a-1≠0且a+3=0,求解的a的值,再求出(a−1)x3即可解答此题.【详解】解:(1)若它是关于x的一次式,则a−1=0,∴1a=,常数项为−(a+3)=−4;(2)若它是关于x的三次二项式,则a−1≠0,a≠1,a+3=0,∴a=−3,所以最高次项为−4x3.【点睛】本题考查多项式的知识,需要根据多项式次数和项数的定义来解答.12.(1)n=4,m≠﹣2;(2)m=﹣2,n为任意实数【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)∵多项式是五次四项式,∴n+1=5,m+2≠0,∴n=4,m≠﹣2;(2)∵多项式是四次三项式,∴m+2=0,n为任意实数,∴m=﹣2,n为任意实数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.第11页共11页。
2021-2022学年人教版七年级数学上册第二章2.1《整式-多项式》专项练习

专题2.4 整式-多项式(专项练习)一、填空题类型一、多项式的判断1.在式子①25x +,①1-,①222a ab b ++,①xyz ,①11x y +,①2x y +,①23π+,①22x y -中是整式的有________,其中是单项式的有________,是多项式的有________.2.在代数式23xy ,m ,263a a -+,12,22145x yz xy -,23ab 中,单项式有___个,多项式有____个. 3.代数式2x y -、m 、2x xy -、0、2ab -、1x 、3a b +、()2a b +、0.5-、xy a +中,单项式有________个,多项式有________个,整式有________个.4.在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有_____个,多项式有_____个. 类型二、多项式的项、项的系数、次数5.多项式234a b ++的常数项是_____. 6.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 7.如果y |m|﹣3﹣(m -5)y+16是关于y 的二次三项式,则m 的值是_____.8.多项式3233525xy x y x y -+-+的次数是________,最高次项的系数是________,常数项是________. 类型三、由多项式的系数求值9.若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.10.若关于x ,y 的多项式4xy 3–2ax 2–3xy +2x 2–1不含x 2项,则a =__________.11.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.12.若多项式()()4322311x a x x b x --+-+-中不含3x 和x 项,则a+b=_______. 类型四、由多项式的指数求值13.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.14.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________. 15.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.16.已知p=(m+2)2m x ﹣(n ﹣3)xy |n|﹣1﹣y ,若P 是关于x 的四次三项式,又是关于y 的二次三项式,则32m n +的值为_____. 类型五、按某个字母升幂(降幂)排列 17.把多项式 32x 3y ﹣45y 2+ 12xy ﹣12x 2 按照字母 x 升幂排列:_____. 18.把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,排在第三项的是___________.19.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.20.2a 4+a 3b 2-5a 2b 3+a -1是____次____项式.它的第三项是__________.把它按a 的升幂排列是____________________.类型六、据要求写出多项式21.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________22.一个只含有字母x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,则这个二次三项式为__________.23.请写出一个单项式,同时满足下列条件:①含有字母x 、y ;①系数是负整数;①次数是4,你写的单项式为______. 类型七、整式的判断24.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.25.如果一个整式具备以下三个条件:(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10;(3)它的二次项系数和常数项都比﹣2小1,请写出满足这些条件的一个整式_____.26.在下列各式中:12x y -,3x ,22x x y -+,5x ,3x y z +-中,单项式有________,多项式有________,整式有________. 27.代数式2x ,223x x --,2x a +,322y y y+-中,整式有________个. 类型八、数字类规律探索28.找出下列各图形中数的规律,依此,a 的值为_____.29.按一定规律排列的一列数为12-,2,92-,8,252-,18……,则第8个数为________,第n个数为_________.30.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.31.按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__________.类型九、图形类规律探索32.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).33.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图①,图①的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.34.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n个图案有_______个三角形(用含n 的代数式表示).35.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有_____个菱形.参考答案1.①①①①①①① ①① ①①①①①【解析】【分析】根据整式、单项式、多项式的定义,结合所给各式进行判断即可.【详解】解:所给式子中整式有:①①①①①①①;单项式有:①①①;多项式有:①①①①.故答案为:①①①①①①①、①①、①①①①①.【点睛】本题考查了多项式、单项式及整式的知识,掌握三者的定义是解题的关键,属于基础知识考察类题目. 2.3 2【详解】单项式有:3xy 2,m ,12,共3个,多项式有:6a 2-a+3,4x 2yz -15xy 2,共2个. 故答案为3,2.3.4 4 8【解析】【分析】根据整式的定义和多项式、单项式的定义求解.【详解】解:单项式有:m 、0、-ab 2、|-0.5|共4个.多项式有2x -y 、x 2-xy 、3a +b 、2(a+b )共4个. 1x 、x a+y 分母中含有未知数不是整式,其余的都是整式,共8个. 故答案为:4,4,8.【点睛】本题重点对整式、单项式、单项式定义的考查.4.5, 3【解析】【分析】根据单项式和多项式的概念解答即可.【详解】在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有: xy ,﹣3,﹣m 2n ,,4x ,ab 2,5个,多项式有:31+14x -,x ﹣y ,4﹣x 2,3个.故答案为:(1). 5 (2). 3. 【点睛】本题考查了单项式和多项式的概念,解题的关键是掌握:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式.5.34【解析】【分析】根据常数项的定义即可求解.【详解】a+2b+3a 2b 3=++4444. 故答案为34. 【点睛】本题主要考查常数项的定义,熟悉掌握是关键.6.-3【分析】由题意可知:|m|=3,且m -3≠0即可作答.【详解】由题意可知:|m|=3,且m -3≠0;①m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键. 7.-5【分析】根据二次三项式的定义,可知多项式y |m|-3-(m -5)y+16的最高次数是二次,共有三项,据此列出m 的关系式,从而确定m 的值.【详解】①y |m|-3-(m -5)y+16是关于y 的二次三项式,①|m|-3=2,m -5≠0,①m=-5,故答案为-5.【点睛】本题考查了二次三项式的定义:一个多项式含有几项,是几次就叫几次几项式.注意一个多项式含有哪一项时,哪一项的系数就不等于0.8.5 -2 +5【解析】【分析】根据多项式的概念及单项式的次数、系数的定义解答.【详解】多项式3233525xy x y x y -+-+的次数是5.最高次项系数是-2,常数项是+5.故答案为:5,-2,+5.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.9.0或8【分析】直接利用多项式的次数确定方法得出答案.【详解】 解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.10.1【分析】把a看成是常数,合并同类项,然后令x2项的系数为0即可求出a的值.【详解】解:4xy3-2ax2-3xy+2x2-1=4xy3+(2-2a)x2-3xy-1,因为多项式不含x2项,所以2-2a=0,解得:a=1.故答案为1.【点睛】此题主要考查了多项式,关键是掌握合并同类项法则.即系数相加作为系数,字母和字母的指数不变.在多项式中不含某一项,即合并同类项后令这一项的系数为0.11.1.【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式, 多项式不含x2项,即k-1=0,k=1.故k的值是1.【点睛】本题考查了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.12.1【解析】【分析】根据多项式的有关概念和题目要求得到-(a-2)=0,b+1=0,然后解一次方程即可.【详解】根据题意得−(a−2)=0,b+1=0,解得a=2,b=−1,则a+b=2-1=1.故答案为:1.【点睛】此题考查多项式,代数式求值,解题关键在于掌握其概念.13.-2【详解】因为多项式x |m|+(m -2)x -10是二次三项式,可得:m−2≠0,|m|=2,解得:m=−2,故答案为−214.24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:①多项式42142mx x +-与多项式35n x x +的次数相同, ①4n =,①22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值.15.2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】①多项式||1(2)32m x m x --+是关于x 的二次三项式, ①||2m =,且()20m --≠,①2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.16.56- 【解析】分析:根据多项式的概念即可求出m ,n 的值,然后代入求值.详解:依题意得:m 2=4且m+2≠0,|n|-1=2且n -3≠0,解得m=2,n=-3, 所以32m n +=235326-+=-. 故答案是:56-. 点睛:本题考查多项式的概念,解题的关键是熟练运用多项式概念17.﹣45y 2+ 12xy ﹣12x 2 +32x 3y 【解析】【分析】先分清多项式的各项:32x 3y ,﹣45y 2, 12xy ﹣12x 2;再按升幂排列的定义排列. 【详解】多项式32x 3y ﹣45y 2+ 12xy ﹣12x 2按字母x 的升幂排列是: 2234112?3252y xy x x y ﹣﹣++. 故答案是:2234112?3252y xy x x y ﹣﹣++. 【点睛】本题考查了多项式.解答此题必须熟悉降幂排列的定义:我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列称为按这个字母的降幂或升幂排列.18.-5a 2b【分析】先把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列为:a 3b 3+2ab 2-5a 2b -7.故答案为-5a 2b .【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.19.﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.20.五 五 −5a 2b 3 −1+a −5a 2b 3+a 3b 2+2a 4【解析】【分析】根据多项式的次数和项数的定义进行求解,再根据a 的指数的大小按升幂排列起来即可.【详解】2a 4+a 3b 2-5a 2b 3+a -1是五次五项式,它的第三项是-5a 2b 3,把它按a 的升幂排列是-1+a -5a 2b 3+a 3b 2+2a 4. 故答案为:五,五,−5a 2b 3,-1+a -5a 2b 3+a 3b 2+2a 4.【点睛】此题考查了多项式,用到的知识点是多项式的次数和项数以及排列顺序;多项式里次数最高项的次数,叫做这个多项式的次数,多项式中的每个单项式叫做多项式的项.21.-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.22.23217x x -+- 【解析】一个只含有x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,得 23217x x -+-. 故答案是:23217x x -+-. 23.﹣xy 3.【解析】①含有字母x 、y ;①系数是负整数;①次数是4,符合条件的单项式不唯一,例如:-xy 3.故答案是:-xy 3等.24.21122x x -+- 【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 25.﹣3x 2+16x ﹣3【解析】分析:根据整式的概念写出要求的整式.详解:根据题意可知答案不唯一,(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10,如-3+16-3=10;(3)它的二次项系数和常数项都比-2小1,如二次项系数是-3,常数项是-3,所以满足这些条件的一个整式为:-3x 2+16x -3故本题答案为:-3x 2+16x -3.点睛:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.本题的关键是根据描述写出式子要特别熟悉整式的特点.26.3x ,5x 12x y -,3x y z +- 3x ,5x ,12x y -,3x y z +- 【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:单项式有:3x ,5x ; 多项式有:12x y -,3x y z +-; 整式有:3x ,5x ,12x y -,3x y z +-; 故答案为:(1)3x ,5x ;(2)12x y -,3x y z +-;(3)3x ,5x ,12x y -,3x y z +-. 【点睛】本题考查了对多项式、单项式、整式的定义的应用.易错点,多项式和单项式都是整式.27.2【解析】【分析】根据整式的概念分析判断各个式子.【详解】根据整式的概念可知,整式有x 2−x−23,2x a +,共2个. 故答案为:2.【点睛】本题考查了整式的概念,解题的关键是熟练的掌握整式的概念.28.226.【详解】试题分析:观察图形可得,0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,由此规律可得14+a=15×16,解得:a=226.考点:规律探究题. 29.32 22(1)n n -⋅ 【分析】首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,代入即可求解.【详解】把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,故第n 个数为:(﹣1)n22n ⨯,第8个数为:(﹣1)8282⨯=32. 故答案为32,(﹣1)n 22n ⨯. 【点睛】本题考查了数列的探索与运用,合理的统一数列中的分母寻找规律是解题的关键.30.41400【分析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.31.bc=a【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式.【详解】解:①一列数:3,23,13-,33,43-,73,113-,183-,…,可发现:第n 个数等于前面两个数的商,①a ,b ,c 表示这列数中的连续三个数,①bc=a ,故答案为:bc=a .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a ,b ,c 之间的关系式.32.3n+1【详解】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n -1)=3n+1个考点:规律型33.3n +2.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n 个“T”字形需要的棋子个数.【详解】解:由图可得,图①中棋子的个数为:3+2=5,图①中棋子的个数为:5+3=8,图①中棋子的个数为:7+4=11,……则第n 个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.34.()31n +【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形,...第n 个图案有3×n+ 1=(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.35.11【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当n=6时,2n﹣1=2×6﹣1=11,故答案为:11.【点睛】本题主要考查图形规律类,根据图形的变化找到规律是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式与多项式测试题
姓名:
分数:
一、选择题(每小题 3分,共 30分)
1、卜列说法正确的是 ( )
A . x 的指数是0
B. x
的系数是0
C. 、
T 是四次三项式
..]是五次三项式
A . 3 x 2— 2x+5 的项是 3x 2, 2x ,
C . —3是一次单项式 D. —-ab 的系数是
3
2、 代数式a 2、— xyz 、 ab 2
4
—X 、 -、0、a 2 + b 2、 a —0.2中单项式的个数是( A. 4 B.5 C.6
D. 7
3、 F 列语句正确的是( A . 「厂一]:「:中一次项系数为一 2
--是二次二项式
n
4、 F 列结论正确的是(
5、
6、
A.整式是多项式 C.多项式是整式 如果一个多项式的次数是 A .都小于4 B .
F 列说法正确的是( B. D.
4次, 不是多项式就不是整式 整式是等式
那么这个多项式的任何一项的次数( 都等于4
C.
都不大于4 D.
都不小于4
2 a 3
2 / 4
B . X — y 与2 x 2— 2xy — 5都是多项式
3 3
C.多项式一2x 2+4xy 的次数是3
D. —个多项式的次数是 6,则这个多项式中只有一项的次数是 6
7、x 减去y 的平方的差,用代数式表示正确的是(
)
2 2 2 2 2
A 、(x_y )
B 、x -y
C 、x - y
D 、x_y
8某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长
/分,下楼速度是b 米/分,则他的平均速度是(
)米/分。
2s n a b
9、若ma n b 3是关于a 、b 的五次单项式,且系数是 -3,则mn =(
)。
A 10
B -10
C 15
D -15 o
10、-5二ab 的系数是(
)
A -5 B
-5二 C 3
D 4
二、填空题 (每小题 4分,共 40分)
11、单项式 2 2 xy z 的系数是
,次数是
3
2 _ 2
18、单项式~
3
~
:xy
的系数是 ________ ,次数是 ______ 。
7
13、 多项式:4x 3,3xy 2 -5x 2y 3 y 是 ____________ 次 _______ 项式;
14、 _______________________________________________________________ 在代数式a ,-丄mn , 5,
$,空 y ,7y 中单项式有 ______________________________________________ 个。
S 米,同学上楼速度是
15、写出一个系数为—1,含字母x、y的五次单项式 ________________________ 。
16、多项式x3y2—2xy2—4xy—9是_次_项式,其中最高次项的系数是,二次项
3 ——
是__________ ,常数项是_____________ .
17、一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是_____________ .
18、如果x p 2■ 4x‘ —(q —2)x2—2x ■ 5是关于x的五次四项式,那么p+q= ___________ 。
19、若m—2n = —3,贝U 2m-4n—5 的值为_______________
三、解答题(共80分)
20、写出多项式的项,并说明是几次几项式
1、2a2b ab2 -2 , 2 、x5+4x2y—4x+ 5
21、(10分)已知(a - 3)x2y|a| + (b+2)是关于x, y的五次单项式,求a2- 3ab+b2的值.
__ - 2 3 4 5 6
22、(10 分)观察下列单项式- 2x, 4x,- 8x , 16x,- 32x , 64x,…
(1写出第10个单项式;(2)写出第n个单项式.
23、(10分)已知单项式'r■与-4x2y2的次数相同.
3
(1)求m的值;
(2)求当x= - 9, y=- 2时单项式- /1的值.
3
24、(10分)指出下列各式中哪些是单项式,哪些是多项式,哪些是整式?
2 2 a b 1〔22 2
x y,-x, ,10, 6xy 1, , mn ,2x -x-5, r
3 x 7 x 十x
单项式:________________ 多项式: ____________________
整式:____________________________________________
25、 (10分)如果8x m y4与都是关于x、y的七次单项式,求代数式m i - n2的值?
26、 (10分)当多项式-5x2-( 2m- 1) x2+ (2 - 3n) x - 1不含二次项和一次项时,求m n的值.
27 (10分)计算下列各多项式的值:
5 3 2 r r.
1. x —y + 4x y—4x + 5,其中x =—1, y= —2;
3 2
2. x —x + 1 —x ,其中x=—3;
附加题(10分)已知|a-1|+(2a+b)2 =0,求7a2b —(―4a2b+5ab2) —2(2a2b —3ab2)的值。