北京大学2000入学考试试题. 量子力学
量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学真题和答案解析

量子力学真题和答案解析是物理学中的一个重要分支,研究微观领域的宇宙现象和微观粒子的行为规律。
具有复杂的数学理论基础,因此在学习和研究过程中常常会遇到各种难题和问题。
为了更好地理解和应用,解析真题和答案是非常重要的一步。
首先,解析真题前,我们需要了解一些基本概念和原理。
描述了微观粒子的行为,其中最基本的概念是量子态和波函数。
量子态描述了粒子的所有性质,而波函数则是的核心数学工具,用于描述粒子的状态和演化规律。
在研究真题时,我们需要仔细分析题目中给出的信息和条件。
通常,题目会给出一些实验或者观测结果,然后要求利用所学知识来推断和解释这些结果。
这就需要我们从题目中提取关键信息,并应用的原理进行分析。
解析真题时,我们可以采用逐步推导的方法。
首先,根据题目中给定的信息,我们可以确定所研究系统的量子态。
然后,根据波函数的演化规律,我们可以利用薛定谔方程或者时间演化算符来推导出系统的时间演化。
最后,我们可以根据所给条件和结果来验证和解释我们的推导和计算结果。
在解析真题时,我们还需要注意一些常见的问题和误区。
首先,是一种概率性理论,因此我们无法准确预测每一次实验的结果。
我们只能给出在大量重复实验中的平均结果。
其次,波函数的坍缩现象是的核心特征之一。
在测量时,波函数会坍缩到某一特定的量子态,从而给出确定的结果。
最后,量子纠缠是中的一个重要现象。
它描述了在某些情况下,两个或多个微观粒子之间存在着密切的关联,无论它们之间的距离有多远。
总结一下,解析真题和答案是学习和研究的重要一步。
我们需要了解的基本概念和原理,并且可以采用逐步推导的方法来分析和解决问题。
我们还需要注意中的一些常见问题和误区,以便更好地理解和应用的原理和概念。
通过解析真题和答案,我们可以提高对的理解,并且能够更好地应用于实际问题和研究中。
北京大学-量子力学习题集1

ψ ( x, t ) = α xe
2
2μ E 2 μα = 2 − = =2
(6)
式(6)两边平方,得
2μ E ⎞ 1 ⎛ 2 μα 2 = ⎜ 2 − V0 ⎟ 2 2α ⎝ = = ⎠
(7)
显然 E 有解的条件是 2 2 = V0 2 μα 2 > V0 , 或 α > 2 2μ = 这正是存在束缚态的条件.由式(7)得
⎛ 2 μα ⎞ − V0 ⎟ E = 2 ⎜ 2 8μα ⎝ = ⎠ =
Δx ⋅ Δp ≥
4
解先对态ψ(x) 进行归一化.由波函数的归一化条件
∫
有 得 于是
∞
−∞
ψ ( x) dx = 1
dx = A 4λ
2 3
2
∫
∞
0
A x e
2
2 −2 λ x
=1
A = 2λ 3 / 2
⎧2λ 3/ 2 xe − λ x , x ≥ 0 ψ ( x) = ⎨ x<0 ⎩0,
(I)粒子坐标的概率分布函数为
⎡ =2 ∂ ⎤ ∂ ⋅ 2 + V ( x ) ⎥ψ ( x, t ) i = ψ ( x, t ) = ⎢ − ∂t ⎣ 2 M ∂x ⎦
则得
= −γ x = − ( β 2 x − 2 β ) + V ( x) x 2M
2
由此可解出 x > 0 时的势
=2 V ( x) = −γ + 2M ⎛ 2 2β ⎞ ⎜β − ⎟ x ⎝ ⎠
则有
= 1 d ⋅ 2 ψ E ( x), V ( x) = E + 2m ψ E ( x) dx
2 2
(1) 如果给定一个定态波函数ψ E ( x) ,则由式(1) 可给出 V ( x) − E ,欲分别求出 E和 V ( x),还需
几所高校量子力学硕士试题

高校量子力学研究生招生试题汇总一.复旦大学1999硕士入学量子力学试题二.天津大学1999硕士入学量子力学试题(1)三.北京大学2000年研究生入学考试试题考试科目:量子力学 考试时间:2000.1.23下午 招生专业:物理系各专业 研究方向:各研究方向 试题: 一.(20分)质量为m 的粒子,在位势V x x V '+=)()(αδ 0<a00{V V ='00><x x 00>V中运动,a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;b. 给出粒子处于x >0区域中的几率。
它是大于1/2,还是小于1/2,为什么? 二.(10分)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项)a. 给出|α>和|β>态的守恒量完全集;b. 若0ˆˆ)(≠⋅αβr sr f ,则|α>和|β>态的那些量子数可能是不同的,为什么? (注:f(r)是r 的非零函数,r s ˆ,ˆ为电子的自旋和坐标算符。
)三.(16分)三个自旋为1/2的粒子,它们的哈密顿量为)ˆˆˆˆˆˆ(ˆ1332210s s s s s s C H ⋅+⋅+⋅= 求本征值和简并度。
四.(22分)两个自旋为1/2的粒子,在),(21z z s s 表象中的表示为))((2211βαβα,其中,2iα是第i 个粒子自旋向上的几率,2iβ是第i 个粒子自旋向下的几率。
a. 求哈密顿量)(ˆ21210xy y x V H σσσσ-= 的本征值和本征函数;(V 0为一常数)b. t=0时,体系处于态121==βα,012==βα,求t 时刻发现体系在态021==βα,112==βα的几率。
(注:iy ix σσ,为第i 个粒子泡利算符的x, y 分量)五.(10分)考虑一维谐振子,其哈密顿量)21(ˆ+=+a a h H ϖ,而0],[],[==++a a a a ,1],[=+a a a. 若|0〉是归一化的基态矢(a|0)=0),则第n 个激发态为)(n n a N n +=试求归一化因子n N ; c. 若外加一微扰,aa a ga H ++='ˆ,试求第n 个激发态的能量本征值(准至g 一级)。
《量子力学》大一题集

《量子力学》大一题集一、选择题(每题5分,共50分)1.量子力学的研究对象主要是?A. 宏观物体的运动规律B. 微观粒子的运动规律C. 宇宙天体的运动规律D. 生命现象的运动规律2.下列哪位科学家是量子力学的奠基人之一?A. 牛顿B. 爱因斯坦C. 薛定谔D. 伽利略3.波粒二象性是指?A. 粒子只具有波动性B. 粒子只具有粒子性C. 粒子同时具有波动性和粒子性D. 波动和粒子是两种不同的物质4.在量子力学中,描述微观粒子状态的数学工具是?A. 牛顿运动定律B. 麦克斯韦方程组C. 波函数D. 爱因斯坦场方程5.下列哪个实验是量子力学发展史上的重要里程碑?A. 迈克尔逊-莫雷实验B. 双缝干涉实验C. 托马斯·杨的光干涉实验D. 薛定谔的猫实验6.量子力学中的“不确定性原理”是由谁提出的?A. 玻尔B. 海森堡C. 狄拉克D. 费曼7.在量子力学中,观测者对系统的影响称为?A. 观测者效应B. 量子纠缠C. 超位置D. 量子跃迁8.下列哪个现象是量子力学特有的,而经典力学无法解释?A. 光的折射B. 物体的自由落体C. 电子的双缝干涉D. 行星的运动9.量子纠缠是指?A. 两个粒子之间的引力作用B. 两个粒子之间的电磁作用C. 两个粒子之间的量子态的关联D. 两个粒子之间的强相互作用10.量子计算机相比经典计算机的最大优势是?A. 计算速度更快B. 存储容量更大C. 能耗更低D. 体积更小二、填空题(每题5分,共20分)1.在量子力学中,描述微观粒子运动状态的波函数需要满足_______方程。
2.量子力学中的“不确定性原理”表明,微观粒子的位置和动量是不确定的,其不确定度的乘积有一个_______的下限。
3.量子纠缠是_______之间的一种特殊关联,当其中一个粒子的状态发生改变时,另一个粒子的状态也会瞬间发生改变。
4.在量子力学中,观测者对系统的影响是不可忽视的,这种影响被称为_______。
北京大学统计物理与热力学2000真题

考试科目:统计物理与热力学考试时间:2000年1月24日上午
招生专业:理论物理研究方向:凝聚态理论与统计物理等试题:
已知某均匀系的内能(U)作为熵(S)与体积(V)的函数可以表为
U=C*S^(4/3)*V^(-1/3) (C为正常函数)
求该体系的压强(P),自由能(F),吉布斯函数(G),Cv与Cp 。
2、简要回答下列问题(不必计算):
(1)固体比热的爱因斯坦理论与德拜理论的区别是什么?哪个理论更符合实验,为什么?
(2)什么条件下微正则、正则与巨正则系统在计算力学量的平均值时是等价的,为什么?
(3)经典能量均分定理的适用条件是什么?试尽你所知举出不满足经典能量均分定理的情形。
(4)若在玻尔兹曼方程中略去碰撞项,问系统的熵是否随时间改变,为什么?
3、对处于平衡态下的理想玻色气体,引入巨配分函数
Ξ = Π( 1 - e^(-α-β*ε_l)^( - ω_l)
l
其中ε_l与ω_l分别代表粒子的能级与该能级的简并度。
导出总粒子数平均值(N{bar}),内能(E{bar}),外界作用力的平均值(Y{bar}_λ)及熵(S)用lnΞ表达的统计表达式。
在非简并条件(即e^α>>1)下,由上述公式出发,通过将lnΞ作泰勒展开并保持到最低阶的近似,导出N{bar},E{bar},Y{bar}_λ,S用lnz的表达式,其中z = Σω_l * e^(-β*ε_l) 为子系配分函数。
北京大学-量子力学习题集5

a A 6.设 V (r ) = − + 2 , (a, A > 0) ,求粒子能 r r
量本征值。
解:取守恒量完全集为 ( H , L , Lz ) ,其共 同本征函数为 χ (r ) Ylm (θ , ϕ ) ψ (r , θ , ϕ ) = R(r )Ylm (θ , ϕ ) = r χ (r ) 满足的径向方程
ψ ( x) =
1 2π
∫ ϕ ( P ')e
i − ( p '+ p ) x
dp ' = e
i − xp
ψ 0 ( x)
⎛α ⎞ 其中 ψ 0 ( x) = ⎜ π ⎟ ⎝ ⎠
2
1/ 4
e
−α 2 x 2 2
⎛ mω ⎞ α =⎜ ⎟ ,故有 , ⎝ ⎠
2 p2 − 2 mω
1/ 2
P = ∫ψ ( x)ψ ( x)dx = e
任何位置,单位体积内测到一个粒子的概 率为1. 若沿用上面的方法来求归一化系 数,则会出现
∫
∞
−∞
Ae
2 − ikx ikx
e dx = ∫ A dx = ∞ ⋅ A
2 −∞
∞
2
要使积分为1,必须A=0,因此波函数不能 归一,只能归一为δ函数。
1 ∫−∞ 2π exp {−ik ′x} exp {ikx} dx = δ (k − k ′)
⎛a⎞ 2 2 设归一化的本征态为 ⎜ ⎟ , a + b = 1则 b⎠ ⎝ 由本征方程
⎛ B −iA ⎞ ⎛ a ⎞ ⎛a⎞ ⎜ ⎟⎜ ⎟ = λ ⎜ ⎟ ⎝ iA − B ⎠ ⎝ b ⎠ ⎝b⎠
可以解出本征态为
Ψ± ⎡ ⎤ 1 =⎢ ⎥ 2 2 2 2 ⎢ ⎣ A + (B ∓ A + B ) ⎥ ⎦
北大物理部分真题

北大物理部分真题北京大学量子力学真题部分北京大学量子力学的部分真题。
1992年4.设粒子处于半径为a的球壁内,(1)求基态能量。
(2)求基态粒子对球壁的压强。
1994年6.假设两个质量为m=70Me/c2的夸克可以通过位势V=-a(?1.?2-b)r2束缚在一起,其中r是两个夸克之间的距离?1和?2分别为夸克1和夸克2的包利自旋矩阵,a=68.99Me/fm2,而b是一个待定的参数,(1)b 应取什么值,才能使两个夸克束缚在一起?(2)设两个夸克是不同类型的,并取b=3/2,试求基态能量和简并度,(3)设两个夸克是同一类型的,并取b=3/2,试求基态能量和简并度。
(4)当b=0时,求两个全同夸克在基态的方均根距离, hc=1.97.3MeV.fm.为自旋1和自旋2,h都是带横岗的1995年5.设L为轨道角动量。
在(L2,Lz)表象(即以Ilm>为基矢的表象)中,写出L=1的子空间中Lx的矩阵表示式,并求出它的本征值和本征态。
1998年7.在一维无限深位阱中,V(x)=0,0<xa.</x(1)求一维无限深位阱的能量本征值,及相应的本征函数。
(2)如果有两个无相互作用的自旋为1/2的全同粒子在此中,试写出此位阱系统基态和第一激发态的能量值和波函数。
1999年6.一个质量为m的粒子在一维势场V(x)=正无穷,x<0.V(x)=1/2mw平方x平方,x>0中运动,求其能级,不必作详细计算。
2000年6.考虑体系H=T+V(x),V(x)=无穷x<0,V(x)=Ax,x>0(A>0).(1)利用变分法,取试探波函数函数1=(2比b根号π)1/2e的-x平方/2b平方,求基态能量上限E1;(2)我们知道,如试探波函数为函数2==(1比b根号π)1/2(2x/b)e 的-x平方/2b平方,则基态能量上限为E2=(81/4π)根号1/3(A平方h 平方/m)根号1/3,对这两个基态的能量上限,你能接受哪一个,为什么?2001年6.质量为m的粒子在位势V=无穷,x<0,V=cx平方,x>0中运动,c>0,(1)试利用变分法估计体系基态能量;(2)它是精确解的上限还是下限?你能给出精确的基态能量吗?2007年5.H(t)=-h平方/2mx导数平方+1/2mw零平方x平方(1+1/cosh 平方兰姆达t)t趋向于负无穷时刻,该体系处在谐振子基态I0>.在t趋向于正无穷时刻态体系跃迁到激发态In>的概率记为p零趋向于n.(a)求(b)当(c)讨论2008年VI.质量为m的粒子在位势V(x)=-兰姆达扥特(x),(兰姆达>0)中运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学2000年研究生入学考试试题
考试科目:量子力学
考试时间:2000.1.23下午 招生专业:物理系各专业
研究方向:各研究方向
指导老师 试题:
一.(20分)质量为m 的粒子,在位势
V x x V '+=)()(αδ
0<a
00
{V V =' 0
><x x 00>V
中运动,
a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;
b. 给出粒子处于x >0区域中的几率。
它是大于1/2,还是小于1/2,为什么? 二.(10分)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项) a. 给出|α>和|β>态的守恒量完全集;
b.
若0ˆˆ)(≠⋅αβr s
r f ,则|α>和|β>态的那些量子数可能是不同的,为什么? (注:f(r)是r 的非零函数,r s ˆ,ˆ为电子的自旋和坐标算符。
)
三.(16分)三个自旋为1/2的粒子,它们的哈密顿量为
)ˆˆˆˆˆˆ(ˆ1332210s s s s s s C H ⋅+⋅+⋅=
求本征值和简并度。
四.(22分)两个自旋为1/2的粒子,在),(21z z s s 表象中的表示为))((2
211βαβα,其中,
2i α是第i 个粒子自旋向上的几率,2
i β是第i 个粒子自旋向下的几率。
a. 求哈密顿量
)(ˆ21210x
y y x V H σσσσ-= 的本征值和本征函数;(V 0为一常数) b. t=0时,体系处于态121
==βα,012==βα,求
t 时刻发现体系在态
021==βα,112==βα的几率。
(注:iy ix σσ,为第i 个粒子泡利算符的x, y 分量) 五.(10分)考虑一维谐振子,其哈密顿量
)2
1(ˆ+=+a a h H ϖ,
而0],[],[==+
+a a a a ,
1],[=+a a a. 若|0〉是归一化的基态矢(a|0)=0),则第n 个激发态为
0)(n n a N n +=
试求归一化因子n N ;
c. 若外加一微扰,aa a ga H +
+='ˆ,试求第n 个激发态的能量本征值(准至g 一级)。
六.(22分)考虑体系)(ˆx V T H
+=,
∞
=Ax
x V {)(
00<>x x A>0, a. 利用变分法,取试探波函数为
2
2
22
/11)
2(
)(b x e
b x -=ψπ
,
求基态能量上限;
b. 我们知道,如试探波函数为
2
2
22
/122)
1(
)(b x e b
x b x -=ψπ
, 则基态能量上限为3
/1223/12)(
)481(m
h A E π=。
对这两个基态的能量上限,你能接受哪一个?为什么?。