北京大学量子力学期末试题
北京大学量子力学习题集1

[2] 波函数的归一化及 x2, p2 的计算
一维运动的粒子处于状态
ψ
(
x)
=
⎧ ⎨
Axe−
λ
x
,
⎩ 0,
x≥0 x<0
上,其中 λ > 0 ,A为待求的归一化常数,求(1)
粒子坐标的概率分布函数;(2)粒子坐标的平均
值 x 和粒子坐标平方的平均值 x2;(3)粒子动量 的概率分布函数;(4)粒子动量的平均值 p 和粒
则有
⎡⎢− ⎣
=2 2m
⋅
d2 dx2
+V (x)⎤⎥ψ E (x)
⎦
=
Eψ E (x)
V
(x)
=
E
+
=2 2m
ψ
1 E (x)
⋅
d2 dx2
ψ
E
( x),
−∞< x<∞
(1)
如果给定一个定态波函数ψ E (x) ,则由式(1)
可给出 V (x) − E ,欲分别求出 E和 V (x),还需
要附加条件,例如设定 V (x) 的零点.
∑ (En − Em )2 n x m 2 n
∑ = − (Em − En ) m x n (En − Em ) n x m n
∑ =
−
⎛ ⎜⎝
−
i=
μ
⎞2 ⎟⎠
n
m pn
n pm
∑ =2
= m p n n pm
μ2
n
=2 =
m
p2
n
μ
式(2)得证.以上利用了完备公式
∑ n n =1
n
∑ (En − Em ) n x m 2 n
北京大学-量子力学习题集1

ψ ( x, t ) = α xe
2
2μ E 2 μα = 2 − = =2
(6)
式(6)两边平方,得
2μ E ⎞ 1 ⎛ 2 μα 2 = ⎜ 2 − V0 ⎟ 2 2α ⎝ = = ⎠
(7)
显然 E 有解的条件是 2 2 = V0 2 μα 2 > V0 , 或 α > 2 2μ = 这正是存在束缚态的条件.由式(7)得
⎛ 2 μα ⎞ − V0 ⎟ E = 2 ⎜ 2 8μα ⎝ = ⎠ =
Δx ⋅ Δp ≥
4
解先对态ψ(x) 进行归一化.由波函数的归一化条件
∫
有 得 于是
∞
−∞
ψ ( x) dx = 1
dx = A 4λ
2 3
2
∫
∞
0
A x e
2
2 −2 λ x
=1
A = 2λ 3 / 2
⎧2λ 3/ 2 xe − λ x , x ≥ 0 ψ ( x) = ⎨ x<0 ⎩0,
(I)粒子坐标的概率分布函数为
⎡ =2 ∂ ⎤ ∂ ⋅ 2 + V ( x ) ⎥ψ ( x, t ) i = ψ ( x, t ) = ⎢ − ∂t ⎣ 2 M ∂x ⎦
则得
= −γ x = − ( β 2 x − 2 β ) + V ( x) x 2M
2
由此可解出 x > 0 时的势
=2 V ( x) = −γ + 2M ⎛ 2 2β ⎞ ⎜β − ⎟ x ⎝ ⎠
则有
= 1 d ⋅ 2 ψ E ( x), V ( x) = E + 2m ψ E ( x) dx
2 2
(1) 如果给定一个定态波函数ψ E ( x) ,则由式(1) 可给出 V ( x) − E ,欲分别求出 E和 V ( x),还需
量子力学期末考试试卷及答案范文

量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。
3、一个量的本征值对应多个本征态,这样的态称为简并。
4、两个力学量对应的算符对易,它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。
综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。
针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
1、第二题:如果类氢原子的核不是点电荷,而是半径为0r、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,43441020********420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ,可视为一种微扰,由它引起一级修正为(基态03(0)1/210030()Zra Z e a ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<,故102≈-r a Z e 。
量子力学测试题23北师大-2003

1 量子力学测试题(6)(北师大2003)1、(20分)一维谐振子t=0时处于基态0ψ和第一激发态1ψ的叠加态))()((21)0,(10x x x ψψψ+=其中 222100)(x e N x αψ-= x e N x x αψα2)(222111-=(1)求t 时刻位置和动量的平均值t t p x ,;(2)证明:对于一维谐振子的任何态,t 时刻位置和动量的平均值有以下关系 t t p mx dt d1= (3)求t 时刻能量的平均值t H 。
2、(40分)t=0时氢原子的波函数为⎥⎦⎤⎢⎣⎡+=-+χϕθχϕθϕθψ),(32),(31)(),,(111021Y Y r R r其中±χ为自旋z S 的本征态。
(1)测量下列物理量的可能值及相应几率是什么?轨道角动量平方和z 分量z L L ˆ,ˆ2;自旋角动量平方2ˆS ;总角动量平方2ˆJ (S L J ˆˆˆ+=)。
(2)电子自旋向上,到坐标原点距离为r 的概率密度;(3)能量的平均值E ;(4)轨道角动量x 分量的平均值x L ;(5)0≠t 时问题(3)和(4)的结论会改变吗?3、(30分)自旋算符σσ ⋅=n n ,其中为方向单位矢)cos ,sin sin ,cos (sin θϕθϕθ=n(1)求n σ的本征态±χ;(2)证明n ±=±±χσχ||;(3)一个两电子体系处在自旋单态[])2()1()2()1(2100αββαχ-=,求第一个电子的自旋算符σσ ⋅=n n 1作用于00χ的结果?001=χσn4、(30分)外磁场中电子的哈密顿量()221ˆA q P H -=μ。
(1)求位置矢量r 和Hˆ的对易关系]ˆ,[H r;2 (2)证明连续性方程0),(),(),(*=⋅∇+∂∂t r J t r t r t ψψ中的几率流密度 ⎪⎭⎫ ⎝⎛-∇-∇-=2**22ψψψψψμA iq i J 5、(30分)在磁场0B e B z =中,把()00ˆ2ˆˆB S L H z z +='μ看成微扰。
量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。
北京大学量子力学期末试题A及答案

北京大学量子力学期末试题A姓名:学号:题号一二三四五六习题 总分成绩一.(10分)若Sˆ是电子的自旋算符,求 a. x S ˆz S ˆx S ˆy S ˆx S ˆ=? b. ?S ˆSˆ=× 二.(12分)若有已归一化的三个态γβα和,,且有8.02.03.0======βγγβαγγααββα ,试用Schmidt 方法构成正交,归一的新的态矢量γβα′′和,.三.(16分) 算符ηηηη/z S ˆi /y S ˆi z /y S ˆi /z S ˆi n e e S ˆe e S ˆϕθθϕ−−=是电子自旋算符zSˆ经幺正变换而得。
试求出它的本征值和相应的本征矢在zS ˆ表象中的表示。
四.(18分)在t=0时,自由粒子波函数为()⎪⎩⎪⎨⎧≥<=b 2x 0b 2x bxsin 2b 0,x πππψ a. 给出在该态中粒子动量的可能测得值及相应的几率振幅;b. 求出几率最大的动量值;c. 求出发现粒子在x dp b b +−ηη区间中的几率;d. ()?t ,x =ψ (积分形式即可)。
五. (18分) 三个自旋为2η的全同粒子,在一维位势())x x x (m 21V 23222123x ,2x ,1x ++=ω 中运动,a. 给出这三个粒子体系的基态和第一激发态的能量及相应 的本征矢;(谐振子波函数以()x u n 表示);b. 它们的简并度分别是多少?六.(16分)质量为m 的粒子处于位势()⎩⎨⎧∞≤<≤<≤<=其他和az 0a y 0,a x 00z ,y ,x V中。
假设它又经受微扰bxy Hˆ=′,试求第一激发态能量的一级修正。
北京大学量子力学期末试题A 答案和评分一. (10分)5分 a. x y x z x s s s s s xy 2x z s s s s −=5x y z 2)2(i s s s 4ηη=−=或 5x y z z y 2)2(i s )s s s s (214ηη=−−=5分b. s i )s s s s (k )s s s s (j )s s s s (i s s x y y x z x x z y z z y ηρρρ=−+−+−=×二.(12分) 1=αα ∴ α=α′4分 )3.0(N )(N α−β=βαα−β=β′由 )..(N ).)(.(N 222230*********+⋅−=α−β−β==β′′2分 91.01N =, )3.0(91.01α−β=β′4分 )2.0(N γβ′β′−α−γ=γ′2020202012....(N ⋅+γ−β′γγβ′−αγ−γγ==γ′γ′)β′γγβ′+β′γγ′−910740309101..).(.=γα−γβ=γ′ 191032602020910740201222222==+−−−⋅..N ).....(N ,2分 67.1N =三. (16分) m 2m m sˆz η= ′=′ϕθθ−ϕ−m e e s ˆe e m s ˆz y y z s ˆi s ˆi z sˆi s ˆi n ηηη如 ′=′θ−ϕ−m e e m y z s ˆi sˆi η, 则 ′=′m m 2m sˆn η 6分 ∴ 它的本征值为 2η± 相应的本征值在z sˆ表象中的表示m )sin i )(cos sin i (cos m m m y z 2222θσ−θϕσ−ϕ′=′′m sin sin i cos sin im sin cos i cos (cos x y 22222222θϕσ+θϕ−θϕσ−θϕ′m )e e (sin )sin im (cos cos m i i 222222ϕ−+ϕ−σ−σθ+ϕ−ϕθ′=6分 1m ,1m 1m ,1m i 1m m i e )(2sin e 2cos =′−=−=′=ϕ±±==′ϕδ±θ+θ=μ 2分 n sˆ本征值为2η,本征表示为 ⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛θθϕϕ−2i 2i e 2sin e 2cos 2分 2η−,本征表示为 ⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛θθ−ϕϕ−2i 2i e 2cos e 2sin四. (18分)6分 a. dx i 2e e 2b e21ibxibx b 2b2x ip p x x−ππ−−−ππ=ϕ∫η dx ]e e [i 41)b()/x p bx (i )x p bx (i 21x x ηη+−−−π=∫]e )p b (i e )p b (i [b i b x)p b (i x bbx)p b (i x xxππ−+−ππ−−++−π=22221141ηηηη2x 2x 21p )b (b2b p 2sin )i 2()b (41−π+π=ηηηη 该态中粒子动量可能测得值为 ∞<<∞−x p5分 b. }]p )b [(b p {sin dp d dp )p (d x x x x x 22222120−π==ϕηη∴ 0422422=−π+ππxxx x p )b (p b p sin b p cos b ηηηη0bp 2sin b p b p 2cos ]p )b [(xx x 2x 2=ππ+π−ηηηη ∴ 有解 b p x η±=3分 c. bxx 23bx p 2b p 2cosb 2)b (i )p (ηηηηη−πππ=ϕ发现粒子在x dp b b +−ηη区间中的几率为x x 2dp b1dp )b (ηη=ϕ4分 d. x t m 2p ip i 21x dpe)2(1)p ()t ,x (2xx ∫−πϕ=ψηηη五. (18分)a. 2分 ω+=εη)21n (n ,3分 ω=η25E 基, ω=η27E 1 基态 2n 0=,1n 1=2分 )()(u )()(u )()(u )()(u )()(u )()(u )()(u )()(u )()(u !3322113322113322113111100000001ββββββααα=ψ )()(u )()(u )(u )()(u )()(u )(u [221331331221311000010000αχ−αχ=)]()(u )()(u )(u 11233210000αχ+1分 )()(u )()(u )(u [331221311000002βχ=ψ )()(u )()(u )(u 22133110000βχ−)]()(u )()(u )(u 11233210000βχ+ 第一激发态 2n 0=,1n 2= 2分 )()(u )()(u )(u [331221312000011αχ=ψ)()(u )()(u )(u 22133120000αχ−)]()(u )()(u )(u 11233220000αχ+ 1分 )()(u )()(u )(u [331221312000012βχ=ψ)()(u )()(u )(u 22133120000βχ−)]1()1(u )23()3(u )2(u 10000βχ+ 2分 )()(u )()(u )(u [331221310001113αχ=ψ )()(u )()(u )(u 22133100011αχ−)]()(u )()(u )(u 11233200011αχ+ 1分 )()(u )()(u )(u [331221310001114βχ=ψ)()(u )()(u )(u 22133100011βχ− )]()(u )()(u )(u 11233200011βχ+b. 4分 基态二重简并第一激发态四重简并 六. (16分)3分 粒子的能量为)n n n (maz y x 2222222++πη 第一激发态为 1 1 21 2 1 2 1 12222220134112a )(ma E ππ=++π=ηη,5分 z a 2sin y a sin x a sin )a 2(123πππ=ρz asin y a 2sin x a sin )a 2(2r 23πππ=ρz asin y a sin x a 2sin )a 2(3r 23πππ=ρdy y a sin y dx x a sin x )a 2(1H ˆ1a 02a 022∫∫π⋅π=′4a dx x a sin x 2a2=π∫ ∴2222ba 41b 4a 4a )a 2(1H 1=⋅⋅⋅=′03H 2H =′=′2a 02a 022ba 41dy y a 2sin y dx x a sin x b )a 2(2H 2=π⋅π=′∫∫dy y a sin y a 2sin y xdx a 2sin x a sin x b )a 2(3H 2a 0a 02∫∫ππ⋅ππ=′42222228164ba 4)9a 8)(9a 8(b )a 2(π⋅=π−π−=2a 02a 022ba 41dy y a sin y dx x a 2sin x b )a 2(3H 3=π⋅π=′∫∫4分 于是有:0E ba 4181ba 464081ba 464E ba 41000E ba 411242421212=−π⋅π⋅−−2分 ∴ 211ba 41E =2分 2424422132344181464418146441ba ])([ba )(ba ba E ,π±=π⋅±=π⋅±=。
(完整版)量子力学期末考试题及解答

一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
量子力学期末试题及答案

量子力学期末试题及答案一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()01033x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中,)(x n ϕ为该氢原子的第n 个能量本征态。
求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数。
解 已知氢原子的本征值为42212n e E n μ=-, ,3,2,1=n (1)将0=t 时的波函数写成矩阵形式()()()231133(,0)23x x x x ϕψϕ⎛⎫+ ⎪ ⎪= ⎪- ⎪⎝⎭(2)利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()232311133(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭(4) 能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E === (5)能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦ (6) 自旋z 分量的可能取值为,22-,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-= ⎪ ⎪⎝⎭⎝⎭ (7)自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=- ⎪⎝⎭(8)0>t 时的波函数()()()223311i 2i exp exp 7(,)i exp x E t x E t x t x E t ϕψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭ (9) 二. (20分) 质量为m 的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V ,00 ,0.0 若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学习题(三年级用)北京大学物理学院二O O三年第一章 绪论1、计算下列情况的Broglie de -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子()克2410671-⋅=μ.n;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-⋅=μ.a;(3)飞行速度为100米/秒,质量为40克的子弹。
2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?3、利用Broglie de -关系,及园形轨道为各波长的整数倍,给出氢原子能量可能值。
第二章 波函数与波动力学1、设()()为常数a Ae x x a 2221-=ϕ(1)求归一化常数 (2).?p ?,x x ==2、求ikr ikr e re r -=ϕ=ϕ1121和的几率流密度。
3、若(),Be e A kx kx -+=ϕ求其几率流密度,你从结果中能得到什么样的结论?(其中k 为实数)4、一维运动的粒子处于()⎩⎨⎧<>=ϕλ-000x x Axe x x的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。
5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证0=υ⨯∇其中ρ=υ/j6、一维自由运动粒子,在0=t时,波函数为()()x ,x δ=ϕ0求:?)t ,x (=ϕ2第三章 一维定态问题1、粒子处于位场()000000〉⎩⎨⎧≥〈=V x V x V中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动)2、一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=0000x a x x V )x ( 中运动。
(1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ϕ态,证明:,/a x2=().n a x x ⎪⎭⎫ ⎝⎛π-=-222261123、若在x 轴的有限区域,有一位势,在区域外的波函数为如DS A S B D S A S C 22211211+=+=这即“出射”波和“入射”波之间的关系,证明:01122211211222221212211=+=+=+**S S S S S S S S这表明S 是么正矩阵4、试求在半壁无限高位垒中粒子的束缚态能级和波函数()⎪⎩⎪⎨⎧>≤≤<∞=ax V a x x V X 0000 5、求粒子在下列位场中运动的能级()⎪⎩⎪⎨⎧>μω≤∞=021022x x x V X6、粒子以动能E 入射,受到双δ势垒作用()[])a x ()x (V V x -δ+δ=0求反射几率和透射几率,以及发生完全透射的条件。
7、质量为m 的粒子处于一维谐振子势场)(1x V 的基态,02121>=k kx V )x ((1)若弹性系数k 突然变为k 2,即势场变为22kx V )X (=随即测量粒子的能量,求发现粒子处于新势场2V 基态几率;(2)势场1V 突然变成2V 后,不进行测量,经过一段时间τ后,势场又恢复成1V ,问τ取什么值时,粒子仍恢复到原来1V 场的基态。
8、设一维谐振子处于基态,求它的22x p ,x ∆∆,并验证测不准关系。
第四章 量子力学中的力学量1、 若())z ,y ,x (z y x V p p p H +++μ=22221 证明:,x V i ]P ,H [x ∂∂=,p i ]x ,H [xμ-=2、设[]q )q (f ,i p ,q 是 =的可微函数,证明(1)[],ihpf )q (f p ,q 22=(2)[];f p i)q (f p ,p '=223、证明0≡++]]B ˆ,A ˆ[,C ˆ[]]A ˆ,C ˆ[,B ˆ[]]C ˆ,B ˆ[,Aˆ[ 4、如果,B Aˆ,ˆ是厄密算符 (1)证明()[]B ˆ,A ˆi ,B ˆA ˆn+是厄密算符; (2)求出B ˆAˆ是厄密算符的条件。
5、证明:[][][][]][[] ++++=-A ˆ,L ˆ,L ˆ,L ˆ!,A ˆ,L ˆ,L ˆ!A ˆ,LˆA e A ˆe L ˆL 31216、如果B ,A 与它们的对易子[]B ˆ,Aˆ都对易,证明 []B ˆ,A ˆB AˆBˆAe e e 21++=⋅(提示,考虑(),e e e )(f B ˆA ˆB ˆA ˆ+λ-λλ⋅⋅=λ证明[]f B ,A d dfλ=λ然后积分)7、设λ是一小量,算符1-A ˆAˆ和存在,求证+λ+λ+λ+=λ---------1112121111A ˆB ˆA ˆB ˆA ˆA ˆA ˆB ˆA ˆA ˆ)B ˆAˆ( 8、如ni u 是能量n E 的本征函数(为简并指标i ),证明()⎰=+*0dx u x p xp u nj x x ni从而证明:⎰δ=τij nj x ni d xu p u i 29、一维谐振子处在基态()22122/x a /ea x -π=ϕ求: (1)势能的平均值;X m A2221ω=(2)动能的平均值;m /P Tx 22=(3)动量的几率分布函数其中ω=m a10、若证明,iL L L y x ±=±(1)±±±=L ˆ]L ˆ,L ˆ[z 022==-+]L ˆ,L ˆ[]L ˆ,L ˆ[ (2)11++=lm lm Y C Y L ˆ12--=lm lm Y C Y L ˆ(3)()--+++=-L ˆL ˆL ˆL ˆL ˆL ˆy x 212211、设粒子处于),(Y lm ϕθ状态,利用上题结果求22y x l ,l ∆∆12、利用力学量的平均值随时间的变化,求证一维自由运动的2X ∆随时间的变化为:()()()()()()2220000221212t P p x X p XP X X x t x X X t∆μ+⎥⎦⎤⎢⎣⎡-+μ+∆=∆ (注:自由粒子2x x P ,P 与时间无关)。
第五章 变量可分离型的波动方程1、求三维各向异性的谐振子的波函数和能级。
2、对于球方位势(){000><=r V a r rV试给出有0=l n 个的束缚态条件。
3、设氢原子处于状态()()()()()ϕθ-ϕθ=ϕθϕ-,Y r R ,Y r R ,,r 112110212321求氢原子能量,角动量平方和角动量分量的可能值,以及这些可能值出现的几率和这些力学量的平均量。
4、证明[]r r r ,∂∂+=∇1212 []∇=∇r ,221 5、设氢原子处于基态,求电子处于经典力学不允许区域()0〈=-T V E 的几率。
6、设()022>+=B ,A ,r /A Br r V其中,求粒子的能量本征值。
7、设粒子在半径为a ,高为h 的园筒中运动,在筒内位能为0,筒壁和筒外位能为无穷大,求粒子的能量本征值和本征函数。
8、碱金属原子和类碱金属原子的最外层电子在原子实电场中运动,原子实电场近似地可用下面的电势表示:()2rA r e Z r +'=φ其中,e Z '表示原子实的电荷,0>A,证明,电子在原子实电场中的能量为()222412l nl n z e E δ+'μ-=而l δ为l 的函数,讨论l δ何时较小,求出l δ小时,nl E 公式,并讨论能级的简并度。
9、粒子作一维运动,其哈密顿量()x x V mp H +=22的能级为)(n E 0,试用Hellmann Feynmen -定理,求mP H H xλ+=0的能级n E 。
10、设有两个一维势阱()()x V x V 21≤若粒子在两势阱中都存在束缚能级,分别为() 2121,n E ,E nn =(1)证明n n E E 21≤(提示:令()()211V V x ,Vλ+λ-=λ(2)若粒子的势场⎪⎩⎪⎨⎧=<>bx KX bx Kb )X (V 222121中运动,试估计其束缚能总数的上、下限11、证明在规范变换下ϕ*ϕ=ρ()ϕ*ϕμ-ϕϕ-ϕ*ϕμ=* A ˆcq P ˆP ˆj 21 ⎪⎭⎫⎝⎛-=υμA ˆc q P ˆˆ不变。
12、计算氢原子中P D 23→的三条塞曼线的波长。
13.带电粒子在外磁场()B ,,B 00=中运动,如选⎪⎭⎫ ⎝⎛-=02121,xB ,yB A ˆ或),xB ,(A 00= 试求其本征函数和本征值,并对结果进行讨论。
14、设带电粒子在相互垂直的均匀电场E 及均匀磁场B 中运动,求其能谱和波函数(取磁场方向为Z 轴方向,电场方向为X 轴方向)。
第六章 量子力学的矩阵形式及表象理论1、列出下列波函数在动量表象中的表示(1)一维谐振子基态:()t ix a ea t ,x ω--π=ψ222122(2)氢原子基态:()t E i a r nea t ,r 2031--π=ψ2、求一维无限深位阱(0≤x ≤a )中粒子的坐标和动量在能量表象中的矩阵元。
3、求在动量表象中角动量x Lˆ的矩阵表示。
4、在(z l ,l2)表象中,求1=l 的空间中的x Lˆ的可能值及相应几率。
5、设)r (V p H +μ=22,试用纯矩阵的方法,证明下列求和规则()∑μ=-nnmm n x E E 222(提示:求[][][]X ,X ,H ,X ,H 然后求矩阵元[][]>m X ,X ,H m )6、若矩阵A ,B ,C 满足iA CB BC ,I C B A 2222=-===(1)证明:0=+=+CA AC BA AB;(2)在A 表象中,求B 和C 矩阵表示。
7、设),x (V p H x+=μ22分别写出x 表象和x P 表象中x p ,x 及H 的矩阵表示。
8、在正交基矢21ψψ,和3ψ展开的态空间中,某力学量⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=010100002a A 求在态321212121ψ+ψ+ψ=ψ中测量A 的可能值,几率和平均值。
第七章 自 旋1、设λ为常数,证明λσ+λ=λσsin i cos ez i z。
2、若(),i y x σ±σ=σ±21证明02=σ±3、在z σ表象中,求n⋅σ的本征态,()θϕθϕθcos ,sin sin ,con sin n 是),(ϕθ方向的单位矢。
4、证明恒等式:()()()()BA iB A B A ⨯⋅σ+⋅=⋅σ⋅σ其中B ,A 都与σ对易。
5、已知原子c 12的电子填布为22020221j )p ()s ()s (,试给出(1)简并度;(2)给出jj 耦合的组态形式; (3)给出LS 耦合的组态形式;6、电子的磁矩算符S e l e 002μ-μ-=μ,电子处于z j ,j ,l 22的本征态>j j m l 中,求磁矩μ。