汽车后桥半轴设计(重新设计后论文)

合集下载

汽车后桥半轴设计(重新设计后论文)

汽车后桥半轴设计(重新设计后论文)

目录前言 (1)1 后桥结构方案分析 (2)2 驱动半轴的设计 (3)2.1半轴结构形式分析 (3)2.2驱动半轴结构形式选择 (3)2.3全浮式半轴计算载荷的确定 (4)2.3.1按发动机最大转矩与最低档传动比计算转矩 (4)2.3.2按驱动轮打滑转矩计算转矩 (4)2.3.3半轴转矩的确定 (5)2.4全浮式半轴的杆部直径的初选 (5)2.5全浮式半轴的强度计算 (6)2.6半轴花键的强度计算 (6)2.7半轴基于P RO/E的三维设计 (7)2.8半轴的材料与热处理 (7)参考文献 (9)致谢 (10)前言汽车后桥(驱动桥)位于传动系的末端。

其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。

驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。

对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。

随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m以上,百公里油耗是一般都在34升左右。

为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。

这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。

在这一环节中,发动机是动力的输出者,也是整个系统的心脏,而驱动桥则是将动力转化为能量的最终执行者。

载货汽车半轴的设计

载货汽车半轴的设计

( 2 ) 若按发动机最大转矩计算,即:
O. 7 5。 t : 5 6 . 2 7 5 a< 7 3  ̄ Ⅱ ) a
半浮式半轴承受的载荷较复杂 ,但是机构 2 ^ = 2 月 = 7 / r ( 4 ) 简 单、质量小 、尺寸 紧凑 、造 价低廉,所 以被 式中: ‘ 一差速器的转矩分配系数 ,对于 质 量较 小、使用条件好 、承 载负荷也不大 的轿 普通 圆锥行星齿轮差速器取0 . 6 ; T 一 发动机最大转矩 ,3 6 8 N・ m ; 车 和微 型客货 车所采用 。3 / 4 浮式半 轴的优 点 是结构简单轻便 ,因此 可用于轿车和微型 、轻 r l 一汽 车传动 效率,计 算时取0 . 9 0 . 型客货车 ,但没有推广 起来 。全浮式半轴 的驱 i ¨ 一传动系最低挡传动 比4 8 . 7 5 : 动桥外端结构 比较复杂,制造成本高 ,但 其工 r 一 轮胎的滚动半径,0 . 4 8 5 2 6 m 。 作可靠 ,常应用 在各种载货汽车 、越野汽 车和 根据式 ( 4 ) 、式 ( 5 ) 得:X 2  ̄ = X = O . 6 ・ 3 6 8 ・ 客车上: 。 0 . 9・ 4 8 . 7 5 / 0 。 4 . 8 5 2 6 = 1 9 9 6 3 . 7 3 1 N T = 1 9 9 6 3 . 7 3 l・0 . 4 85 2 6 = 9 6 8 7 . 6 0 O N ・I l l 根据各种半轴 的特 点分 析,在这里选用全 3 . 3半轴杆部直径初选 浮式半轴 。 3 . 半轴的设 计计算 全浮 式 半轴 杆部 直径 的初 选 可按 下式 进 行: 3 . 1半轴 的受力分析 全浮式半轴及受力简图如图1 所示 。
T=X , : = , ・ ( 2 )
半轴 和半 轴齿 轮 一般 采用 渐开 线 花键 连 接 ,花键 内径的大 小应 该不小于其杆 部直径 , 所 以选用压 力角 3 O 。,齿数2 O ,模 数3 的圆柱 渐开线花 键并对花键进 行挤压应力和 键齿切应 力验算 。 1 ) 半轴花键 的剪切应力 t ( M P a )

汽车后桥半轴淬火机升降部分及尾座设计_毕业论文设计说明书

汽车后桥半轴淬火机升降部分及尾座设计_毕业论文设计说明书

(此文档为word格式,下载后您可任意编辑修改!)第一章绪论1.1研究意义表面淬火是热处理的一种工艺,仅对零件的表面进行处理,以达到零件表面的性能,而保持心部的性能不变。

正确选择表面淬火工艺必须了解工件的工作情况和服役条件,零件的结构、形状以及使用的材料等各个方面,从生产和实用角度去考虑解决方案。

原则是从实际出发且经济有效。

在许多情况下,采用表面淬火处理能够较理想地解决表面和心部性能要求不一致的矛盾,即既能改善表面强度、硬度和耐磨性,又能保持心部大塑性和韧性,使材料的潜力得到充分的发挥,满足生产技术要求。

1.2国内外研究现状1.2.1国际先进的感应淬火技术(1) 电源国外IGBT、MOSFET和SIT全固态晶体管电源技术逐步成熟,并已商品化、系列化,目前有1200kW、50kHz;50~100kHz、30~600kW;100kW、80kHz;低频段有取代晶闸管电源趋势;MOSFET多采用并联振荡电路,SIT多采用串联谐振电路,功率高达1000 kW、频率200kHz和400kW、400kHz。

它们都是电子管式高频电源的理想替代产品。

当输出功率与电子管电源相同时,节电35%~40%,节省安装面积50%,节约冷却水40%~50%。

随着科技的进步,在高频感应淬火领域,MOSFET有望取代SIT。

(2) 淬火机床感应淬火机床更加趋向自动化,CNC控制逐渐增多,自动分检零件与自动识别进机零件功能的机床增多。

1)通用淬火机床通用淬火机床朝柔性化方向发展,一台淬火机床可以对不同性能要求的不同零件感应加热淬火。

德国研制的一种曲轴淬火机床,法兰件感应淬火柔性加工系统略加调整能处理不同尺寸的相似工件;对于轴类零件在一定直径范围内(如30mm)与长度300~800 mm范围内,对于相似淬火要求的轴类零件,淬火机能自动编制14种程序,自动识别进机零件;Robotron.Eiotherm最近推出了双主轴立式淬火机,在一个紧凑的工艺单元内进行工件的淬火与回火,能处理轮轴、三槽套及其他万向节件,转换工件只需2~5min,用计算机编程,根据工件号在2 min内就可调出有关工艺数据;一汽引进的GH公司数控淬火设备通用性强、自动化程度,在复杂零件上可实现多段变功变速,编程容易、操作方便。

载货汽车半轴的设计

载货汽车半轴的设计

载货汽车半轴的设计【摘要】本文是基于EQ1090载货汽车的半轴的设计。

通过计算校核,设计出的半轴具有较好的安全、稳定性,满足其使用条件。

【关键词】载货汽车;半轴;设计1.引言半轴用来将差速器半轴齿轮的输出转矩传到驱动轮或轮边减速器上。

半轴一般是实心的,一般用花键槽与半轴齿轮相连,另一端圆盘与轮毂用螺栓联接。

从差速器传出来的转矩经过半轴(或再经过轮边减速器)、轮毂,最后传给车轮,所以半轴是传动系中传递转矩的一个重要零件。

2.半轴的选型驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器的半轴齿轮传给驱动车轮。

驱动车轮的结构形式与驱动桥的驱动形式密切相关,在一般的非断开式驱动桥上,驱动车轮的传动装置就是半轴。

半轴的形式主要取决于半轴的支撑形式。

普通非断开式驱动桥的半轴,根据其外表支撑形式或受力状况的不同分为半浮式,3/4浮式和全浮式三种[1]。

半浮式半轴承受的载荷较复杂,但是机构简单、质量小、尺寸紧凑、造价低廉,所以被质量较小、使用条件好、承载负荷也不大的轿车和微型客货车所采用。

3/4浮式半轴的优点是结构简单轻便,因此可用于轿车和微型、轻型客货车,但没有推广起来。

全浮式半轴的驱动桥外端结构比较复杂,制造成本高,但其工作可靠,常应用在各种载货汽车、越野汽车和客车上[2]。

根据各种半轴的特点分析,在这里选用全浮式半轴。

3.半轴的设计计算3.1 半轴的受力分析全浮式半轴及受力简图如图1所示。

图1 全浮式半轴及受力简图半轴主要的尺寸是它的直径,计算时首先应合理地确定作用在半轴上的载荷,应考虑以下三种可能的载荷工况:A.纵向力X2(制动力或驱动力)最大时(X2=Z2φ),附着系数φ取0.8,没有侧向力的作用;B.侧向力Y2最大时为Z2φ(发生于侧滑时),没有纵向力作用,地面与轮胎的侧向附着系数φ1在计算侧滑时取1.0;C.垂向力最大时(在汽车以高速通过不平整路况发生时),其值为(Z2-gw)kd,其中gw为车轮对地面的垂直载荷,kd为动载荷系数,这时不考虑纵向力和侧向力的作用。

5.6吨的中型载货汽车的后桥毕业设计

5.6吨的中型载货汽车的后桥毕业设计

5.6吨的中型载货汽车的后桥毕业设计前言随着我国国民经济日新月异的高速发展,交通运输业已成为社会发展不可或缺的重要推动力。

我国近几年各种公路尤其是高速公路发展迅速,使得货车得到更加广泛的应用。

货车运输不仅运输量大,而且成本低,机动灵活,比之其他运输方式有着可比拟的优势。

货车按照载重量可分为重型货车、中型货车和轻型货车。

在我国,伴随着公路承载能力的提高和长途运输需求量的不断增加,发展载货汽车已成为一种必然的趋势。

20世纪70年代以来,由于对运输需求的增加和公路承载能力的提高,各国都在放宽对于轴重和车辆总重的限制,因而大吨位载货汽车不断增加。

所以载货汽车作为运输车辆,在我国现代化建设和世界各国发展中做出很大的贡献!我此次设计的是总重量为11吨、载重量为5.6吨的中型载货汽车的后桥(驱动桥)。

采用非断开驱动桥,整体式桥壳,全浮式半轴。

采用非断开驱动桥,能够提高汽车行驶平顺性和通过性;采用整体式桥壳壳获得角度的强度和刚度;采用全浮式半轴,半轴只承受扭矩不承受弯矩,工作条件改善,寿命得到提高。

由于本人的能力有限,专业知识也不够扎实,在设计中还存在诸多不足和缺陷,真诚希望老师批评指正。

第一章驱动桥总体设计§1.1驱动桥概述驱动桥位于传动系的末端,由主减速器、差速器、车轮传动装置和桥壳等组成,转向驱动桥还有等速万向节。

其基本功用是:1将万向传动装置传来的发动机转矩通过主减速器,差速器,半轴等传到驱动车轮,实现降速、增扭;2通过主减速器改变转矩的传递方向;3通过差速器实现两侧车轮的差速作用,将转矩合理地分配给左右车轮;4 承受各种力、力矩等。

驱动桥的类型有断开式和整体式两种:整体式驱动桥:整个驱动桥通过弹性悬架与车架连接,由于半轴套管与主减速器是刚性连接为一体的,所以两侧的半轴和驱动桥不可能在横向平面内作相对运动,故称为非断开式驱动桥,又名整体式驱动桥。

断开式驱动桥:其结构特点是没有连接左右车轮的刚性整体外壳或梁,主减速器速、差速器及其壳体安装在车架或车身上,通过万向传动装置驱动车轮。

微型汽车后桥半轴力学分析及断裂分析

微型汽车后桥半轴力学分析及断裂分析
合为过盈配合,经计算这种配合完全能够 平衡由于侧滑而引起的侧向力,不致使半 轴彼抽出去。
轴的头部商径很大,另一端花键处到 轴承安装处直径相对很小,如果采用整体 锻造在头部镦出巾124直径是很困难的成
本也较高。所以采用摩擦对焊的工艺对截 面选在弯曲力矩很小的地方。另外在图l所 示的区域进行中频表面淬火,表面硬度 HRC50一60心部硬度HRC25—32,这样可以 提高疲劳强度。半轴材料采用45号钢。
万方数据
科技创业家TECHNOLOGICAL P10NEERs
1 49
有纵向力和侧向力作用,所以半轴只受垂 向弯矩:
垂向力F,,最大,纵向力F。,=O,侧向力 F,,=0:此时垂直力最大值F,:为:
F:2L=F:2R=K(G 2/2一g。)=807l(N) 其中K为动载系数K=1.8,
而魄r=足ב2£×6=282.49(N’m)
该半轴按照工艺规范生产并检验合格 后装车。在试车过程中发生断裂,对断裂件 的原材料成分进行了光谱分析,其结果符 合有关技术标准,为弄清楚该半轴早期断 裂的原因,本文对其硬度、显微组织、宏观 及微观端【J进行了研究。 3.1试验方法
首先l记录并分析断口宏观形貌,然后 用酒精等将端口表面清洗干净.用扫描电 子显微镜做断u微观形貌分析,用光学显 微镜对半轴表层和心部显微组织进行研 究,|一l时测定了其硬度。
4结论 45#汽车后桥半轴中存在较多的铁素
体是造成半轴疲劳断裂的原因。应该在生 产中找出造成调质淬火工艺温度不正确的 原因,并予以改正,使后桥半轴的调质组织 和硬度符合技术要求。
(a)纵向 (a)Lห้องสมุดไป่ตู้ngthwise section
(b)纵向 (b)Transverse section

毕业设计(论文)汽车后桥壳体工艺工装设计(全套图纸)

毕业设计(论文)汽车后桥壳体工艺工装设计(全套图纸)

摘要毕业设计的课题基本分为三大类,即工艺工装设计类、组合机床设计类和计算机课题类。

本课题所涉及的是第一类,设计任务为汽车后桥壳体的工艺工装设计,在壳体内部装有主传动器、差速器、半轴等传动机构。

壳体起保证和支撑的作用,其主要加工表面为端面外圆、法兰平面、弹簧座平面、以及内孔等。

本次设计主要包括工艺规程、夹具、刀具和量具的设计。

此次设计共分三个阶段,即:(1)毕业实习阶段(2)课题设计阶段(3)考核答辩阶段。

结合本次设计零件的特点,在设计中完成工艺规程一套,夹具两套:(1)铣床夹具(2)钻床夹具,其中,前者为手动夹紧。

另外还据任务书分别设计刀具——铣刀一把和量具——单头双极限卡规一套,共完成图纸近5张,基本完成老师所交给的任务。

关键词:汽车后桥;工艺分析;设计任务全套CAD图纸,联系153893706ABSTRACTThe subject of the graduation project is divided into three big classes,namely the frock designing type of craft ,making up the designingtype of lathe and comper subjects basically.What this subject involved is the first kind,designing the task for the rear axle of automobile,the craft frock of the shell is designed.Equipped with the organizations of the transmission,such as main hammer mechanism actuator,differential mechanism,semi-axis,ect,within the shell.The shell plays a role in guatanteeing and support,it processes flange,spring seat plane,and interior hole round for outside of the terminal surface of surface,ect,mainly.This design includes the design of rules of craft,jig,cutter and measuring tool mainly.This design divides three stages altogether,namely:(1)Graduation field work stage(2)Ddeign phase of subject(3)Examine the stage of bine this charateristic of designing the part,finisshes one set of rules of craft in the design,two sets of jigs:(1)Jig of the milling machine(2)The jig of the drilling machine,among them,the former,in order to clamp manually.Still design the cutter sepatately according to the task book in addition—One milling cutter is with measuring,finish drawing amount nearlu 5 altogether,finish the task that a teacher assigns basically.Key word:The rear axle of automobile;the crafu analuses;designs the task目录1 绪论 (1)1.1 我国汽车后桥制造业的现状及其发展趋势 (1)1.2 汽车后桥壳体的构造 (1)1.3 汽车后桥壳体的性能要求 (1)2 零件的分析 (3)2.1 零件的作用 (3)2.2 零件的工艺分析 (3)2.3 生产类型的确定 (4)2.4 确定毛坯的制造形式 (4)2.5 基面的选择 (4)3 械加工工艺路线 (6)3.1 工艺方案 (6)3.2 工艺方案比较分析 (7)3.3 加工阶段的划分和检验工序的安排 (7)4 加工余量、工序、毛坯尺寸的确定 (9)5 工时定额 (10)5.1工序六的工时定额 (10)5.2工序十三的工序定额 (11)6 夹具设计 (12)6.1 铣床夹具设计 (12)6.1.1 工件的加工工艺分析 (12)6.1.2 定方案,设计定位元件 (12)6.1.3 确定夹紧方式和设计夹紧结构 (13)6.1.4 定位误差的分析 (14)6.1.5 夹紧元件的强度校核 (14)6.1.6 夹具体的设计 (15)6.1.7 夹具体设计及其操作的简要说明 (15)6.2 钻床夹具的设计 (16)6.2.1 定位基准的选择 (16)6.2.2 夹紧力的确定 (16)6.2.3 钻削力的计算 (16)6.2.4 动力源设计 (17)6.2.5 夹具体的设计 (18)6.2.6 夹具设计及操作简要说明 (19)7 CAD绘图简介 (20)8 量具设计 (21)9 刀具设计 (24)结论 (26)致谢 (27)参考文献 (28)附录A 英文原文 (29)附录B 汉语翻译 (35)1 绪论1.1我国汽车后桥制造业的现状及其发展趋势我国丰富的原材料资源为后桥壳体国产化提供了坚实的基础。

毕业设计(论文)-汽车后桥壳体加工工艺及夹具设计(全套图纸)

毕业设计(论文)-汽车后桥壳体加工工艺及夹具设计(全套图纸)

毕业设计(论文)-汽车后桥壳体加工工艺及夹具设计(全套图纸)毕业设计说明书课题:汽车后桥壳体的加工工艺规程及钻2-M8螺纹孔和铣面夹具设计子课题: 同课题学生姓名:专业机械制造与自动化学生姓名班组学号指导教师完成日期摘要摘要汽车后桥壳体是汽车的重要组成部分,它与主减速器、差速器和车轮传动装置组成驱动桥。

驱动桥处与动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。

它连接主减速器传动力,支撑差速器及半轴实现俩车轮差速转动;尺寸比较大,主要承受载荷。

重点是保证壳体的强度和刚性性能,便于安装、调整和维修。

汽车后桥壳体一般采用铸铁铸造成型,在经过机械加工将其加工至使用要求,在生产过程中,汽车后桥壳体的加工工艺定制非常重要,工艺的编制决定了零件的精度及生产效率,尤其是这种大批量生产的零件,其工艺规程要考虑到产量问题。

同时为了保证工件的加工精度,以及为了提高生产率而设计出各个工序的专用夹具,是操作者使用起来简单、快速、准确,从而在保证精度的前提下大大提高生产率。

关键词:工艺编制,加工时间,专用夹具,生产率全套图纸,加153893706AbstractAutomobile rear axle housing is an important part of the car, it with the Lord reducer, differential and wheel gear drive axle. Drive axle and the end of the power transmission system, its basic function is to increase the shaft or the transmission of torque, and power reasonable distribution to the left and right driving wheels, also bear role between road surface and frame or body of vertical force and vertical force and horizontal force. It connects the main reducer momentum, supporting both differential and half shaft wheel differential rotation. Size is larger, the main load bearing. The key is to ensure that shell strength and rigidity performance, ease of installation, adjustment and maintenance.Automobile rear axle housing is made of cast iron casting forming, generally after machining to its processing to use requirement, in the process of production, the processing technology of the automobile rear axle shell custom is very important, the process of making determines the accuracy of the parts and the production efficiency, especially in the mass production of parts, the technical process to production into consideration. At the same time, in order to ensure the workpiece machining accuracy, and in order to improve the productivity and special fixture design of each process, is the operator to use simple, rapid and accurate, and on the premise of guarantee accuracy greatly improved productivity.Key words: machining process, machining time, special fixture, productivity目录第一章加工工艺规程设计 (1)1.1 零件的分析 (1)1.1.1 零件的作用 (1)1.2 汽车后桥壳体加工的问题和工艺过程设计所应采取的相应措施 (2)1.2.1 孔和平面的加工顺序 (3)1.2.2 孔系加工方案选择 (2)1.3 汽车后桥壳体加工定位基准的选择· 21.3.1 粗基准的选择 (2)1.3.2 精基准的选择 (3)1.4 汽车后桥壳体加工主要工序安排·· 31.5 机械加工余量、工序尺寸及毛坯尺寸的确定 (5)1.6确定切削用量及基本工时(机动时间)5第二章钻2-M8螺纹孔夹具设计 (19)2.1定位基准的选择 (19)2.2 钻削力计算 (19)2.3定位元件的设计 (20)2.4 定位误差分析 (21)2.5 夹紧装置及夹具体设计 (21)2.6 夹具设计及操作的简要说明 (21)第3章铣178下平面夹具的设计 (22)3.1 问题的指出 (22)3.2 定位机构 (22)3.2.1定位方式计算及选择 (22)3.2.2切削夹紧力的计算 (22)3.3定位误差分析 (24)3.4 零、部件的设计与选用 (24)3.4.1定位销选用 (24)3.4.2夹紧装置的选用 (25)3.5 夹具设计及操作的简要说明 (27)结论 (28)参考文献 (29)致谢 (30)第一章零件加工工艺规程以及设计1.1零件结构的分析1.1.1 零件作用的分析随着科学技术和社会生产水平的不断提高,机械制造生产模式发生了巨大的演变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录前言 (1)1 后桥结构方案分析 (2)2 驱动半轴的设计 (3)2.1半轴结构形式分析 (3)2.2驱动半轴结构形式选择 (3)2.3全浮式半轴计算载荷的确定 (4)2.3.1按发动机最大转矩与最低档传动比计算转矩 (4)2.3.2按驱动轮打滑转矩计算转矩 (4)2.3.3半轴转矩的确定 (5)2.4全浮式半轴的杆部直径的初选 (5)2.5全浮式半轴的强度计算 (6)2.6半轴花键的强度计算 (6)2.7半轴基于P RO/E的三维设计 (7)2.8半轴的材料与热处理 (7)参考文献 (9)致谢 (10)前言汽车后桥(驱动桥)位于传动系的末端。

其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。

驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。

对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。

随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m以上,百公里油耗是一般都在34升左右。

为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。

这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。

在这一环节中,发动机是动力的输出者,也是整个系统的心脏,而驱动桥则是将动力转化为能量的最终执行者。

因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。

所以设计新型的驱动桥成为新的课题。

目前国内重型车桥生产企业也主要集中在中信车桥厂、东风襄樊车桥公司、济南桥箱厂、汉德车桥公司、重庆红岩桥厂和安凯车桥厂几家企业。

这些企业几乎占到国内重卡车桥90%以上的市场。

设计后桥时应当满足如下基本要求:1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。

2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。

3)齿轮及其他传动件工作平稳,噪声小。

4)在各种载荷和转速工况下有较高的传动效率。

5)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。

6)与悬架导向机构运动协调。

7)结构简单,加工工艺性好,制造容易,维修,调整方便。

在本设计中还采用了CAD绘图软件分别进行了工程图的绘制,运用CAD绘制了、行星齿轮轴以及传动机构半轴的零件图,通过对CAD的编辑工具与命令的运用,掌握了从CAD基础图形的绘制→基础零件的绘制→各类零件图的创建与绘制的方法,并且理解了机械图绘制的工作流程,为今后更好的学习和掌握各种应用软件和技能打下坚实的基础。

1 后桥结构方案分析驱动桥分断开式和非断开式两类。

驱动车轮采用独立悬架时,应选用断开式驱动桥;驱动车轮采用非独立悬架时,则应选用非断开式驱动桥。

断开式驱动桥的结构特点是没有连接左右驱动车轮的刚性整体外壳或梁,主减速器、差速器及其壳体安装在车架或车身上,通过万向传动装置驱动车轮。

此时,主减速器、差速器和部分车轮传动装置的质量均为簧上质量。

两侧的驱动车轮经独立悬架与车架或车身作弹性连接,因此可以彼此独立的相对于车架或车身上下摆动。

为防止车轮跳动时因轮距变化而是万向传动装置与独立悬架导向装置产生运动干涉,在设计车轮传动装置时,应采用滑动花键轴或允许轴向适量移动的万向传动机构。

非断开式驱动桥的桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减速器、差速器和半轴等所有传动件都装在其中。

此时,驱动桥、驱动车轮均属簧下质量。

与非断开式驱动桥比较,断开式驱动桥能显著减少汽车簧下质量,从而改善汽车行驶平顺性,提高了平均行驶速度;减小了汽车行驶时作用与车轮和车桥上的动载荷,提高了零部件的使用寿命;增加了汽车离地间隙;由于驱动车轮与路面的接触情况及对各种地形的适应性较好,增强了车轮的抗侧滑能力;若与之配合的独立悬架导向机构设计合理,可增加汽车的不足转向性,提高汽车的操纵稳定性。

但其结构较复杂,成本较高。

断开式驱动桥在乘用车和部分越野汽车上应用广泛。

非断开式驱动桥结构简单,成本低,工作可靠,广泛应用于各种商用车和部分乘用车上。

但由于其簧下质量较大,对汽车的行驶平顺性和减低动载荷有不利的影响。

为了提高汽车的载质量和通过性,总质量较大的商用车大多采用多桥驱动方式,而各驱动桥又采用贯通式的布置形式。

2 驱动半轴的设计2.1 半轴结构形式分析半轴根据其车轮端的支撑方式不同,可分为半浮式、3/4浮式和全浮式三种形式。

半浮式半轴的结构特点是半轴外端支承轴承位于半轴套管外端的内孔,车轮装在半轴上。

半浮式半轴除传递转矩外,其外端还承受由路面对车轮的反力所弓}起的全部力和力矩。

半浮式半轴有结构简单,质量小,尺寸紧凑,造价低廉的优点,但所受载荷复杂且较大,因此多用于质量较小,使用条件较好,承载负荷也不大的轿车和微型、轻型货车或客车上。

3/4浮式半轴的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支撑着车轮轮毅,而半轴则以其端部凸缘与轮毅用螺钉联接。

该形式半轴受载情况与半浮式相似,只是载荷有所减轻,一般仅用在轿车和轻型货车上。

全浮式半轴理论上只承受传动系的转矩而不承受弯矩,但实际上由于加工零件的精度和装配精度影响以及桥壳、轴承支承刚度不足等原因,仍可能使全浮式半轴承受一定弯矩。

具有全浮式半轴的驱动桥外端结构复杂,需要采用形状复杂且质量及尺寸均较大的轮载,制造成本高,故小型车及轿车不必采用此种结构,而广泛用于轻型以上各种载货汽车、越野汽车和客车。

2.2 驱动半轴结构形式选择根据所设计车辆的参数,分析所选半轴的结构形式。

由于跃进130属于中型载货汽车,载货质量和汽车尺寸较大,如果采用半浮式或3/4浮式半轴时,对半轴的强度或尺寸要求较高,最终不仅没使结构简化,反而更加复杂,增加了制造成本。

因此,应选用全浮式,使得半轴受载单一,增加半轴的使用寿命。

2.3全浮式半轴计算载荷的确定2.3.1. 按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩Tcen i K i T T T o TL e ce /max ⋅⋅⋅⋅=η m N ⋅ (2-1)式中 TL i ——发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比,在此取9.01 ;i ——驱动桥传动比;max e T ——发动机的输出的最大转矩,此数据参考跃进150车型在此取240m N ⋅;T η——传动系上传动部分的传动效率,在此取0.9;n ——该汽车的驱动桥数目在此取1;o K ——由于猛结合离合器而产生冲击载荷时的超载系数,对于一般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取o K =1.0,当性能系数p f =0时,o K =1,当性能系数p f >0时可取o K =2.0或由经验选定;⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧><⎪⎭⎫ ⎝⎛=16T g m 0.195 016T g m 0.195 T g m 0.195-161001emax a emax a emax a 当当p f (2-2)a m ——汽车满载时的总质量在此取15000g K ;所以 0.1952401015000⨯⨯ =122>16 ∴ p f =0 即o K =1.0由以上各参数可求TceTce =15.49.00.101.9240⨯⨯⨯⨯=8757.7m N ⋅ 2.3.2. 按驱动轮打滑转矩确定从动锥齿轮的计算转矩cs TLB LB r i r G T m cs ⋅'=ηϕ/22 m N ⋅ (2-3) 式中 2G ——汽车满载时一个驱动桥给水平地面的最大负荷,预设后桥所承载150000N 的负荷;2m '——汽车最大加速度时的后轴负荷转移系数,商用车取1.1--1.2;ϕ——轮胎对地面的附着系数,对于安装一般轮胎的公路用车,取ϕ=0.85;对于越野汽车取1.0;对于安装有专门的防滑宽轮胎的高级轿车,计算时可取1.25;r r ——车轮的滚动半径,在此选用轮胎型号为12.00R20,滚动半径为0.527m ;LB η,LB i ——分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,LB η取0.9,由于没有轮边减速器LB i 取1.0所以LB LB r i r G T m cs ⋅'=ηϕ/22=0.19.02.1527.085.0150000⨯⨯⨯⨯=93173.6m N ⋅ 2.3.3 半轴的计算转矩ϕT全浮式半轴只承受转矩,全浮式半轴的计算载荷可按主减速器从动锥齿轮计算转矩进一步计算得到。

即ϕT =ξmin[cs ce T T ,]=0.6⨯8757.7m N ⋅=5254.6m N ⋅ (2-4)式中:ξ为差速器转矩分配系数,对于圆锥行星齿轮差速器可取0.6;min[cs ce T T ,]为按发动机最大转矩和最低档传动比以及按驱动轮打滑转矩计算最小值确定的主减速器从动锥齿轮计算转矩,m N ⋅,已经考虑到传动系中的最小传动比构成。

2.4 全浮式半轴的杆部直径的初选全浮式半轴杆部直径的初选可按下式进行[]333)18.2~05.2(196.010T T d =⨯=τ (2-5) 根据上式()36.525418.2~05.2=d =(35.64~37.90)mm根据强度要求在此d 取38mm 。

2.5 全浮式半轴的强度计算首先是验算其扭转应力τ: 331016⨯=d Tπτ MPa (2-6) 式中:T ——半轴的计算转矩,N ·m 在此取5254.6N ·m ;d ——半轴杆部的直径,mm 。

根据上式τ=3310381614.36.5254⨯⨯=487.9 MPa< []τ=(490~588) MPa 所以满足强度要求。

半轴的扭转角为 310180⨯=πθϕp GI l T (2-7) 式中: θ为扭转角;l 为半轴长度l=0.55m ;G 为材料剪切弹性模量G=81GPa ;p I 为半轴断面极惯性矩 58.204707324==d I p π (2-8)根据 (2-7)7.614.358.2047078155.06.5254180=⨯⨯⨯⨯=θ <8 ; 所以满足刚度要求。

相关文档
最新文档